
CAUSAL-SEMANTIC-BASED SIMULATION AND VALIDATION OF

HIGH-LEVEL PETRI NETS

Jörg Desel, Thomas Freytag

Institut AIFB, University of Karlsruhe, Germany

E-mail: {desel j freytag}@aifb.uni-karlsruhe.de

Andreas Oberweis

Lehrstuhl für Wirtschaftsinformatik II, University of Frankfurt/Main, Germany

E-mail: oberweis@wiwi.uni-frankfurt.de

KEYWORDS

Petri nets, causal semantics, simulation, processes,

validation of properties

ABSTRACT

This contribution describes a simulation concept for

systems modelled by high level Petri nets that is

based on causal semantics. Dynamic properties can

be checked by evaluating these partially-ordered sim-

ulation runs. It will be shown that this approach is

not only more e�cient but also has more analytical

power than the �classical� simulation method based

on sets of totally-ordered transition occurrences.

INTRODUCTION

Petri Nets have become a widely accepted formal-

ism for modeling, simulation and analysis of com-

plex systems in a variety of application domains. In

particular high-level Petri nets are applied because

of their �exible and compact structure.

There are two general views at the dynamic be-

haviour of a net model: The �rst one - called the

sequential semantics - looks at the set of occurrence

sequences of a net. The second one - called the causal

semantics - looks at the set of partially-ordered runs

(or processes) of a net. Whereas the causal seman-

tics is favorized in Petri net theory (e.g. [Rei86]) be-

cause of its ability to handle concurrency, the area

of applications is dominated by sequential semantics

because of their easy and straight-away de�nition.

Usually, simulation tools for Petri nets generate to-

tally ordered sequences of transition occurrences and

thus are based on sequential semantics.

There are also two ways to check (desired or unde-

sired) properties of a net model: The �rst one is to

apply analysis methods from net theory deciding a

property mostly by analysing the state space. This

very clean way becomes inapplicable when systems

are large and their state spaces su�er from the state

explosion. The second approach is not to consider all

possible executions of a net but only a well-chosen

subset determined by simulation. The given prop-

erty is then checked against 'empirical' data - com-

parable to the systematic testing of a program.

This paper sketches an attempt between these ap-

proaches - exploiting the advantages and avoiding

the disadvantages of each. It will be shown that the

approach of partially-ordered simulation is not only

based on a well-founded formalism but also able to

improve e�ciency in practical applications.

The contribution is structured as follows: The fol-

lowing section gives a summary of the underlying

formalism and provides a small example. The next

section describes how partially-ordered simulation

contributes to an e�cient representation of the sim-

ulation data. Afterwards a rough idea is given about

the simulation policy and its algorithmical aspects.

Finally it will be shown that a class of properties ex-

ists that can not be checked by sequential simulation

but rather requires partially-ordered simulation.

The topics of this paper are part of the work of the

project �Veri�cation of information systems by eval-

uating partially-ordered Petri net runs (VIP)� spon-

sored by the German Research Society (DFG). Fur-

ther information can be obtained in [DO95, DFO97]

or at our WWW page [DFOZ96].

BASIC NOTIONS

Predicate transition nets

We suppose the reader to have some understanding

of Petri nets, in particular with high level nets as

introduced e.g. in [Jen92]. For algorithmical rea-

sons, we restrict the class of Predicate/Transition

nets (Pr/T nets) to �nite nets with �nite domains

and �nite initial markings containing no transitions

with empty preset or postset. We restrict operations

on domains to take place inside guard expressions

(i.e. all arc labels consist only of multisets of vari-

ables). This is no real restriction of the net class

because every net with arc label operations can be

transformed to an equivalent net without them (cf.

Fig. 1).

<x>

<y,z>

<x>

<x+y,z+1>

<y,z>

<u,v>u=x+y
v=z+1

Fig. 1: Transformation of arc operations

Fig. 2 shows a small example net. It is a simpli-

�ed model of an o�ce where documents are created,

checked, updated, archived and deleted. Transition

Init shifts documents from place Document to place

Ready, assigning a release number 1 to the docu-

ment (x=1). Now there are two possible continua-

tions: The �rst one is to throw a document into the

wastebasket by �ring transition Delete and moving

it to place Wastebasket. The second possibility is

to �re transition Check and move the document to

place Ok. Now transition Update can occur putting

a copy of the document to place Archive and passing

the updated document with a release number incre-

mented by 1 (y=x+1) back to place Ready. Initially

two documents <a> and are put on place Doc-

ument, all other places are unmarked.

