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Molecular chaperones encompass a group of unrelated proteins that facilitate the correct assembly and disassembly 
of other macromolecular structures of which they themselves do not remain a part. Chaperones associate with a 
large and diverse set of cofactors termed cochaperones that regulate their function and specificity. Chaperones and 
cochaperones regulate the activity of several classes of signaling molecules, including steroid receptors. Upon 
binding ligand, steroid receptors interact with discrete nucleotide sequences within the nucleus to control the 
expression of diverse physiological and developmental genes. Molecular chaperones and cochaperones are typically 
known to provide the correct conformation for ligand binding by the steroid receptors. While this contribution is widely 
accepted, recent studies have reported that they further modulate steroid receptor action outside ligand binding. 
Specifically, they are thought to contribute to receptor turnover, transport of the receptor to different subcellular 
localizations, recycling of the receptor on chromatin and stabilization of receptor DNA binding. In addition to these 
combined effects with molecular chaperones, cochaperones have additional functions that are independent of 
molecular chaperones, some of which impact steroid receptor action. Two well-studied examples are the 
cochaperones p23 and Bag-1L, which have been identified as modulators of steroid receptor activity in the nucleus. 
Understanding details of their regulatory action will provide new therapeutic opportunities for controlling steroid 
receptor action independent of the widespread effects of molecular chaperones. 
 
Introduction 
  
In the early 1990s, studies with the glucocorticoid 
receptor (GR; a member of the steroid/nuclear 
receptor superfamily) showed that 
immunoprecipitated GR, when incubated with 
reticulocyte lysate that contains molecular 
chaperones and a source of adenosine triphosphate 
(ATP), could be made to bind hormone in vitro [1]. 
These reconstitutions could also be achieved with 
purified GR, molecular chaperones (Hsp90, Hsp70) 
and cochaperones (Hsp60 or Hip, Hsp40 or its yeast 

equivalent YDJ-1 and p23), which displayed an 
orderly and dynamic assembly of the receptor. The 
first step in this assembly was the formation of a 
molecular complex (Hsp90)2.Hop.Hsp70.Hsp40, 
termed the foldosome [2,3] (Figure 1, A and B). Two 
of the major players of the foldosome, Hsp90 and 
Hsp70, contain nucleotide-binding domains that act 
as ATP/ADP-binding switches that allow them to 
assume different properties depending on which form 
of energy is bound. In its ATP-bound form, Hsp90 
interacts with the cochaperone p23 and activates 
client protein activity through folding, whereas in its 
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Figure 1.  A model depicting some of the key steps of the maturation pathway of steroid receptors. (A) Binding of the Hsp90, 
p23 and a preassembled complex of Hop, Hsp70 and Hsp40 assists a mature folding of the steroid receptor (SR). Cytoplasmic Bag-
1 isoforms (Bag-1, -1M, -1S) control this process and mediate proteasomal degradation of misfolded SRs. Addition of Hsp90-dimers 
and p23 complete the assembled complex, termed the “foldosome” (B). Release of Hop, Hsp70 and Hsp40 and addition of any one 
of the TPR-containing cochaperones, for example FKBP51 (as shown here), further stabilize the SR in a high affinity form (C). After 
ligand binding FKBP51 is replaced by FKBP52, which mediates translocation to the nucleus via the microtubuli system (via dynein 
and dynamitin) in a molecular complex termed the “transportosome” (D). Within the nucleus FKBP52 is released and the receptor 
binds the response elements as an active dimer. Cochaperones, such as p23 and Bag-1L (that has been described to bind to 
chromatin prior to the nuclear entry of the receptor), enhance the activity of the SR most likely by stabilizing the active state of the 
receptor. The molecular chaperones Hsp90 and Hsp70 possibly also play a role in this process (E). 
 
ADP-bound form it shows high affinity for hydrophobic 
proteins [4,5]. In the case of Hsp70, its ATPase 
activity is enhanced by the cochaperone, Hsp40, as 
well as a variety of other cochaperones [6,7]. In 
general, Hsp-interacting cochaperones can be 
grouped according to the presence or absence of 
tetratricopeptide repeats (TPR) in their sequence 
(Figure 2). The TPR domains are typically composed 
of three tandem repeats of a loosely conserved 34 

amino acid sequence motif [8]. Each motif favors 
formation of two anti-parallel α-helices, and the core 
TPR domain consists of six total α-helices that form a 
saddle-like structure. The surface of the domain 
provides an interaction site that can accommodate 
specific peptide binding [9]. For example, TPR-
containing cochaperones are able to interact with 
Hsp90 through its EEVD motif at the extreme C-
terminus, as well as with Hsp70 via a EEVD-like 
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Figure 2. The structure of TPR-containing and TPR-lacking cochaperones. Top: Domain structure of cochaperones containing 
tetratricopeptide repeats (TPR) motifs. All TPR motifs are shown in yellow. Other important protein domains are indicated. Bottom: 
The domain structures of three cochaperones (p23, AHA1 and BAG-1) lacking the classical TPR motifs, with their Hsp90/Hsp70-
binding domains highlighted in blue. All domain information (including residue numbers) were obtained from the RefSeq database 
(NCBI) [102]. STI1: Stress inducible protein 1 (Heat shock protein binding motif); NLS: Nuclear localization signal; PPlase: Peptidyl-
prolyl cis-trans isomerase. ARM: Armadillo; CS: CHORD-containing protein SGT1; Aha1: Activator of Hsp90 ATPase; SRPBCC: 
START/RHOs_alpha_C/PITP/Bet v 1/CoxG/CalC: UBQ: Ubiquitin-like domain; BAG: Bcl-2-associated athanogene (Heat shock 
protein binding motif). Single alphabet letters (with or without separation by a slash) correspond to particular amino acids (or amino 
acid sequences) that are over-represented in a certain region. 
 
