
Journal of Physics: Conference Series

The Pierre Auger Observatory offline software
To cite this article: J Allen et al 2008 J. Phys.: Conf. Ser. 119 032002

View the article online for updates and enhancements.

Related content
From The Pierre Auger Observatory to
AugerPrime
Alejandra Parra, Oscar Martínez Bravo
and Pierre Auger Collaboration

-

Data Processing at the Pierre Auger
Observatory
Jakub Vícha, Jií Chudoba and Pierre
Auger Collaboration

-

Offline Data Quality Monitoring for the
RPC of the CMS Detector
B. Fabela and I. Pedraza

-

Recent citations
Measurements of the muon shower
content at the Pierre Auger Observatory
A. Yushkov et al

-

This content was downloaded from IP address 129.13.72.197 on 08/03/2018 at 11:21

https://doi.org/10.1088/1742-6596/119/3/032002
http://iopscience.iop.org/article/10.1088/1742-6596/866/1/012001
http://iopscience.iop.org/article/10.1088/1742-6596/866/1/012001
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012077
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012077
http://iopscience.iop.org/article/10.1088/1742-6596/761/1/012054
http://iopscience.iop.org/article/10.1088/1742-6596/761/1/012054
http://dx.doi.org/10.1051/epjconf/20135307002
http://dx.doi.org/10.1051/epjconf/20135307002

The Pierre Auger Observatory offline software

J. Allen1, S. Argirò2, S.L.C. Barroso3, S.Y. BenZvi4, G. Cataldi5, M.

Ding1, J. Gonzalez6, T. McCauley8, L. Nellen7, T. Paul8, T.A.

Porter9, L. Prado, Jr.10, M. Roth11, R. Ulrich11, M. Unger11 and D.

Veberič12

1 New York University, 4 Washington Place, New York, NY 10003, USA.
2 INFN and University of Torino, Via P. Giuria 1, I-10125 Torino, Italy
3 Centro Brasileiro de Pesquisas F́ısicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro-RJ, CEP
22290-180, Brazil
4 Columbia University, 538 W. 120’th St., New York, NY 10027, USA
5 INFN sez. di Lecce, Lecce, Italy
6 Louisiana State University, Baton Rouge, LA, 70803, USA
7 Departamento de F́ısica de Altas Enerǵıas, Instituto de Ciencias Nucleares, Universidad
Nacional Autonoma de México, México D.F., C.P 04510
8 Northeastern University, 111-DA, 110 Forsyth St., Boston, MA 02115, USA.
9 Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, 95046,
USA
10 Instituto de F́ısica Gleb Wataghin, Universidade Estadual de Campinas UNICAMP,
Campinas-SP, CP 6165 CEP 13083-970, Brazil
11 Karlsruhe Institute of Technology KIT, University and Forschungszentrum Karlsruhe, POB
3640, D-76021 Karlsruhe, Germany
12 University of Nova Gorica, Vipavska 13, PO Box 301, SI-5001, Nova Gorica, Slovenia

E-mail: t.paul@neu.edu

Abstract. The Pierre Auger Observatory aims to discover the nature and origins of the
highest energy cosmic rays. The large number of physicists involved in the project and
the diversity of simulation and reconstruction tasks pose a challenge for the offline analysis
software, not unlike the challenges confronting software for very large high energy physics
experiments. Previously we have reported on the design and implementation of a general
purpose but relatively lightweight framework which allows collaborators to contribute algorithms
and sequencing instructions to build up the variety of applications they require. In this report,
we update the status of this work and describe some of the successes and difficulties encountered
over the last few years of use. We explain the machinery used to manage user contributions,
to organize the abundance of configuration files, to facilitate multi-format file handling, and
to provide access to event and time-dependent detector information residing in various data
sources. We also describe the testing procedures used to help maintain stability of the code in
the face of a large number of contributions. Foundation classes will also be discussed, including a
novel geometry package which allows manipulation of abstract geometrical objects independent
of coordinate system choice.