Check Ok

Ready Archive

Update

Wastebasket

Delete

Documents

Init

<d,x> <d,x> <d,x> <d,x>

<d,x>

<d,x>

<d,x>

<d,y>

y=x+1

<a>

<d>

x=1

Fig. 2: An example Pr/T net

Causal nets

A Petri net is called a causal net if every place has

at most one input transition and at most one out-

put transition, every transition has at least one input

place and at least one output place and the �ow re-

lation has no cycles (i.e. its transitive closure is a

partial order). The places of a causal net are called

conditions, its transitions are called events.

Shortly, a causal net is an acyclic, place-bordered net

with forward and backward unbranched places. The

places without input transitions are called minimal

elements and the places without output transitions

are called maximal elements of the causal net.

Processes and simulations

The dynamic behaviour of a Pr/T net is given by the

set of possible executions that start at a given initial

marking. Every execution of a Pr/T net is called a

process of the net. A process can be described in a

straightforward way by a causal net (then called a

process net):

� Each condition of the causal net represents the

existence of a marking tuple (multiset element)

on a particular place of the Pr/T net

� Each event of the causal net represents the oc-

currence of a transition in the Pr/T net for a

particular variable assignment

� Each arc of the causal net represents the �ow

of marking tuples in the Pr/T net: Whenever

a transition consumes a tuple from a place, an

arc is drawn from the associated condition to

the associated event. And whenever a tran-

sition produces a tuple on a place, an arc is

drawn from the associated event to the associ-

ated condition

� The minimal elements of the causal net are

those conditions associated to the initial mark-

ing of the Pr/T net

As a notation, we label a condition of a process net

by the name of the associated place followed by the

associated marking tuple put in brackets. For exam-

ple, a condition named P1(a,1) stands for the mark-

ing tuple <a,1> on place P1. The events of the pro-

cess net are labelled by the name of the associated

transition followed by the list of variable assignments

put in brackets. For example T1(x=a,y=1) stands

for the transition T1 occurring for the assignment

x=a and y=1. Fig. 3 and Fig. 4 show di�erent pro-

cesses for the net in Fig. 2 (some names are abbrevi-

ated for sake of readability). The set of minimal ele-

ments in both process nets consists of the conditions

Doc(a) and Doc(b) denoting the marking of place

Doc(ument) by the tuples <a> and . In Fig. 3

the event Init(d=a,x=1) represents the �ring of tran-

sition Init for the variable assignments d=a and x=1.

After this occurrence, place Ready is marked by the

tuple <a,1> which is represented in the process net

by the arc from Init(d=a,x=1) to Ready(a,1). Note

that both processes are not maximal in the sense

that they can still be continued by further events

(e.g. connecting Check(d=a,x=3) to the maximal

element Ready(a,3) of the process net in Fig. 3).

Ready(a,1)

Init(d=a,x=1)

Doc(a)

Check(d=a,x=1)

Doc(b)

Ok(a,1)

Update
(d=a,x=1,y=2)

Waste(a,2)

Init(d=b,x=1)

Ready(b,1)

Check(d=b,x=1)

Ok(b,1)

Ready(a,2)

Archive(a,1)

Delete
(d=a,x=2)

Fig. 3: A process net of the net in Fig. 2

Init(d=a,x=1)

Doc(a)

Doc(b)

Init(d=b,x=1)

Ready(b,1)

Check(d=b,x=1)

Ok(b,1)

Ready(a,2)

Check(d=a,x=2)

Ok(a,2)

(d=a,x=1,y=2)
Update

Ready(a,3)

Ready(a,1)

Check(d=a,x=1)

Ok(a,1)

(d=a,x=1,y=2)
Update

Archive(a,1)

Archive(a,2)

Fig. 4: Another process net of the net in Fig. 2

Causal nets cannot handle con�icts because their

places do not allow branching. Con�icts are re-

solved by creating additional processes describ-

ing alternative continuations. In our example,

there is a resolution for a con�ict that arises af-

ter Update(d=a,x=1,y=2) has occurred. The pro-

cess in Fig. 3 shows the continuation where

Delete(d=a,x=1) occurs next, whereas Fig. 4 shows

the contination where Check(d=a,x=2) occurs next.

EFFICIENCY IN SIMULATION DATA

REPRESENTATION

The behaviour of a concurrent system is described

by the set of its possible executions. An execution

consists of a set of events, each of them having a

certain set of pre- and postconditions. The causal

structure of an execution is de�ned by an iterated

combination of events where a postcondition of one

event can be a precondition of another event. This

leads to a canonical partial order of events - the

causal dependency order. Two events are concur-

rent if and only if they are not ordered by the causal

dependency order. For example it can be checked

easily in the process net of Fig. 4 that the event Up-

date(d=a,x=1,y=2) is a causal successor of the event

Check(d=a,x=1). On the other hand the events Up-

date(d=a,x=1,y=2) and Check(d=b,x=1) occurred

independently because they are not causally ordered.