sequence at its C-terminus [9,10]. The repertoire of 
the TPR-containing cochaperones known to regulate 
steroid receptor signaling pathways includes the 
Hsc70-interacting protein (Hip; p48), the 
Hsp70/Hsp90-organizing protein (Hop; p60), FK506 
binding protein of 51 kDa (FKBP51), FK506 binding 
protein of 52 kDa (FKBP52), cyclophilin 40 (Cyp40), 
protein phosphatase 5 (PP5), FK506-binding protein 
like protein (FKBPL), and general cell UNC-45 
(GCUNC-45) [11–14] (Figure 2). More recently, a 
small glutamine-rich TPR-containing protein alpha 
(SGTA) has been added to the growing diversity of 
TPR-containing cochaperones involved in the 
modulation of steroid receptor action [15,16] (Figure 
2). It should be noted that although several 
cochaperones use TPR motifs to bind to the 
molecular chaperone [9,21], other cochaperones such 
as Prostaglandin E synthase 3 (p23), Activator of 
Hsp90 ATPase homolog 1 (Aha1) and Bcl-2-
associated athanogene 1 (Bag-1) lack TPRs (Figure 
2) and use their own, unique sequences to associate 
with Hsp90 and Hsp70. These cochaperones may 
have other activities of their own that are independent 
of their interaction with the molecular chaperones. 
Such actions were referred to in a recent quantitative 
analysis of the chaperone-cochaperone-client 

interaction networks in human cells, where the 
physical interaction landscape of all known Hsp70- 
and Hsp90-bound cochaperones was analyzed [17]. 
 
General perceptions of the role of Hsp70 and Hsp90 
in steroid receptor action have changed in recent 
times. For example, cryoelectron microscopy studies 
have demonstrated that Hsp70, known to facilitate GR 
delivery to Hsp90, actually inactivates GR through 
partial unfolding of the receptor [18]. Conversely, 
Hsp90 is able to reverse this function and promote 
GR activation. Although this unfolding/inactivation by 
Hsp70 and refolding/reactivation by Hsp90 might 
seem contradictory, this combination could in fact be 
complementary; constant rounds of Hsp70-mediated 
unfolding/ligand release and Hsp90-mediated 
refolding/ligand binding could allow for the non-
liganded GR to remain in a non-aggregating, high-
affinity state poised for a rapid response to changing 
hormone levels. In another cryoelectron microscopy 
study, Hop, previously thought of as an adaptor for 
Hsp90 and Hsp70 binding which coordinated their 
actions on folding protein substrates [19], was shown 
to have additional functions in a reconstruction of the 
Hsp90/Hop complex. Here Hop formed extensive 
interactions with Hsp90, preorganizing its N-terminal 
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domain for ATP hydrolysis and client protein binding 
[20]. In the classical model, Hop is eventually 
released from the complex and is replaced by one of 
the other TPR cochaperones such as FKBP51, 
FKBP52 or Cyp40 [21] (Figure 1C). This dynamic 
exchange occurs on Hsp90 dimers of the foldosome. 
Although any one of the TPR proteins can in principle 
replace Hop, only one TPR protein is found bound to 
the Hsp90 dimers at any one time [22], implying that 
Hsp90 might survey the local environment for 
available TPR proteins with which to interact. There is 
some evidence suggesting that the type of ligand that 
ultimately associates with the receptor complex 
influences which TPR protein is recruited. For 
example, aldosterone binding to the mineralocorticoid 
receptor (MR) favors the exchange of FKBP51 for 
FKPB52, while binding of 11,19-oxidoprogesterone 
favors the association with the immunophilin-like PP5 
[23]. 
 
