
December 15, 1996

Experiences with Fine-Grained

Parallel Genetic Algorithms

Udo Kohlmorgen1 , Hartmut Schmeck1, and Knut Haase2

1 Institut f�ur Angewandte Informatik und Formale Beschreibungsverfahren

Universit�at Karlsruhe, D-76128 Karlsruhe

E-mail: {kohlmorgen, schmeck}@aifb.uni-karlsruhe.de

2 Institut f�ur Betriebswirtschaftslehre

Christian-Albrechts-Universit�at zu Kiel, D-24098 Kiel

E-mail: haase@bwl.uni-kiel.de

In this paper we present some results of our systematic studies of �ne-grained par-
allel versions of the island model of genetic algorithms and of variants of the neigh-

borhood model (also called di�usion model) on the massively parallel computer

MasPar MP1 with 16k processing elements. These parallel genetic algorithms
have been applied to a range of di�erent problems (e.g. traveling salesperson,

capacitated lot sizing, ressource constrained project scheduling,
ow shop, and

warehouse location problems) in order to obtain an empirical basis for statements
on their optimization quality.

Keywords: �ne-grained parallel genetic algorithm, island model, neighborhood
model, combinatorial optimization

1 Introduction

Genetic and { more general { evolutionary algorithms are heuristic optimization methods
based on the principle of natural evolution. Their universal applicability and their good
performance on a variety of di�erent optimization problems have led to a strong interest
in this type of algorithm (see e.g. [13] and [21]). If the evolution of a large population
of potential solutions is to be investigated for many generations, the computational re-
quirements can be extremely large. Therefore, it is reasonable to use parallel computers
to obtain satisfying results in a reasonable amount of time.

Fortunately, genetic algorithms are known to be inherently parallel, i.e. it should
be easy to achieve a signi�cant speedup by parallel execution. Nevertheless, there are
many di�erent ways of parallelizing genetic algorithms (cf. [9], [12], [14], [23], [26], and
[31]). While usually, the parallel execution should preserve the functional behaviour of the
sequential algorithm, the standard approaches to the parallelization of genetic algorithms
lead to new algorithmic structures:

In the island model genetic algorithms are executed concurrently on several indepen-
dent (sub-) populations with the added possibility of exchanging regularly good individ-
uals between neighboring islands (cf. [19], [27] and [31]).

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 2

Besides this coarse-grained parallel approach the neighborhood model provides a �ne-
grained parallel variant: The population is distributed over the processors of a large mesh
connected array. This spatial arrangement of the population allows the natural use of
local neighborhoods in the selection of parents for producing new individuals for the next
generation (cf. [6], [20] and [24]).

Thus, these parallel variants of genetic algorithms di�er mainly with respect to their
way of selecting parents for producing new individuals: While in the sequential version
selection is done with respect to the whole population, the island model restricts selection
to subpopulations which are disjoint except for the exchange of some good individuals,
and the neighborhood model performs selection in extensively overlapping neighborhoods.
In several applications these new algorithmic structures have shown good optimization
behaviour.

In this paper we present some results of our intensive studies of several variants of
these parallel genetic algorithms. In particular, we implemented the island model on a
massively parallel MasPar MP1 machine having 16k processing elements. The islands
and their neighborhoods are obtained naturally by distributing the population over the
array (as in the neighborhood model) and by dividing the array into subarrays. In every
island, the processing elements of the associated subarray can then be used for the e�-
cient parallel execution of the genetic operators ([2], [11]). The same machine is used to
implement the neighborhood model and to test the suitability of di�erent neighborhoods
obtained by considering neighbors at di�erent distances in the eight possible directions
of the MasPar's X-net.

The performance of these algorithms has been investigated with respect to several
di�erent optimization problems like traveling salesperson, capacitated lot sizing, ressource
constrained project scheduling,
ow shop, and warehouse location problems. We were
especially interested, how the number and size of sub populations and the migration rate,
intervall, and strategy (for the island model) and the selection strategy and neighborhoods
(for the neighborhood model) in
uence the course of evolution and the quality of the
generated solutions.

2 The Classical Genetic Algorithm

The classical genetic algorithm (cf. [13], [21]) operates on a set of N individuals, also
called population. Every individial is a �xed length binary sequence (also called chro-

mosome) representing a potential solution of the optimization problem. The quality of
the individual is determined by the quality of this solution with respect to the problem's
objective function. Quite often this quality is also called �tness, although { genetically
{ the �tness of an individual is a measure of its reproductive strength which can only
be determined relative to a population. Based on their relative quality individuals are
selected as potential parents to produce o�spring for the next generation. The classical
selection method corresponds to the use of a roulette wheel where the size of a sector
depends on the relative quality of the corresponding individual. There is a variety of
other selection methods e.g. based on rank instead of quality or selecting only the k best
individuals for some k (also called elitist strategy).