1. Introduction

The offline software framework of the Pierre Auger Observatory [1] provides an infrastructure
to support construction of the various applications necessary to analyze data gathered by the

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

c© 2008 IOP Publishing Ltd 1

observatory. The observatory is designed to measure the extensive air showers produced by the
highest energy cosmic rays (> 1019 eV) with the goal of discovering their origins and shedding
light on their composition. Two different techniques are used to detect air showers. First, a
collection of telescopes is used to sense the fluorescence light produced by excited atmospheric
nitrogen as the cascade of particles develops and deposits energy in the atmosphere. This method
can be used only when the sky is moonless and dark, and thus has roughly a 15% duty cycle.
Second, an array of detectors on the ground is used to sample particle densities and arrival
times as the air shower impinges upon the Earth’s surface. Each surface detector consists of a
tank containing 12 tons of purified water instrumented with photomultiplier tubes to detect the
Cherenkov light produced by passing particles. The surface detector has nearly a 100% duty
cycle. A subsample of air showers detected by both instruments, called hybrid events, are very
precisely measured and provide an invaluable tool for cross checks and energy calibration. In
order to provide full sky coverage, the baseline design of the observatory calls for two sites, one
in the southern hemisphere and one in the north. The southern site is located in Mendoza,
Argentina, and construction there is nearing completion, at which time the observatory will
comprise 24 fluorescence telescopes overlooking 1600 surface detectors spaced 1.5 km apart on
a hexagonal grid. The state of Colorado in the USA has been selected as the location for the
northern site.

The requirements of this project place demands on the analysis software not unlike those
faced by traditional high energy physics experiments. Though we are not not confronted by the
same magnitude of data or instrumental complexity characteristic of the LHC experiments, the
software must still support a large number of physicists developing many applications over a
long experimental run. Specifically, the offline software supports simulation and reconstruction
of events using surface, fluorescence and hybrid methods, as well as simulation of calibration
techniques [2] and other ancillary tasks such as data preprocessing. Further, as the experimental
run will be long, it is essential that the software be extensible to accommodate future upgrades to
the observatory instrumentation (see for example [3, 4]), and the software needs to be adaptable
to the requirements of the proposed northern site. The offline framework must also handle a
number of formats in order to deal with data from a variety of instruments, as well as the output
of air shower simulation codes. Additionally, it is essential that all physics code be “exposed”
in the sense that any collaboration member must be able to replace existing algorithms with his
or her own in a straightforward manner. This is meant to encourage independent analysis and
ease comparison of results. Finally, while the underlying framework itself may exploit the full
power of C++ and object-oriented design, the portions of the code directly used by physicists
should not assume a particularly detailed knowledge of these topics.

A prototype of the offline framework was first reported at CHEP04. Since that time, the
software has gone into production and has been used to generate physics results for about the
past two and a half years. Below we outline the design and describe the current state of the
framework, and comment on some areas of ongoing development. A more detailed description
of the offline software design, including some example applications, is available in [6]; this note
provides an update of the work presented there.

2. Overview

The offline framework comprises three main parts: a collection of processing modules which can
be assembled and sequenced through instructions contained in an XML file or in a Python script,
an event data model through which modules relay data to one another and which accumulates
all simulation and reconstruction information, and a detector description which constitutes a
gateway to conditions data, including atmospheric properties as a function of time. The principal
ingredients are depicted in Fig. 1.

These components rely on a set of foundation classes and utilities to support error logging,

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

2

Figure 1. General structure of the offline framework. Simulation and reconstruction tasks
encased in modules. Each module is able to read information from the detector description
and/or the event, process the information, and write the results back into the event.

physics and mathematical manipulation, and abstract manipulation of geometrical objects, as
described in more detail below.

3. User Modules and Run Control

Most tasks of interest to the Pierre Auger Collaboration can be factorized into sequences of
self-contained processing steps which can simply be pipelined. Physicists prepare processing
algorithms in so-called modules, which they register with the framework via a macro. This
modular design allows collaborators to exchange code, compare algorithms and build up a variety
of applications by combining modules in various sequences.

Modules inherit a common interface, and module authors must implement three abstract
methods: a Run method, which is called once per event; and Init and Finish methods, to be
called at the beginning and end of a processing job. To make the module available to the
offline framework, authors invoke a macro in the module class declaration which registers a
factory function. This function is then used by the framework to instantiate the module when
requested.

For most applications, run-time control over module sequences is afforded through a run

controller, which invokes the various processing steps within the modules according to a set of
instructions provided in an XML file. We devised a simple XML-based [7] language for specifying
sequencing instructions. Fig. 2 shows a simple example of the structure of a sequencing file. This
approach has proved sufficiently flexible for the majority of applications, and it is quite simple
and easy to learn. Further control over module sequencing is provided by a signaling mechanism
in which modules can return flags to the run controller, instructing it to break a loop or to skip
all subsequent modules up to the next loop tag.