In previous studies it was though that steroid 
receptors remain in the cytoplasm in complex with 
molecular chaperones and cochaperones in the 
absence of hormone [24]. Upon ligand binding, it was 
thought that the complex dissociates and the 
receptors are transported into the nucleus, where they 
bind chromatin and regulate the expression of 
multiple target genes. However, this classic model of 
molecular chaperones action is perhaps a bit too 
simple. Steroid receptors are known to shuttle 
between the cytoplasm and the nucleus [25] and 
some, such as the estrogen (ER) and progesterone 
(PR) receptors, remain in the nucleus bound to 
molecular chaperones in the absence of hormone 
[26,27]. Several questions therefore arise concerning 
how molecular chaperones and cochaperones are 
transported into the nucleus. Are they transported on 
their own or in complex with the steroid receptors and 
what role do they play in the nucleus? More 
importantly, in view of the recent data on chaperone-
independent functions of cochaperones, one might 
ask whether cochaperones exert specific effects on 
steroid hormone action. In this review, we will focus 
on two cochaperones, p23 and Bag-1L, that are 
present in the nucleus, where they reportedly 
influence steroid receptor action through receptor 
recycling or via modulation of receptor binding to 
chromatin. We will describe how these cochaperones 
exert their action and suggest how cochaperone/ 
steroid receptor action could be targeted for 
therapeutic purposes. 
   
From foldosomes to transportosomes 
 
The Jensen two step hypothesis of 
cytoplasmic/nuclear transportation of steroid 
receptors [28], together with the finding that molecular 
chaperones and cochaperones bind to nonliganded 
receptors, generated the concept that molecular 
chaperones confine steroid receptors in an inactive, 

cytoplasmic state. However nonliganded 
receptor/molecular chaperone complexes have been 
found to constantly shuttle between the cytoplasm 
and the nucleus [29,30]. Nevertheless, shuttling by 
the PR and ER, which are largely nuclear, may be 
mechanistically different from shuttling by MR and the 
androgen receptors (AR). This is in turn distinct from 
shuttling of GR, which is mainly localized in the 
cytoplasm, but can also be found at the nuclear 
periphery as part of a (non-liganded) GR/molecular 
chaperone complex in association with the integral 
nuclear pore glycoprotein Nup62 and importin β [31]. 
The Hsp90 cochaperone Aha 1 may also be involved 
in this complex as it was shown to contribute to the 
nucleocytoplasmic transport of the GR; cells lacking 
Aha 1 showed a reduced and impartial translocation 
of the receptor into the nucleus [32]. Whether Aha 1 is 
transported into the nucleus together with the GR is 
however not known. Several studies now show that 
molecular chaperones and cochaperones are 
transported along with the liganded steroid receptors 
into the nucleus [33,34]. In fact more recent studies 
have shown a constitutive requirement of Hsp90 
throughout the functional lifetime of the GR and not 
just during the initial folding phase [18].  
 
Ligand-dependent translocation of GR to the nucleus 
has been found to be considerably reduced using the 
Hsp90 inhibitor geldanamycin (GA) [35,36]. 
Furthermore, microinjection of an antibody against the 
cochaperone FKBP52, but not an isotype control, 
inhibited ligand-induced nuclear transport of the GR 
[37], suggesting that FKBP52 contributes to nuclear 
translocation of the GR. Additional evidence that 
FKBP52 plays a role in the nuclear transport of the 
GR is the finding that it directly binds to the motor 
protein dynein via dynamitin [38,39]. Through this 
interaction, the receptor/chaperone complex is 
thought to move along the cytoskeleton to the nucleus 
on what has been described as the transportosome 
[40] (Figure 1D). The affinity of the FKBP52-receptor 
complex for dynein possibly determines the rate of 
transportation of the steroid receptors into the nucleus 
[39]. While GR has a high affinity for FKBP52, MR 
has a preferred affinity for FKBP51. Experiments 
using cross-linked MR-Hsp90 or GR-Hsp90 
heterocomplexes showed that these large 
heterocomplexes can be found in the nucleus in the 
presence of hormone, demonstrating that they can 
pass undissociated through the nuclear pore to the 
nucleus [31,41]. Once in the nucleus, the steroid 
receptor/molecular chaperone complex dissociates 
and the steroid receptor is converted into a DNA-
binding form as has been shown by Davies et al. 
(2002) [42].  
 
Given that FKBP51 and FKBP52 have been 
implicated in steroid hormone action in vitro, mouse 
knockout models of FKBP51 and FKBP52 have been 
generated to determine the impact of these 
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cochaperones on steroid hormone action in vivo [43]. 
FKBP1 knockout mice failed to exhibit any disruption 
in endocrine activity, whereas no overt defects in GR-
regulated physiology were observed in FKBP52 KO 
mice. Subsequently, GR function was compared in 
mouse embryonic fibroblasts (MEFs) from wild-type 
(WT) and FKBP52-deficient animals [44]. Contrary to 
expectation, loss of FKBP52 had no effect on the 
composition of hormone-free GR heterocomplexes, 
GR hormone-binding function or nuclear 
translocation, nor on global GR regulation of gene 
expression. Rather, loss of FKBP52 was found to 
result in selective loss of expression of specific genes, 
such as glucocorticoid-inducible leucine zipper (GILZ) 
and FKBP51, but not the serum- and glucocorticoid-
kinase (SGK) and p21 genes [44]. The FKBP52 
knockout mice however demonstrated the importance 
of this cochaperone for reproductive tissue 
development. Female knockout mice showed defects 
in uterine receptivity for embryo implantation and 
male knockouts displayed ambiguous external 
genitalia and dysgenic prostates [45,46]. Furthermore, 
in the female knockout mice FKBP52 was shown to 
be an essential regulator of PR action in the uterus, 
while being a non-essential but contributory regulator 
of steroid receptors in the mammary gland and 
ovaries [47]. These data may now provide the basis 
for selective targeting steroid-regulated physiology 
through co-chaperones. 
 