Selected parents are mated randomly and produce one or two children by crossover,

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 3

i.e. by recombining genetic subsequences produced by cutting the chromosomes at a posi-
tion chosen randomly. The newly formed individuals undergo mutation, usually changing
the genetic information with some very low probability. A new population is formed by
either replacing all the parents with their o�spring or by replacing only those having a
lower quality.

This process is repeated until there is no more improvement or until some other
termination criterion is satis�ed.

So, the classical genetic algorithm has the following structure:

GENERATE initial population

EVALUATE individuals

REPEAT

SELECT parents

RECOMBINE parents (by CROSSOVER)

MUTATE o�spring

EVALUATE o�spring and form new population

UNTIL termination condition satis�ed

Genetic algorithms have been generalized in many ways, e.g. by allowing nonbinary ge-
netic representations (e.g. using integral or real values) and { correspondingly { more
complex recombination and mutation operators. Although these more general variants
are sometimes called evolutionary algorithms or evolution programs (see e.g. [21]) we shall
call them genetic algorithms, too, since their algorithmic structure is essentially the same.

3 Parallelizing Genetic Algorithms

Obviously, major components of genetic algorithms are inherently parallel: Evaluation,
recombination, and mutation may be executed independently on the individuals of a pop-
ulation. If enough processors are available, these operations can be done in constant time,
i.e. independent of the size of the population. But this is not true with respect to selec-
tion, since a global exchange of information is necessary to determine the relative quality
or the rank of an individual. Nevertheless, there are several approaches to parallelizing
genetic algorithms by localizing selection. These algorithms di�er principally from the
classical sequential genetic algorithm, but they seem to have even better optimization
quality.

In this paper we shall not give a survey of these di�erent approaches, but present
only the variants that we implemented and investigated on the massively parallel MasPar
MP1 machine, having 16k processors arranged as a 2-dimensional 128 � 128 torus with
additional diagonal interconnections, i.e. every processor has 8 direct neighbors. This
interconnection structure is also called X-net.

In all our variants of parallel genetic algorithms we consider the comparatively large
population of 16,384 individuals, i.e. every individual is associated with a di�erent pro-
cessor.

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 4

3.1 Island Model

The standard computer architecture for implementing the island model would be a coarse-
grained parallel machine, using one processor per island. Instead, we chose the massively
parallel MasPar MP1. In our implementation , the population is divided into 1, 4, 16, 64,
256, or 1024 subpopulations by appropriately dividing the grid into subarrays. Therefore,
we can easily measure the e�ect of the number of islands, while the total population size
remains constant. In Fig. 1 four islands are sketched having 4096 individuals each. The
division into subarrays naturally de�nes a neighborhood between islands, i.e. every island
has four direct neighbors (diagonal interconnections are not considered for migration).
The migration strategy varies between sending in one, two, three, or all four directions
and between sending every 15, 30, or 50 generations. The migration rate is adjusted to
the size of the islands by activating at migration time only 10% of the processors on the
border to the neighboring islands.

. . .

. . .

. . .

. . .

............

. . .

. . .

. . .

. . .
............

. . .

. . .

. . .

. . .

............

. . .

. . .

. . .

. . .
............

128

128

64

1

1 64

Figure 1: Four islands with 4096 individuals each

The subarrays can be used to execute all the genetic operators in parallel. E�cient
algorithms for executing di�erent types of selection on a 2-dimensional array can be found
in [2]. In particular, selection can be performed on an n�n subarray in time O(n) which
is asymptotially optimal for this interconnection structure.

Two di�erent mating schemes are used for generating a new population on each n�n

subarray. In the classical scheme, 2 n2 parents are selected and mated randomly to
produce 2 n2 children. Motivated by the array structure we also use a diallel mating
scheme: In each n � n subarray only n parents are selected, either by quality based
roulette wheel selection (with an appropriate scaling factor) or just the n best individuals.
Afterwards, all possible pairwise crossings are used to produce 2 n2 children. In both
schemes, the children compete with their parents to be selected for the new population.
The diallel mating scheme is well known in plant breeding but has rarely been used before
in genetic algorithms. It has the advantage of exploiting the selected genetic material

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 5

more intensively than the classical scheme. A disadvantage could be the higher selection
pressure.

Obviously, this �ne-grained parallel implementation of the island model has several
advantages over the standard coarse-grained implementations. Speci�cally, it is more

exible in adjusting the island structure and it leads to a much larger speedup by parallel
execution. In every generation, only constant time is needed for crossover, mutation, and
evaluation of individuals, i.e. the highest possible speedup has been achieved. The only
step which can not be executed in constant time is the selection process, but still, optimal
algorithms are used (cf. [2]). Moreover, the selection process is only global within the
islands. Therefore, this problem gets less severe the more islands (and hence the smaller
subpopulations) we use. Some more details of our investigation of this variant of the
island model can be found in [10].