4. Configuration

All configuration data are stored in a hierarchy of XML files. A globally accessible central

configurator points modules and framework components to the location of their configuration
data, and creates Xerces-based [21] XML parsers to assist in reading information from these
locations. We have wrapped the Xerces API in with our own interface which provides ease-
of-use at the cost of somewhat reduced flexibility compared to the standard DOM API, and
which also adds functionality such as units conversion, including handling of units specified in
expressions. The locations of configuration data are specified in a so-called bootstrap file, and
may comprise local filenames, URIs [8] or XPath [9] addresses. The name of the bootstrap file
is passed to the application at run time via the command line.

Provenance is afforded through the configuration mechanism, which can concatenate all
configuration data accessed during a run and write it in an XML log file and into the event
file. This log file includes a preamble with a format identical to that of a bootstrap file, with

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

3

<sequenceFile>

<loop numTimes="unbounded">

<module> SimulatedShowerReader </module>

<loop numTimes="10" pushToStack="yes">

<module> EventGenerator </module>

<module> TankSimulator </module>

<module> TriggerSimulator </module>

<module> EventExporter </module>

</loop>

</loop>

</sequenceFile>

Figure 2. Simplified example in which an XML file sets a sequence of modules to conduct a
simulation of the surface array. <loop> and <module> tags are interpreted by the run controller,
which invokes the modules in the proper sequence. In this example, simulated showers are
read from a file, and each shower is thrown onto the array in 10 random positions by an
EventGenerator. Subsequent modules simulate the response of the surface detectors and trigger,
and export the simulated data to file. The pushToStack="yes" attribute instructs the Run
Controller to store the event when entering the loop, and restore it to that state when returning
back to the beginning of the loop. Note that XML naturally accommodates common sequencing
requirements such as nested loops.

XPath addresses specifying the locations of all the configuration data in the file. Thus a log file
can subsequently be read as though it were a bootstrap file in order to reproduce a run with an
identical configuration.

The configuration logging mechanism may also be used to record the versions of modules
and external libraries which are used during a run. Each module version is recorded in a static
method of the module by extracting the Subversion [10] keyword $Id:$ at build time. The
version is then made available for logging via a method of the module interface.

Validation of XML files is afforded through W3C XML Schema [12] standard validation,
which is well-supported in Xerces. Schema validation is used not only for internal framework
configuration prepared by developers, but also to check configuration files of modules prepared
by framework users. The standard schema types are complemented by a collection of types
commonly used in our applications, allowing for quite detailed checking with minimal investment
in schema preparation. Even casual users have demonstrated a willingness to invest the (small)
time required to learn enough XML schema to check simple configuration files for modules.

The configuration machinery is also able to verify configuration file contents against a set
of default files by employing MD5 digests [13]. The default configuration files are prepared
by the framework developers and the analysis teams, and reference digests are computed from
these files at build time. At run time, the digest for each configuration file is recomputed and
compared to the reference value. Depending on run-time options, discrepant digests can either
force program termination, or can simply log a warning. This machinery provides a means for
those managing production campaigns to quickly verify that configurations in use are the ones
which have been recommended for the task at hand.

5. Data Access

The offline framework includes two parallel hierarchies for accessing data: the detector

description for retrieving conditions data, including detector geometry, calibration constants,
and atmospheric conditions, and an event data model for reading and writing information that
changes per event.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

4

5.1. Detector Description

The detector description provides a unified interface from which module authors can retrieve
conditions data. Data requests are passed by this interface to a back end comprising a registry
of so-called managers, each of which is capable of extracting a particular sort of information
from a given data source. Lazy evaluation is used to cache requests in the client interface
classes. Generally we choose to store static detector information in XML files, and time-varying
monitoring and calibration data in MySQL [20] databases. However, as the project evolves it
sometimes happens that access to detector data in some other format is required, perhaps as
a stop-gap measure. The manager mechanism allows one to provide simple interfaces quickly
in such cases, keeping the complexity of accessing multiple formats hidden from the user. The
structure of the detector description machinery is illustrated in Fig. 3.

Note that it is possible to implement more than one manager for a particular sort of data.
In this way, one manager can override or augment data from another manager. For example,
a user can decide to use a database for the majority of the description of the detector, but
override some data by writing them in an XML file which is interpreted by the special manager.
Alternatively, a user may add a manager to append hypothetical detector components to existing
components in a Monte Carlo simulation. The specification of which data sources are accessed
by the manager registry and in what order they are queried is detailed in a configuration file.