Role of molecular chaperones in the nucleus 

Studies using in vitro receptor/DNA interaction 
techniques and in vitro transcription experiments have 
provided hints that, in the nucleus, molecular 
chaperones function as modulators of the DNA-
binding and transcriptional activities of steroid 
receptors [48,49]. One example is the work of Etienne 
Baulieu and colleagues in 1996 which showed that 
the binding of ERα to the estrogen response element 
from the vitellogenin A2 gene is inversely dependent 
on the relative concentration of Hsp90 [48]. In another 
assay, recombinant (ligand-free) PR was only able to 
bind to and induce transcription on (hormone-
containing) chromatin templates in the presence of 
rabbit reticulocyte lysate rich in molecular chaperones 
[49]. The use of the Hsp90-specific inhibitor GA 
blocked the transcriptional activity of this receptor on 
chromatin [49], demonstrating a crucial role of Hsp90 
in the nuclear function of the PR. 
 
Additional experiments have provided more proof for 
a regulatory role of molecular chaperones on steroid 
receptor action at the chromatin level. Using live cell 
imaging, the groups of Gordon Hager, David Toft and 
Don DeFranco demonstrated that molecular 
chaperones contribute to the rapid mobility and 
dynamic exchange of steroid receptors at 
transcriptionally active chromatin sites [36]. They 

showed an impairment of nuclear mobility of GR and 
PR using transcriptionally active nuclei depleted in 
soluble factors. Receptor mobility was regained upon 
incubation of the nuclei with an ATP-dependent 
regenerating system and combinations of purified 
chaperones and cochaperones. A mixture of seven 
components (Hsp90, Hsp70, p23, Hop, Ydj-1, 
FKBP51) and CHIP was the most effective, but a 
mixture of five proteins (Hsp90, Hsp70, p23, Hop, and 
Ydj-1) or even three (Hsp90, Hsp70, and Hop) 
restored steroid receptor movement, albeit to a lesser 
extent [36]. Together these findings led to the 
conclusion that the molecular chaperones and 
cochaperones are involved in recycling of the 
receptors on chromatin. 
 
Nuclear action of p23 
 
Although the experiments described above argue that 
molecular chaperones and cochaperones enter the 
nucleus bound to the steroid receptors, some of the 
cochaperones appear to have a nuclear function of 
their own, independent of their regulation of receptor 
action. Two examples are the cochaperones p23 and 
Bag-1L. Mammalian p23 (or Sba1 in yeast) is 
composed of a simple molecular structure consisting 
of a compact eight β-strand antiparallel sandwich (the 
CS domain in Figure 2) followed by an acidic C-
terminal tail [50,51]. This structure is conserved from 
humans to yeast with orthologs in both plants and 
protozoa. The main role of p23/Sba1 is to bind the 
ATP-engaged N-terminal domain of Hsp90, thereby 
stabilizing a high-affinity client binding conformation. 
At the same time this slows down the hydrolysis of 
ATP and increases the dwell time of client proteins in 
the Hsp90 chaperone complex [52]. However, it 
appears that p23 also has a chaperone activity of its 
own, independent of Hsp90. A large portion 
(approximately 69%–75%) of the p23/Sba1 interacting 
proteins (as determined by genetic and proteomic 
high throughput approaches in yeast) is not shared 
with Hsp90 [53]. Further analysis of the effect of 
Sba/p23 on chromatin events showed that deletion of 
the yeast p23 (Sba1∆) reduced the number of DNase 
I hypersensitive sites in chromatin. The number of 
sites was decreased from 3260 in wild-type to 2439 in 
Sba1∆ cells. However, this reduction in the total 
number of DNase I hypersensitive sites in Sba1∆ 
cells (approximately a 25% loss), was not a mere 
reduction but was associated with the appearance of 
novel sites within chromatin. p23 does not harbor any 
obvious DNA-binding domains and it appears that its 
effect on transcription factors and chromatin is 
therefore mediated through protein-protein 
interactions with chromatin remodelers, such as the 
histone acetyltransferase GCN5 [54]. 
 