A simulation based on sequential semantics con-

structs event occurrences and generates totally or-

dered sequences of events by forcing independent

events to be ordered. The advantage of this concept

is the simple and straightforward representation of

a system run.

A simulation using causal semantics constructs

event occurrences and generates partially-ordered

structures (processes) of events preserving their

causal dependency. In general, a process corre-

sponds to many di�erent occurrence sequences - each

represented by one possible execution path of the

process net.

To demonstrate the bene�t of our approach we con-

sider the example from the previous section. The

process shown in Fig. 5 contains nine occurrence

sequences.

2-5-1-3-4, 2-1-5-3-4, 2-1-3-5-4, 2-1-3-4-5,
1-2-5-3-4, 1-2-3-5-4, 1-2-3-4-5, 1-3-2-4-5,
1-3-4-2-5

Doc(a)

Doc(b)

Update
(d=a,x=1,y=2)

Ready(a,2)

Archive(a,1)

1

3

4

2 54

Ready(a,1)

Init(d=a,x=1) Check(d=a,x=1)

Ok(a,1)

321 5

6

7

8
Init(d=b,x=1)

Ready(b,1)

Check(d=b,x=1)

Ok(b,1)

Fig. 5: A process containing nine occurrence

sequences

The events and conditions are numbered merely to

identify them - no sequencing is implied. It can

easily be proven that the number of occurrence se-

quences grows exponentially in the degree of concur-

rency of the underlying net. So processes are a very

e�ective data structure to store the behaviour of a

system that has many di�erent executions.

Additionally, the causal dependencies between arbi-

trary events are always retrievable from a process

but never from a set of occurrence sequences. Con-

sidering e.g. the sequence 1-3-2-4-5 from the ex-

ample above, it is impossible to decide whether the

event 3 precedes the event 4 because of a causal de-

pendency or whether they were sequentialized arbi-

trarily by the simulation policy.

So simulation runs based on causal semantics have

several advantages compared to the sequential ap-

proach:

� Compactness of the simulation data

� Explicit representation of the causal dependen-

cies

EFFICIENCY IN THE SIMULATION

ALGORITHM

A (partial-order-based) simulation is a subset of the

set of all processes of a Petri net. One possibility for

the algorithmic construction is the generation of the

complete process set which is described in detail in

[JaK89, DOZ96]. Because the set of processes can

grow exponentially, this method is in most cases not

applicable in practical applications. Instead, we con-

centrate on the construction of a well-chosen subset

of the set of processes controlled by termination rules

to determine the point to �nish the construction of

a process or of the simulation at all and by event

selection rules to choose the next transition (and its

variable assignment) to occur. It turns out that we

can save storage resources in particular when sim-

ulating those systems that have long deterministic

pre�x executions.

Termination rules

Termination rules control the e�cient construction

of processes in di�erent ways. Global termination

rules determine the point when to stop the whole

simulation. This could be either when all possible

processes are built, or when an upper bound for the

number of processes or a certain number of event

occurrences is reached. Local termination rules are

needed to stop the construction of the current pro-

cess. This point could be either that no more events

can occur, or a given number of event occurrences or

a maximum process chain length is reached. In addi-

tion, dynamic termination rules can be established

depending on the individual system property that

is to be validated. Finite pre�x rules as introduced

for net unfoldings e.g. in [Esp94] can be adapted to

processes to provide a neat criterion to determine a

state where the system repeats a behaviour that has

already been observed before.

Event selection rule

At any time during the simulation of the system

there is a certain set of enabled transitions with as-

sociated variable assignments that are possible con-

tinuations of the system behaviour. The quality of

the simulation strongly depends on the policy used

to choose one (or more) of these alternative events.

One such policy could be to let the user do this deci-

sion. Other policies automate this decision by doing

a random choice that can be stochastically weighted

e.g. with a pre-de�ned priority factor, with the num-

ber of occurrences in the past, or with a combination

of both. It is also possible to let this priorities de-

pend on the speci�c kind of property that is to be

validated.

Deterministic pre�x executions

One observable property of real-life information sys-

tems is that they may execute deterministically

(con�ict-free) for a certain (possibly long) time be-

fore any nondeterministic behaviour (i.e. con�icts)

takes place. This turns out to be a storage-wasting

procedure because all di�erent continuations after

the con�ict have an identical pre�x that has to be

stored to represent the complete process history.

This reduncancy can be avoided by an e�cient struc-

turing of the simulation data.