Figure 3. Machinery of the detector description. The user interface (left) comprises a hierarchy
of objects describing the various components of the observatory. These objects relay requests
for data to a registry of managers (right) which handle multiple data sources and formats.

The detector description also contains set of plug-in functions, called models which can be
used for additional processing of data retrieved through the detector interface. These are used
primarily to interpret atmospheric monitoring data and, like modules, are meant to be prepared
by the user community, rather than (just) framework developers. As an example of use, analysis
code can invoke a function to evaluate attenuation of light due to aerosols between two points
in the atmosphere. This request is passed to a model, which interrogates the detector interface
to find the atmospheric conditions at the specified time, and computes the attenuation. Models
can also be placed under command of a super-model which can attempt various methods of
computing the desired result, depending on what data are available for the specified time. The
choice of which model(s) to use for a particular application is specified in a configuration file.

5.2. Event

The Event data model contains the raw, calibrated, reconstructed and Monte Carlo information
and serves as the backbone for communication between modules. The overall structure comprises
encapsulated classes organized following the hierarchy normally associated with the observatory

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

5

instruments, with further subdivisions for accessing such information as Monte Carlo truth,
reconstructed quantities, calibration information and raw data. User modules access the event
through a reference to the top of the hierarchy which is passed to the module interface by the
run controller.

The event is instrumented with a protocol allowing modules to discover its constituents at
any point in processing. This protocol provides the means for a given module to determine
whether the input data required to carry out the desired processing is available.

The transient and persistent events are decoupled. When a request is made to write event
contents to file, the data are transferred from the transient event through a file interface to the
persistent event, which currently uses ROOT [19] for serialization. Conversely, when data are
requested from file, a file interface transfers the data from the persistent event to the appropriate
part of the transient event interface. The event may be transferred from memory to a file
at any stage in the processing, and reloaded to continue processing from that point onward.
Various file formats are handled using the file interface mechanism, including raw event and
monitoring formats as well as the different formats employed by the AIRES [15], CORSIKA [16],
CONEX [17] and SENECA [18] air shower simulation packages. Fig. 4 contains a diagram
of this event input/output mechanism. The transient/persistent separation was adopted to
avoid locking to a single provider solution for serialization, and to skirt some of the difficulties
we encountered streaming our objects using ROOT. As mentioned in section 9, however, the
approach does impose an undesirable maintenance burden on developers.

Figure 4. Event input/output. The section labeled “Event Interface” portrays a portion of the
transient event. Data are transferred between this transient event and persistent objects through
a common file interface. Different file implementations are able to read and/or write in different
formats, including those used by the data acquisition systems (DAS formats), formats used by
other simulation packages, as well as a “native” format (ROOTEventFile) which accommodates
all raw data, reconstructed quantities, and Monte Carlo truth.

6. Utilities

The offline framework is complemented by a collection of utilities, including an XML parser,
an error logger, various mathematics and physics services including a geometry package, testing
utilities and a set of foundation classes to represent objects such as signal traces, tabulated
functions and particles. In this section, we describe the geometry package in more detail.

6.1. Geometry

As discussed previously, the Pierre Auger Observatory comprises many instruments spread over
a large area and, in the case of the fluorescence telescopes, oriented in different directions.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

6

Consequently there is no naturally preferred coordinate system for the observatory; indeed each
detector component has its own natural system, as do components of the event such as the air
shower itself. Furthermore, since the detector spans more than 50 km from side to side, the
curvature of the earth cannot generally be neglected. In such a circumstance, keeping track of
all the required transformations when performing geometrical computations is tedious and error
prone.

This problem is alleviated in the offline geometry package by providing abstract geometrical
objects such as points and vectors. Operations on these objects can then be written in an
abstract way, independent of any particular coordinate system. Internally, the objects store
components and track the coordinate system used. There is no need for pre-defined coordinate
system conventions, or coordinate system conversions at module boundaries. The transformation
of the internal representation occurs automatically.

Despite the lack of a single natural coordinate system for the observatory, there are several
important coordinate systems available. A registry mechanism provides access to a selection
of global coordinate systems. Coordinate systems related to a particular component of the
detector, like a telescope, or systems which depend on the event being processed, such as
a shower coordinate system, are available through access functions belonging to the relevant
classes of the detector or event structures.

Coordinate systems are defined relative to other coordinate systems. Ultimately, a single
root coordinate system is required. It must be fixed by convention, and in our case we choose
an origin at the center of the Earth. Other base coordinate systems and a caching mechanism
help to avoid the construction of potentially long chains of transformations when going from one
coordinate system to another.