p23-mediated regulation of steroid receptor action 
on chromatin 
 
Brian Freeman and Keith Yamamoto have previously 
suggested a genomic action of the cochaperone p23 
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in the dissociation of receptors from coactivators and 
response elements on chromatin [55]. Using 
chromatin immunoprecipitation (ChIP), they observed 
that molecular chaperones together with 
cochaperones are recruited to the response elements 
of the liver-specific, glucocorticoid-inducible tyrosine 
aminotransferase (TAT) and tryptophan oxygenase 
(TO) genes in rat hepatoma HTC cells. They also 
showed that p23 and Hsp90, but not Hsp70, were 
localized to the same response elements in a 
hormone-dependent manner [56] (Figure 1E). In an 
unrelated immunofluorescence experiment, Hsp90, 
Hsp70 and p23 were visualized together with GR on 
an integrated array of glucocorticoid response 
elements (GRE) from the mouse mammary tumor 
virus (MMTV) DNA in the genome of a mouse 
adenocarcinoma cell line [57]. In this assay, the 
molecular chaperones and particularly Hsp90 and 
p23, were shown to stabilize GR binding. Inhibition of 
Hsp90 activity simultaneously reduced the binding of 
the molecular chaperones, p23 and GR to the 
response elements [57]. Accordingly, two contrasting 
explanations of the action of molecular chaperones 
and cochaperones have been presented, namely, 
their involvement in the dissociation of the receptor 
complex [55] on the one hand, and on the other, their 
ability to stabilize the receptor complex as outlined 
above. This discrepancy could be due to a key 
difference in the experimental setup of the two 
studies. In one study, Hsp90 function was disrupted 
by GA treatment and since this drug prevents p23 
binding to Hsp90 [58], it was thought it would also 
affect p23 action [57]. In the other study, altered p23 
activity was achieved by the addition of purified p23 to 
in vitro transcription assays [56]. Although p23 and 
Hsp90 normally act in concert within the chaperone 
complex, they may not act together on DNA. Inhibiting 
the interaction of Hsp90 with p23 may therefore not 
have the same effect as the addition of p23. However, 
both studies agree that Hsp90 and p23 modulate the 
action of the GR at the chromatin level. 
 
The physiological function of GR requires that ligand 
be presented to target cells in discrete pulses 
consistent with the pulsatile production of 
glucocorticoid by the adrenal gland [59]. Using ChIP, 
a connection between the function and cyclical action 
of GR and intranuclear molecular chaperones and 
cochaperones at glucocorticoid target genes was 
demonstrated [60]. When the chaperone activity was 
disrupted by GA treatment, pulsatile GR 
transcriptional activity was abrogated [60]. 
Furthermore it was shown that the ligand-bound GR 
complexes exchange rapidly and continuously with 
response elements in chromatin (in the time scale of 
seconds). During each exchange, the receptor may 
lose its ligand and require entry into the “chaperone 
cycle” (possibly through the foldosome activity) to re-
acquire its ligand. Alternatively, the receptor may 
retain its ligand, but may need to return to the 

chromatin template with the help of the 
chaperone/cochaperone complexes [59]. These 
cycling reactions of the GR are different from those of 
the other steroid receptors, such as the AR or ER. 
Although cycling of AR and ER on chromatin have 
previously been described [61,62], these cycling 
events are intrinsic properties of these receptors and 
they depend on proteasome function and the 
degradation of the receptors. Furthermore, these 
processes occur in the presence of constant hormone 
levels, which is different from the oscillations of the 
GR. 
 
Increased expression of p23 achieved by transfection 
in the estrogen-dependent breast cancer cell line 
MCF-7 increased ERα recruitment and activity at 
select regulatory elements of ER target genes [63]. 
Utilizing ChIP-sequencing (ChIP-seq), a 230% 
increase in the number of estrogen-induced ER-
binding sites, compared with control cells, could be 
demonstrated in response to the increased 
expression of p23. Interestingly, motif analysis 
indicated that ERα bound to the same DNA 
sequences, regardless of p23 status. The increase in 
ER binding sites was therefore not due to enhanced 
ER binding but most likely due to p23-mediated 
changes in histone modification, a consequence of 
which would be increased chromatin accessibility and 
binding by ERα [63]. It has been shown more recently 
that p23 enhances AR transactivation function in both 
the cytoplasm, by increasing AR ligand-binding 
capacity, possibly via direct interaction, and in the 
nucleus, by enhancing AR occupancy at target 
promoters [64]. An interaction between AR and p23 
was demonstrated even after treatment with the 
geldanamycin analog, 17-N-Allylamino-17-
demethoxygeldanamycin (17-AAG), a Hsp90 inhibitor 
that displaces p23 from the complex with Hsp90 [64]. 
The effects of p23 on AR activity were, at least in part, 
Hsp90-independent, since a mutant form of p23 that 
was unable to bind Hsp90 increased AR activity 
nevertheless [64]. Collectively, these studies suggest 
that p23 has other functions in addition to its action as 
an Hsp90 cochaperone. 
 
Knockout mouse model of p23 
 
A knockout mouse model has been generated for 
studies on the role of p23 in steroid hormone action. 
p23 was found absolutely necessary for perinatal 
survival, but it was inessential for overall prenatal 
development and morphogenesis [65]. The skin 
barriers at the final fetal stages of development were 
incompletely formed and the lungs of p23 null 
embryos displayed underdeveloped airspaces and 
substantially reduced expression of surfactant genes 
[65]. The defects in skin and surfactant gene 
expression correlate with defects in glucocorticoid 
function in promoting lung maturation, and the 
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development of epithelial barriers [66–68]. 
Accordingly, embryonic fibroblasts from p23 null mice 
displayed a defective glucocorticoid response [65]. 
The perinatal phenotype of the p23 null mice has 
prevented analysis of the contributions of this 
cochaperone to other endocrine functions in adult 
mice. 
 
