A partial-order-based simulation and validation approach for
high-level Petri nets

Jorg Desel, Thomas Freytag
Institut AIFB, University of Karlsruhe, Germany
E-mail: {desel | freytag}@aifb.uni-karlsruhe.de

Andreas Oberweis, Torsten Zimmer
Lehrstuhl fiir Wirtschaftsinformatik II, University of Frankfurt/Main, Germany

E-mail: {oberweis | zimmer}@Qwiwi.uni-frankfurt.de

Keywords: Petri nets, partial-order-based simulation, validation, visualization

ABSTRACT

This contribution describes a simulation concept for systems modelled by high-level Petri nets
based on partial-order semantics. The main advantage of this approach is its ability to represent
and visualize causal dependencies and concurrency explicitly and to give the user a much more
intuitive insight into the dynamic behaviour of the modelled system. Additionally, the paper
describes how system properties can be specified in a graphical way and how these properties
can be checked in a very efficient way by evaluating partially ordered simulation runs.

INTRODUCTION

The topic of this paper is part of the work of the project “ Verification of information systems
by evaluating partially ordered Petri net runs (VIP)” that sponsored by the German Research
Society (DFG) [4].

Petri Nets have become a widely accepted formalism for modelling, simulation and analysis
of complex systems in a variety of application domains. In particular high-level Petri nets
are applied because of their flexible and compact structure. There are two general views at
the dynamic behaviour of a net model: The first one - called the sequential semantics - is
based on the set of firing sequences of a net. The second one - called the causal semantics -
considers the set of partially ordered runs (or processes) of a net. Whereas the causal semantics
is favorized in parts of Petri net theory, the area of applications still is dominated by the
sequential semantic. Usually, simulation tools for Petri nets generate totally ordered sequences
of transition occurrences. However, - inspired by several recent results in the domain of system
verification (e.g. [6]) - the causal semantic view has become a much more suitable approach
for practical applications. It combines strong analytical power with an increased structural
efficiency and the ability to visualize and validate the dynamic system behaviour in a much
more user-oriented way.

Related papers in the context of the VIP project have introduced a simulation approach based
on the construction of partially ordered runs [1, 5], have shown how this technique contributes
to efficiency in several ways [3] and have sketched algorithms to check certain properties by
evaluating these runs [1]. The main focus of this contribution is to give an overview how the
partial-order-based simulation concepts can be used to visualize dynamic system behaviour and
thus validate certain system properties in a much more intuitive and user-friendly way than
this could be done using classical sequential simulation methods.



BASIC DEFINITIONS
Predicate/Transition nets

We suppose the reader to have some understanding of Petri nets, in particular with high level
nets as introduced e.g. in [8, 9]. For algorithmical reasons, we restrict the class of Predi-
cate/ Transition nets (Pr/T nets) to finite nets with finite domains containing no transitions
with empty preset or postset. We restrict operations on domains to take place inside guard
expressions (i.e. all arc labels consist only of multisets of variables). This is no real restriction
of the class of Predicate/Transition nets because every net with arc label operations can be
transformed to an equivalent net with guard expressions.

insert
ready
warm B
<X>
<> . <n>
brew dispense
<n> y=x-1
<> reject coin
<> <X>
<X> <
<n>
cold accepted accept coin inserted

Figure 1: Example for a Predicate/Transition net: A beverage selling machine

An example is given in Figure 1. It models a beverage selling machine that brews a cup of
coffee or tea when a coin is inserted. The basic operation loop starts when the transition
insert occurs moving the token on ready to inserted (and incrementing the value of coin counter
by 1). Afterwards the transition accept coin can occur moving the token from inserted to
accepted. Another transition reject coin is also enabled at this stage modelling the case where
the coin is rejected by the machine and the token is moved back to ready. As soon as accepted
holds a token and a beverage has been made available by occurrence of the transition brew,
the transition dispense can occur, giving a beverage! to the customer and putting a token on
ready to signal that a new coin can be inserted. A small subsystem consists of the transition
empty coins, modelling the operation to remove the coins from the coin storage. The system
is initially marked by a token <C> on the place warm (i.e. a coffee has been brewed), a token
<T> on the place cold (i.e. a tea has not been brewed yet), a token <1> on the place ready
(i.e. the machine is ready for inserting coins) and a token <0> on the place coin counter (i.e.
the coin storage is empty).

Partial orders, causal nets and processes

A Petri net is called a causal net if every place has at most one input transition and at most one
output transition, every transition has at least one input place and at least one output place
and the flow relation has no cycles (i.e. its transitive closure is a partial order?). The places of
a causal net are called conditions,the transitions are called events, the underlying partial order
is called causal order.