The following is a simple example of how the geometry and units packages are used together:

Point pos(x*km, y*km, z*km, posCoordSys);

Vector dist(deltaX, deltaY, deltaZ, otherCoordSys);

Point newPos = pos + dist;

cout << "X = " << newPos.GetX(outCoordSys)/m << " meters";

The variables x, y, and z are provided by some external source, in the units indicated (km),
whereas deltaX, deltaY, and deltaZ are results from a previous calculation, already in the
internal units. Coordinate systems are required whenever components are used explicitly. Units
are used on input and output of data and when exchanging information with external packages.

The surveying of the detector utilizes Universal Transverse Mercator (UTM) coordinates with
the WGS84 ellipsoid. These coordinates are convenient for navigation. They involve, however,
a non-linear, conformal transformation. The geometry package provides a UTMPoint class for
dealing with positions given in UTM, in particular for the conversion to and from Cartesian
coordinates. This class also handles the geodetic conventions, which define the latitude based
on the local vertical as opposed to the angle 90◦−θ, where θ is the usual zenith angle in spherical
coordinates.

The high degree of abstraction makes use of the geometry package quite easy. Uncontrolled,
repeated coordinate transformations, though, can be a problem both for execution speed and for
numerical precision. To control this behavior, it is possible to force the internal representation
of an object to use a particular coordinate system. The geometry package guarantees that no
transformations take place in operation where all objects are represented in the same coordinate
system. This provides a handle for experts to control when transformations take place.

7. Build System and Quality Control

Unit and acceptance testing are integrated into the offline framework build and distribution
system. Our build system is based on the GNU autotools [11], which provide hooks for

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

7

integrating tests with the build and distribution system. We have adopted the CppUnit [24]
testing framework as an aid in implementing unit tests. In addition to such low-level tests, a
set of higher-level acceptance tests has been developed which is used to verify that complete
applications continue to function as expected during ongoing development. Such acceptance tests
typically run full physics applications before and after each code change and notify developers
in case of any unexpected differences in results.

As a distributed cross-platform project, the Auger Offline software must be regularly compiled
and checked on numerous platforms. To automate this process, we have employed the tools
provided by the BuildBot project [25]. The BuildBot is a Python-based system in which a
master daemon is informed each time the code repository has been altered. The master then
triggers a collection of build slaves running on various platforms to download the latest code,
build it, run the unit and acceptance tests, and inform the appropriate developers in case
problems are detected. This has proved to be a very effective system for us; the BuildBot is
quite easy to set up and configure, and provides rapid feedback to developers allowing prompt
resolution of problems.

8. External packages

The choice of external packages upon which to build the offline framework was dictated not only
by package features and the requirement of being open-source, but also by our best assessment
of prospects for longevity. At the same time, we attempted to avoid locking the design to
any single-provider solution. To help achieve this, the functionality of external libraries is
often provided to the client code through wrappers or façades, as in the case of XML parsing
described in section 3, or through a bridge, as in the case of the detector description described
in section 5.1. The collection of external libraries currently employed includes ROOT [19] for
serialization, Xerces [21] for XML parsing and validation, CLHEP [27] for expression evaluation
and geometry foundations, Boost [26] for its many valuable C++ extensions, and Geant4 [28]
for detailed surface and fluorescence detector simulations.

9. The Future

While the framework described in this note is actively used for analysis, there are several
substantial improvements and enhancements in preparation.

Though several event visualization and browsing packages have been prepared, we are
developing a new interactive visualization package which is fully integrated into the framework
and which will provide not only graphical display of reconstructed event properties and Monte
Carlo truth, but also interactive control over configuration and reconstruction procedures.

Python [29] bindings for the framework are in preparation. Once complete, all of the
framework public interfaces will be exposed via Python, allowing users to prepare rapid
prototypes of analysis and visualization tasks. Python-based module sequencing will also be
supported, allowing more intricate run control than is currently afforded through our XML-
based sequencing system for cases when this may be desired.

The user module system described in section 3 is being upgraded to support dynamical loading
of modules. This will allow for easier use of modules with the interactive visualization system
mentioned above, and support easier module distribution and shorter development cycles.

We are in the process of grid-enabling the offline software. The results of a first Auger offline
software data-processing grid challenge were recently reported [30].