Nuclear action of Bag-1 
 
The Bag-1 isoforms 
 
Another cochaperone that has been shown to function 
in the nucleus in addition to p23 is Bag-1L, a member 
of the Bag-1 family of proteins. In humans, the Bag-1 
family is made up of polypeptides translated from one 
mRNA by a leaky scanning mechanism [69,70]. This 
generates four differentially-sized isoforms; Bag-1L, 
Bag-1M, Bag-1 and Bag-1S (Figure 3A). These 
proteins differ at their N-terminal sequences, but have 
a conserved C-terminal Hsp70-binding domain 
(otherwise known as BAG domain) [71,72]. 
Additionally, Bag-1 proteins contain a ubiquitin-like 
domain (UBQ) through which they can be connected 
to the proteasome [73]. The UBQ was shown to be 
important in CHIP (carboxyl terminus of Hsp70-
interacting protein)/E3 ligase-dependent degradation 
of the GR [74]. Bag-1 is therefore a coupling factor, 
which can link the chaperones and the proteolytic 
complex together and thereby plays a role in steroid 
receptor turnover (Figure 1A) [75]. 
 
The Bag-1 proteins do not contain a TPR motif but 
instead use their BAG domain to bind the Hsp70 
ATPase. The BAG domain is approximately 100 
amino acids in length and is made up of three 
antiparallel alpha helices, which serve as a protein-
protein interaction surface for a number of cellular 
proteins [76]. In a 1.9 Å crystal structure in complex 
with the ATPase of Hsc70 (a homologous protein of 
Hsp70), the BAG domain was shown to induce a 
conformational switch in the ATPase that is 
incompatible with further nucleotide binding. A similar 
switch was observed in the bacterial Hsp70 homolog 
DnaK, when bound by the structurally unrelated 
nucleotide exchange factor GrpE. The Bag-1 proteins 
and in particular Bag-1 are therefore often described 
as mammalian nucleotide exchange factors of Hsp70 
[72]. Furthermore, the interaction of Bag-1 with Hsp70 
and with the unliganded GR has made it a member of 
the foldosome complex [77]. In fact, early studies 
showed that Bag-1 is involved in the release of Hop 
from the foldosome complex [77] (Figure 1A and B) 
but later analysis demonstrated that it actually 
competes with Hip for binding to the Hsp70 ATPase 
domain [6].  

Bag-1L, the largest member of the family, possesses 
a N-terminal nuclear localization sequence (NLS) and 
is therefore exclusively localized to the nucleus. The 
other Bag-1 isoforms are mainly cytoplasmic [70], 
although under stress conditions these members and 
notably Bag-1M, are reported to also localize to the 
nucleus [78]. Intriguingly, two orthologs of Bag-1, 
Bag101 and Bag102 (Figure 3A), have been identified 
in the fission yeast Schizosaccharomyces pombe that 
show about 20% sequence identity and 45% 
sequence homology with the human Bag-1 isoforms 
[79]. Bag101 and 102 also contain BAG and UBQ 
domains and have the ability to bind to Hsp70 and the 
26S proteasome [79]. Like the human Bag-1 proteins, 
the fission yeast proteins have different cellular 
localizations. While Bag101 is localize to the cytosol, 
Bag102 is found exclusively in the nuclear envelope. 
In accordance, genetic and biochemical assays show 
that only Bag102 has a nuclear function. It is required 
for a nuclear chaperone-assisted degradation 
mechanism and is involved in protein nuclear quality 
control and kinetochore integrity [79]. 
 
Nuclear action of human Bag-1L 
 
The human Bag-1 proteins were shown to either 
positively or negatively regulate the action of many 
steroid/nuclear receptors ranging from GR, PR, MR, 
AR, ER and vitamin D receptor (VDR) to retinoid X 
receptor (RXR) [76,80]. In particular ERα, ERβ, AR 
and VDR were reported to be positively regulated by 
Bag-1L, and to a lesser extend by Bag-1M [81–83]. 
This suggests that the (NLS-containing) N-terminus of 
Bag-1L, which is absent in Bag-1M, contributes to the 
positive effect of Bag-1L on steroid receptor action. 
To confirm this experimentally, the cytoplasmic Bag-1 
proteins (Bag-1M and Bag-1S) were tagged with a 
SV40 NLS and their effect on AR regulation was 
monitored. Although NLS-Bag-1M and NLS-Bag-1S 
translocated to the nucleus and were able to exert 
positive regulation on AR transactivation, they did not 
achieve the regulatory activity of Bag-1L [84,85]. This 
suggests that the N-terminus of Bag-1L has a function 
distinct from the cochaperone activity of its C-terminal 
BAG domain.  
 