!'Note that this a very simple machine, e.g. it does not allow the customer to choose betwenn tea and coffee
- he must take the type of beverage the machine supplies for him

2A partial order is a irreflexive, transitive binary relation over a given set (here the set of conditions and
events of the causal net)



Shortly, a causal net is an acyclic, place-bordered net with forward and backward unbranched
places. The conditions without input transitions are called minimal elements and the conditions
without output transitions are called mazimal elements of the causal net.

A process can be described in a straightforward way by a causal net (then called a process net):

e Fach condition of the causal net represents the existence of a marking tuple (multiset
element) on a particular place of the Pr/T net at some stage of the process

e Each event of the causal net represents the occurrence of a transition in the Pr/T net for
a particular variable assignment

e Each arc of the causal net represents the flow of marking tuples in the Pr/T net: Whenever
a transition consumes a tuple from a place, an arc is drawn from the associated condition
to the associated event. And whenever a transition produces a tuple on a place, an arc is
drawn from the associated event to the associated condition

e The minimal elements of the causal net are those conditions associated to the initial
marking of the Pr/T net

For notational convenience, we label a condition of a process net by the name of the associated
place followed by the associated marking tuple put in brackets. For example, a condition named
P1(a,1) stands for the marking tuple <a,1> on place P1. The events of the process net are
labelled by the name of the associated transition followed by the list of variable assignments
put in brackets. For example T1(x=a,y=1) stands for the transition T1 occurring for the
assignment x=a and y=1.

Figure 2 shows a process net for the net in Figure 1 (some names are abbreviated for sake
of readability). The set of minimal elements consists of the conditions warm(C), cold(T),
coin counter(0) and ready(1), representing the initial marking of the system net.

coin counter (0) coin counter (1) coin counter(2)  e.coins(x=2,y=0) coin counter(O)

ins.coin — ——»
N\l)
inserted(1) accepted(1) acc.coin(n=1)
)ins.coin(nzl) acc.coin(n=1) ready(1) inserted(1) accepted(1) ready(1)

g’
( :ﬁ

warm(C
(] |
dispense cold(C) cold(T
cold(T) (n=1,x=C) warm(T)
(o) .
brew(x=T) dispense

(n=1x=T)

Figure 2: A process net of the net in Figure 1

The process net in Figure 2 is a visualization of the dynamic behaviour of the underlying Petri
net system. The upper part of the drawing (the "line” between the condition coin counter(0)
on the left and the condition coin counter(0) on the right) describes what is happening to the
coin storage unit of the machine: Initially it is empty, then coins are inserted and eventually
removed again. The "line” below shows the behaviour of the machine’s "control unit”: Coins
are inserted, accepted or rejected and the production of beverages is managed from here. The
lower two "lines” of the process net represent the "beverage production units™ A coffee (tea) is
warm, is given out, cold water is brewed again until a new warm coffee (tea) is produced a.s.o.



This representation not only gives a complete overview about the concurrent behaviour of the
system, but also preserves a very intuitive view to the system that can easily be understood by
a user who has few or even no knowledge about Petri net theory.

In contrast, we consider the representation of the system behaviour using a sequential simulation
method. A typical set of occurrence sequences of the net in Figure 1 looks as follows:

(1) i.coin(n=1) - a.coin(n=1) - brew(x=T) - e.cup(n=1,x=C) - i.coin(n=1)...
(2) brew(x=T) - i.coin(n=1) - a.coin(n=1) - e.cup(n=1,x=C) - e.cup(n=1,x=T)...
EZ; e.cup(n=1,x=C) - brew(x=T) - i.coin(n=1) - a.coin(n=1)...

Note that all listed occurrence sequences (and in fact even more) are implicitly represented in
the process net shown in Figure 2. Apart from their inefficient and non-graphical representation,
they are not giving any intuitive and user-friendly view to the system dynamics (such as causal
dependencies, concurrency and distributed behaviour).

GRAPHICAL QUERY VALIDATION

We now want to validate some properties of our beverage machine. The processes generated
by the partial-order-based simulation can act as a database that can be queried for checking
whether certain system properties hold or do not hold.

One important aim of the VIP project is to supply a user-friendly, graphical interface to specify
such queries. This idea refers to the well-known concept of fact transitions |7] which allows to
extend a Petri net by a special type of transitions that have no effect on the net behaviour but
rather specify invariant properties that are expected to hold in all reachable states.

<> insert <>
SR empty
warm ready <nogr| VXL coing
<n> x>0
<n> <x> y=0

y=x-1 coin counter
reject coin
<n>
- —
P <n> <n>
<zz cold accepted accept coin inserted

Figure 3: A graphical query to the net in Figure 1

As an example we introduce a fact-like concept called a causal chain. Its semantic is as follows:
For some set of preconditions that hold in an execution of the Petri net, there exists a causal
path (a "chain”) of a fixed given length that leads from at least one precondition to a some
given postcondition. To illustrate this, we want to check the validity of the following property:

o Whenever a warm beverage exists, it is dispensed before a new beverage is brewed

Figure 3 contains a graphical represenation of this query: The causal chain transition check
(drawn with an inscribed 'K’ for the german word “Kausalkette”) has been added to the net of
Figure 1. It has the input places cold and warm and the output place warm. Arcs are drawn



in dotted style in order to signal their special meaning. The transition is inscribed with the
number 3 specifying the required causal path length.