Finally, we are investigating ways to ameliorate the maintenance burden imposed by splitting
the event into transient and persistent versions, including the possility of generating the transient
and persistent event classes automatically from an XML meta-description.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

8

10. Conclusions

We have implemented a software framework for analysis of data gathered by the Pierre Auger
Observatory. This software provides machinery to facilitate collaborative development of
algorithms to address various analysis tasks as well as tools to assist in the configuration and
bookkeeping needed for production runs of simulated and real data. The framework is sufficiently
configurable to adapt to a diverse set of applications, while the user side remains simple enough
for C++ non-experts to learn in a reasonable time. The modular design allows straightforward
swapping of algorithms for quick comparisons of different approaches to a problem. The
interfaces to detector and event information free the users from having to deal individually
with multiple data formats and data sources. This software is now used for production of
physics results from the observatory.

11. Acknowledgments

The authors would like to acknowledge the support of their various funding agencies.

12. References

[1] Abraham J et al. [Pierre Auger Collaboration] 2004 Nucl. Instrum. Meth. A 523, 50
[2] Ghia P [Pierre Auger Collaboration] 2007, Proc. 30th Intl. Cosmic Ray Conference (ICRC 2007), Merida,

Mexico, 3-10 July 2007 Preprint arXiv:0706.1212 [astro-ph]
[3] H. Klages [Pierre Auger Collaboration], “HEAT : Enhancement Telescopes for the Pierre Auger Southern

Observatory in Argentina”, Proc. 30th Intl. Cosmic Ray Conference (ICRC 2007), Merida, Mexico, 3-10
July 2007

[4] Medina M, Berisso M, Allekotte I, Etchegoyen A, Tanco G and Supanitsky A 2006, Nucl. Instrum. Meth. A
566, 302;
Etchegoyen A [Pierre Auger Collaboration] 2007, “AMIGA: A muon detector and infilled array for the
Auger Observatory” Proc. 30th Intl. Cosmic Ray Conference (ICRC 2007), Merida, Mexico, 3-10 July
2007

[5] Argirò S et al. [Pierre Auger Collaboration] 2005, “The offline software framework of the Pierre Auger
Observatory” Proc. 29th Intl. Cosmic Ray Conference (ICRC 2005), Pune, India, 3-11 Aug 2005

[6] Argiro S et al. 2007 Nucl. Instr. and Meth. A, doi:10.1016/j.nima.2007.07.010 Preprint arXiv:0707.1652 [astro-
ph]

[7] http://www.w3.org/XML/

[8] http://tools.ietf.org/html/rfc3986/

[9] http://www.w3.org/TR/xpath

[10] http:subversion.tigris.org

[11] http://www.gnu.org/software/autoconf;
http://www.gnu.org/software/automake;
http://www.gnu.org/software/libtool

[12] http://www.w3.org/XML/Schema/

[13] Rivest R, http://www.faqs.org/rfcs/
[14] See for example Patton S 2003, “Concrete uses of XML in software development and data analysis” Proc.

Intl. Conf. on Computing in High-Energy Physics and Nuclear Physics (CHEP 2003), La Jolla, California,
USA 24-28 March 2003

[15] Sciutto S, Preprint arXiv:astro-ph/9911331
[16] Heck D, Knapp J, Capdevielle J, Schatz G and Thuow T, 1998 Report FZKA 6019
[17] Bergmann T et al. 2007 Astropart. Phys. 26, 420
[18] Drescher H, Farrar G, Bleicher M, Reiter M, Soff S and Stoecker H 2003 Phys.Rev. D67, 116001
[19] http://root.cern.ch/

[20] http://dev.mysql.com

[21] http://xml.apache.org/

[22] see for example Josuttis N (1999) The C++ Standard Library, Addison-Wesley, ISBN 0-201-37926-0
[23] http://www.w3.org/TR/REC-xml/

[24] http://cppunit.sourceforge.net/doc/1.8.0/

[25] http://buildbot.sourceforge.net/

[26] http://www.boost.org/

[27] http://proj-clhep.web.cern.ch/proj-clhep/

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

9

[28] http://geant4.cern.ch/; Agostinelli S et al. 2003 Nucl. Instrum. Meth. A 506, 250
[29] http://www.python.org/

[30] J. Chudoba, “Simulations and Offline Data Processing for the Auger Experiment”, Presented at EGEE User
Forum, Manchester, UK, 9-11 May 2007.
http://indico.cern.ch/conferenceDisplay.py?confId=7247

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032002 doi:10.1088/1742-6596/119/3/032002

10