In addition to the presence of a NLS at the N-
terminus, Bag-1L binds the AR, ERα and VDR 
[82,85,86] and harbors two additional, unique 
functions. First, the region between amino acids 72 to 
79 is reported to bind non-specifically to DNA. This 
region contains positively charged sequences of three 
consecutive lysine and three arginine residues, 
separated by a centrally located neutral residue. 
Mutational analysis has identified both trimeric blocks 
as essential for DNA binding [87,88]. Second, 
sequences between amino acids 17-50 have been 
described as important for the nuclear retention of 
Bag-1L. It is thought that this region holds the 
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Figure 3. The Bag-1 protein family members and their structural domains. A. Top: Intron-exon structure of the human Bag-1 
gene and corresponding transcript. The start codons for the different Bag-1 transcripts are indicated by arrows. Note, Bag-1L, the 
longest family member, is the only one with a CUG start codon. Bottom: The domain structures of the four human Bag-1 isoforms 
(left) and the two isoforms of Schizosaccharomyces pombe (right), with their Hsp70/Hsc70-binding domains (BAG) highlighted in 
blue. The TR/QSEEX repeat region is shown as vertical lines and other functional domains are indicated. The domain information 
(including residue numbers) for the human Bag-1 isoforms were obtained from the RefSeq database (NCBI) [102], while the domain 
information for the yeast homologues were taken from Kriegenburg et al. 2014 [103]. NLS: Nuclear localization signal; UBQ: 
Ubiquitin-like domain; TM: Transmembrane domain. B, C. Phylogenetic tree (B) and sequence alignment (C) of the first 80 N-
terminal amino acids of the human Bag-1L protein compared with Bag-1 isoforms in other organisms. Both graphs were generated 
using the MultAlin website [104]. 
 
cochaperone anchored to structures in the nucleus, 
possibly histone proteins [84]. Together, these 
regulatory elements keep Bag-1L in the nucleus and 
contribute to its effect as a modulator of steroid 
receptor action. In ChIP experiments, Bag-1L was 
bound to chromatin along with the AR at androgen-
regulated target genes [85,89]. 
 
The GARRPR motif of Bag-1L 
 
More recently a duplicated sequence “GARRPR” at 
positions 6-11 and 66-71 at the N-terminus of Bag-1L 
was shown to interact with the AR and the ERα [89]. 
Mutation of these motifs destroyed binding of Bag-1L 
to the AR but did not impair the chromatin binding 
potential of the mutant Bag-1L [89]. This indicates that 
chromatin and receptor binding are not linked for this 
protein. While the C-terminal BAG domain shows a 
high degree of sequence homology among the Bag-1 
proteins found throughout evolution (in yeast, 
invertebrates, amphibians, mammals and plants), the 
first 128 N-terminal amino acids containing the 

duplicated GARRPR motif are less well conserved 
[90].  
 
Nevertheless, a high sequence homology exists 
among the GARRPR motifs of human and monkey 
(M. mulatta, N. leucogenys and C. jacchus) (Figures 
3B and C). Protein binding studies using peptides 
encompassing the GARRPR motifs showed that they 
bind to the ligand-binding domain (LBD) of the AR to 
a region termed binding function-3, which 
allosterically modulates the activity of the receptor 
[89]. Structure-based sequence alignments of the 
LBD of multiple steroid receptors show that the BF-3 
pocket is highly conserved among steroid receptors 
as well as being present in other major nuclear 
receptors [91]. It is therefore expected that the 
GARRPR motif would also bind to other 
steroid/nuclear receptors. However, in vitro 
experiments showed that the GARRPR motif bound 
only to the AR and ERα and not the PR or GR [89]. 
This suggests that other receptor sequences 
contribute to the binding to the GARRPR motif. So far 
the only other protein that has been found to bind the 
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BF-3 region is the cochaperone FKBP52 that has a 
GARRPR-like sequence [89,92].  
 
It is interesting to note that for both Bag-1L and 
FKBP52 the sequences that interact with the BF-3 
domain are different from those reported to bind 
Hsp70 and Hsp90. Another interesting observation is 
that mutation of the GARRPR motifs in both proteins 
results in a gain-of-function phenotype [89,93]. In 
Bag-1L the mutations do not completely inhibit AR-
mediated gene expression but rather increase the 
expression of a subset of androgen-regulated genes 
involved in metabolic processes [89]. 
 