This query can be translated as follows: If both places cold and warm are marked with a token,
we want to know whether there exists an execution where the transition brew occurs. In terms
of partial order this implies that there exists no process net containing two unordered conditions
cold(...) and warm(...), either of them being the beginning of a path of length 3 that leads to
a condition labelled warm(...)?.

In order to answer this query, it is transformed to a search pattern as shown in Figure 4, being the
input for a pattern seach operation in the set of processes. Whenever the search is successful (i.e. at
least one process contains such a pattern), we know that the property holds in at least one execution.
Once again, this example shows how partial-order semantics contributes to a very intuitive system
validation.

accepted(...)

; ébld(r.'..) - warm(...)‘\ ready(...)

—— ; ——

nEw : brew(...) ;dispense(...) il

Figure 4: A search pattern to validate the query in Figure 3

The causal chain property is just one example for a class of properties that are in the scope of the VIP
project. We state that the partial-order approach is also suitable to handle other property classes in
the same comfortable way, in particular progress and reachability properties.

SOFTWARE IMPLEMENTATION

In order to prove the practial applicability of our ideas, we have implemented VIPtool, a software
product that supplies the following functionality (cf. Figure 5):

An graphical editor for high-level Petri nets

A graphical query language for specifying system properties

A simulation and query components based on partial-order semantics

e A process browser with a sophisticated graphical placement policy (based on the Sugiyama
algorithm [10])

e A process database for storing and re-using simulation results

Powerful visualization and validation functions

VIPtool is implemented in PYTHON, a freely-available script language. The graphical interface is
based on Tel/Tk. Supplied hardware platforms will be LINUX, SunOS and Windows 95/NT. A first
release of is planned for the summer of 1997, for further information refer to the VIP project’s WWW
site [2].

3The dots inside the brackets denote that the tuple can either be a <T> (tea) or a <C> (coffee)



designs, - N - supports

edits  _~ RN
-7 : N Process
P I interacts ~ o
Editor » v ~ o Browser
File Edit Sim Options Help File Edit ViaNOOmions Help
asks G>D<:
< Query- O/ O
P » component N\
D—>O e) /D -0
~ v OO0
N N
T N N
| > < answers A
I L7000 N N N 1
- N . .
! - N AN I visualizes
| - |
sarts controls/ - dats  ~ AN |
- N
| - N N |
! - - - h N N !
| 7 N A N !
-7 N N N |
v , N > 1
N
generates evaluates A .
Simulator L m( Processdatabase Validator

Figure 5: Structure of the software product VIPtool

REFERENCES

[1] J. Desel, T. Freytag and A. Oberweis. Prozesse, Simulation, Figenschaften netzmodellierter Sys-
teme. in: Proceedings of Entwurf komplexer Automatisierungssysteme (EKA 97). University of
Braunschweig, 1997.

[2] J. Desel, T. Freytag, A. Oberweis and T. Zimmer. The VIP project homepage. World Wide Web,
http://www.aifb.uni-karlsruhe.de/InfoSys/VIP /overview /vip.html.

[3] J. Desel, T. Freytag and A. Oberweis. Causal-semantic-based simulation and validation of high-level
Petri nets. in: Proceedings of European Simulation Multiconference (ESM 97). Istanbul, 1997.

[4] J. Desel and A. Oberweis. Verifikation von Informationssystemen durch Auswertung halbgeordneter
Petrinetz-Abldufe. Technical Report 324, AIFB, Uni Karlsruhe, 1995.

[5] J. Desel, A. Oberweis and T. Zimmer. Simulation-based analysis of distributed information system
behaviour. 8th European Simulation Symposium ESS 96, Genova, 1996.

[6] J. Esparza. Model checking using net unfoldings. Science of Computer Programming, (23):151-195,
1994.

[7] H. Genrich and G. Thieler-Mevissen. The Calculus of Facts. Mathematical Foundations of Com-
puter Science, 588-595. Springer-Verlag, 1976.

[8] K. Jensen. Coloured Petri Nets. Springer-Verlag, 1992.
[9] W. Reisig. Petri nets - an Introduction. Springer-Verlag, 2" Ed., 1986.

[10] K. Sugiyama, S. Tagawa and M. Toda. Methods for visual understanding of hierarchical system
structures. IEEE Transaction on Systems, Man and Cybernetics, SMC-11(2): 109-125, 1981.