1

2

1’

2’

3’1’ 2’ 4’ 3

1 3 2 4

4’’2’’3’’1’’

1’’

2’’

T(x=1)

T(x=2)

3

5

5

6

Fig. 7: A shared deterministic pre�x

The system must be able to recognize these situa-

tions and store the identical data only once by �shar-

ing� the common pre�x with each process net that

is a continuation of it. This principle is compara-

ble to the use of a reachability graph when using

the sequential simulation method. Two states that

are reachable via di�erent occurrence sequences but

represent the same marking are mapped to the same

node. Fig. 6 shows an example of a determistic

pre�x that is common to two process nets (shared

conditions and events are drawn in a dotted style).

EFFICIENCY IN PROPERTY

VALIDATION

In opposite to the sequential semantics it is always

possible for two causally ordered events to tell their

�causal distance� - i.e. the number of events occur-

ring between them.

We want to try checking the following property of

the system: 'Is there an execution where a doc-

ument is created and destroyed without ever being

checked?'. This property is very typical in the veri-

�cation and optimization of concurrent information

systems when we are searching for erroneous exe-

cution paths. Fig. 7 shows a graphical representa-

tion by adding a query transition to the net graph.

Query transitions are syntactically handled like nor-

mal transitions but are semantically di�erent as far

as they are not taken into account by the �ring

rule. They are merely a graphical speci�cation for a

property that has to be checked after the simulation

and thus are an extension of the well-known con-

cept of Facts as introduced in [GTM76]. In this case

the transition GetLost (inscribed by a `K` for causal

chain - german: Kausalkette) represents the prop-

erty, that there exists an execution where the causal

distance of an item that was consumed from place

Document by �ring transition GetLost for a suitable

assignment and the produced item on place Waste-

basket is exactly 5 (i.e. the value inscribed in the

transition). To avoid confusion, the arcs connected

to query transitions are dashed.

Check Ok

Ready Archive

Update

Wastebasket

Delete

Documents

Init

<d,x> <d,x> <d,x> <d,x>

<d,x>

<d,x>

<d,x>

<d,y>

y=x+1

<a>

<d>

x=1

<d> <d,x>

5

x=1

GetLost

Fig. 7: An example query for our example net

It is impossible to validate this property by looking

at occurrence sequences, because there could have

occurred arbitrarily many independent events be-

tween the precondition and the postcondition of the

causal chain - including the creation of new docu-

ments. In a simulation which is based on causal

semantics we can easily check this property because

the causal dependency (and thus the required mea-

sure of a causal distance) is represented explicitly.

Fig. 8 shows what kind of 'pattern' we have to search

for in our set of processes.

Delete(d=a,x=1)Init(d=a,x=1)

Ready(a,1)

... ...
Documents(a) Wastebasket(a,1)

Fig. 8: A pattern that would match the query of

Fig. 7

Note that the class of properties requiring a notion

of causal distance is only one example where the se-

quential simulation approach fails. A more general

classi�cation will be in the scope of future investiga-

tions of the VIP project.

References

[DFOZ96] J. Desel, T. Freytag, A. Oberweis and T. Zimmer.

WWW page VIP - a project overview.

http://www.aifb.uni-karlsruhe.de/pub/InfoSys/VIP.

[DFO97] J. Desel, T. Freytag and A. Oberweis.

Prozesse, Simulation, Eigenschaften netzmodellierter Sys-

teme. in: Proceedings of Entwurf komplexer Automa-

tisierungssysteme (EKA `97). University of Braunschweig,
1997.

[DO95] J. Desel and A. Oberweis.

Veri�kation von Informationssystemen durch Auswertung

halbgeordneter Petrinetz-Abläufe. Technical Report 324,

AIFB, Uni Karlsruhe, 1995.

[DOZ96] J. Desel, A. Oberweis and T. Zimmer.

Simulation-based analysis of distributed information system

behaviour. 8th European Simulation Symposium ESS96,

Genova, 1996.

[Esp94] J. Esparza.

Model checking using net unfoldings.

Science of Computer Programming, (23):151�195, 1994.

[GTM76] H. Genrich and G. Thieler-Mevissen.

The Calculus of Facts. Mathematical Foundations of Com-

puter Science, 588�595. Springer-Verlag, 1976.

[JaK89] R. Janicki and M. Koutny.

Towards a theory of simulation for veri�cation of concur-

rent systems. in: Parallel Architecture and Languages Eu-
rope, LNCS 366, 73�88. Springer-Verlag, 1989.

[Jen92] K. Jensen.

Coloured Petri Nets. Springer-Verlag, 1992.

[Rei86] W. Reisig.

Petri nets - an Introduction. Springer-Verlag, 2nd Ed.,

1986.