The BAG domain of Bag-1L 
 
In addition to the regulation of steroid receptor action 
through the GARRPR motif, several lines of evidence 
suggest that Bag-1L may indirectly regulate the 
activity of the steroid receptors through its BAG 
domain. First, deletion of the BAG domain destroys 
the ability of Bag-1L to enhance the activity of the AR 
[85,94]. Second, mutation of amino acids in the BAG 
domain involved in the interaction with the ATPase 
domain of Hsc70, not only destroyed the interaction 
between Bag-1L and Hsc70, but simultaneously 
obliterate the ability of Bag-1L to enhance the 
transactivation function of the AR [94]. Collectively, 
these results show that the BAG domain of Bag-1L, 
which also acts as a nucleotide exchange factor for 
Hsp70, contributes to the regulation of steroid 
receptor action, at least for AR. Intriguingly, protein-
protein interaction studies showed that the BAG 
domain of Bag-1L does not interact with the AR-LBD, 
but rather with its N-terminal transactivation domain 
[85]. This region of the AR is intrinsically disordered, 
which means that it exists without a stable tertiary 
structure. However, the lack of structure has several 
advantages. For example, it provides a large 
interaction surface compared with other globular 
proteins of the same size. Secondly, intrinsically 
disordered proteins have short linear motifs (SLiMs) 
that allow them to recognize binding partners by 
undergoing coupled folding and binding processes. 
SLiMs have extremely compact protein interaction 
interfaces that are generally encoded by less than 
four major (affinity- and specificity-determining) 
residues within a stretch of 2–10 amino acids [95]. 
The occurrence of SLiMs in intrinsically disordered 
regions gives way to specific, yet transient, 
interactions that enable them to play central roles in 
signaling pathways and allow them to act as hubs for 
protein interaction networks [96]. It is likely that the 
ability to be involved in such protein-protein 
interactions allows the BAG domain of Bag-1L to 
exert a great impact on AR function. Since several 
steroid receptors have SLiMs-containing regions at 
their intrinsically disordered N-termini [97], it seems 
plausible that they could also be targeted by the BAG 
domain of Bag-1L. It is likely that they already account 

for the reported effects of Bag-1L on steroid receptor 
action [81–83]. 
 
Knockout mouse model of Bag-1 
 
Although Bag-1 knockout mice have been generated 
to study the effect of loss of this molecule on steroid 
hormone, these mice die between embryonic days 
12.5 and 13.5 (E12.5 and E13.5). Consistent with the 
essential role of Bag-1 in the survival of differentiating 
neurons and hematopoietic cells [98], Bag-1 knockout 
mice display massive apoptosis in cells of the fetal 
liver and developing nervous system [98]. In contrast, 
Bag-1 heterozygous mice are viable and show no 
difference in development, growth and body size 
compared to their wild-type counterparts, nor do they 
have obvious defects in the endocrine system (our 
unpublished observations). The Bag-1 gene is 
separated by only 414 bp from Chmp5, a gene that 
codes for charged multivesicular body protein 5. 
These two genes are encoded by different DNA 
strands and their 5’ ends are positioned head-to-head 
[99]. Targeted disruption of Bag-1 resulted in a double 
knockout, ablating the expression of both Bag-1 and 
Chmp5 (our unpublished data). The Chmp5 knockout, 
like the Bag-1 knockout, is embryonic [99]. This 
double knockout has hampered analysis of the 
contribution of Bag-1 to steroid receptor action in the 
mouse. A new strategy for Bag-1 knockout mice 
(Bag1tm1a(EUCOMM)Hmgu/Ics) has been generated 
by the European conditional mouse mutagenesis 
(EUCOMM) program, and future characterization of 
these mice will determine the contribution of Bag-1 to 
steroid receptor action. 
 
Conclusion 
   
Although the molecular chaperones Hsp70 and 
Hsp90 are present in both the cytoplasm and the 
nucleus, a clear role of these proteins in the 
regulation of steroid receptor function at the chromatin 
level has not been identified. Instead unambiguous 
evidence exists that cochaperones that regulate the 
activity of these molecular chaperones, and are 
themselves recruited into the nucleus, modulate the 
transcriptional activities of the steroid receptors on 
chromatin. To date, two cochaperones have been 
characterized in this respect: p23 and Bag-1L. Both 
proteins belong to the family of cochaperones that do 
not interact with Hsp70 and Hsp90 through the 
classical TPR domains. Instead these proteins 
employ domains that are multifunctional and are also 
involved in chaperone-independent activities. This is 
particularly the case for Bag-1L, where in fact two 
domains have been identified for regulating cellular 
processes; the BAG domain that serves as a 
nucleotide exchange factor for Hsp70 and steroid 
receptor binding, and the GARRPR motif at its N-
terminus that is essential for AR and ERααbinding. It 
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is currently unclear whether the two domains 
functionally cooperate in regulating steroid receptor 
action or if they act independent from one another. 
Similarly, p23 mutational and inhibitor studies have 
shown that the sequences it uses to bind Hsp90 are 
different from those for interaction with the AR. 
Combined, these findings therefore offer great 
opportunities for the discovery of small molecular-
weight chemicals that can specifically target these 
interaction surfaces and thereby inhibit the steroid 
receptor action in a novel way without affecting the 
overall chaperone activity. Some interesting candidate 
compounds have already emerged. For example, 2-
((2-(2,6-dimethylphenoxy)ethyl)thio)-1H-
benzo[d]imidazole competes with the binding of the 
Bag-1L GARRPR motif to the AR [89]. Thio-2 binds to 
the BAG domain of Bag-1 [100] and Gedunin binds to 
the N-terminus of p23 [101]. In the latter two cases, 
the inhibitors are only “partially dissociated” 
compounds and therefore still inhibit Hsp70 and 
Hsp90 action, albeit weakly. Future detailed studies 
on how these cochaperones regulate steroid receptor 
activity independent of their activity through the 
molecular chaperones will open new avenues to the 
identification of more specific compounds that can 
produce a new generation of steroid receptor 
therapeutics. 
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