KIT | KIT-Bibliothek | Impressum

Climate, CO₂, and demographic impacts on global wildfire emissions

Knorr, K.; Jiang, L.; Arneth, A.

Abstract:
Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO CO$_{2}$ fertilisation of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation. Here, we present a series of 124 simulations with the LPJ–GUESS–SIMFIRE global dynamic vegetation–wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire we ... mehr


Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Jahr 2015
Sprache Englisch
Identifikator DOI: 10.5194/bgd-12-15011-2015
ISSN: 1810-6277, 1810-6285
URN: urn:nbn:de:swb:90-AAA1201039746
KITopen ID: 120103974
HGF-Programm 12.02.02; LK 01
Erschienen in Biogeosciences discussions
Band 12
Seiten 15011-15050
Lizenz CC BY 3.0 DE: Creative Commons Namensnennung 3.0 Deutschland
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page