3.2 Neighborhood Model

In our implementation of the neighborhood model of genetic algorithms, every processor
selects a partner for recombination from some local neighborhood by considering neighbors
at di�erent distances in the eight possible directions of the MasPar's X-net. Speci�cally,
the following neighborhoods have been used and tested:

4-n : Horizontal and vertical neighbors.
5-n : Horizontal and vertical neighbors plus center.
8-n : All neighbors at distance 1.
9-n : All neighbors at distance 1 plus center.
16-n : In all 8 directions neighbors within distance 2.
17-n : In all 8 directions neighbors within distance 2 plus center.
24-n : In all 8 directions neighbors within distance 3.
25-n : In all 8 directions neighbors within distance 3 plus center.

(m)16-n : All neighbors at distance 1 plus horizontal and vertical neigh-
bors at distance 3 plus diagonal neighbors at distance 8 (the
latter are called \missionaries").

(m)17-n : All neighbors at distance 1 plus center plus horizontal and
vertical neighbors at distance 3 plus diagonal neighbors at dis-
tance 8 (the latter are called \missionaries").

Figures 2 and 3 show the potential mating partners for neighborhoods 8-n and 16-n,
respectively. For reproduction, every processor selects one individual from its neigh-
borhood using one of the standard selection strategies (random, quality or rank based
roulette wheel, or the best). In addition, a mixed strategy allows an arbitrary choice of
the selection strategy at every processor. A detailed description of our investigation of
this variant of the neighborhood model is given in [28].

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 6

Figure 2: Mating partner selected out of 8 neighbors

Figure 3: Mating partner selected out of 16 neighbors

4 Test Problems

Our implementations of parallel genetic algorithms have been applied to the optimization
problems described below. We chose those problems, since for most of them benchmark
instances are available. So we were able to check the results of our implementation of the
genetic algorithm against the results computed by other approaches.

� The Traveling Salesperson Problem (TSP): This is probably one of the most thor-
oughly investigated optimization problems and therefore suggests itself as a bench-
mark problem for testing the optimization quality of genetic algorithms. As ge-
netic representation we used permutations of cities, i.e. a sequence of numbers.

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 7

Michalewicz [21] describes di�erent crossover operators especially designed for per-
mutation problems. We chose the edge recombination operator introduced by Whit-
ley, Starkweather, and Fuquay (cf. [30]) which is especially well suited for the trav-
eling salesperson problem.

From the database of benchmarks compiled by Reinelt [22] we selected problem
instances ranging from 51 to 439 cities. Most of our test were conducted by using
the 51 cities instance. This gave us the chance to run a large number of tests using
a wide range of parameters.

� The Resource Constrained Project Scheduling Problem (RCPSP): This is another
complex problem having many di�erent practical applications (see e.g. [8]): A
project consisting of n tasks with precedence constraints has to be executed on
k machines each with capacity constraints. Every task needs concurrently some
capacity and some time on every machine. The goal is to �nd a minimum time
schedule observing both types of constraints.

Instead of a direct genetic representation as a sequence of tasks we used a represen-
tation consisting of a set of parameters (real values between 0 and 1) for a heuristic
scheduling method. These parameters (one for each task to be scheduled) alter the
values generated by a priority rule (like \latest starting time" or \latest �nishing
time"). This new approach introduces problem speci�c knowledge (the heuristic
method) into the construction of the phenotype (the schedule). Since every string
of real values between 0 and 1 is a valid genotype, we can use the standard genetic
operators without having to deal with unfeasible solutions or with repair functions.
Furthermore, we get a di�erent �tness landscape which seems to be advantageous
for the evolutionary optimization process.

Recombination is done by standard two-point crossover and mutation changes values
within a prede�ned small neighborhood of the alleles. We selected problem instances
generated by the problem generator ProGen developed by Kolisch et al. [18] having
in between 10 and 60 tasks on 4 machines. The problem instances with 60 tasks
on 4 machines are the largest benchmark instances available. Optimal solutions are
known only for the smaller problem instances.

� The Uncapacitated Warehouse Location Problem: The problem consists of selecting
an optimal subset from a given list of warehouses such that the costs of building and
maintaining the warehouses and the transport costs between selected warehouses
and customers are minimized. We used a binary representation to indicate the
selected locations. The recombination operator was a standard two-point crossover.
From a set of benchmark problems given by Beasley [1] we chose the following
instances: 50 locations / 50 customers, 100 locations / 500 customers, and 200
locations / 200 customers.

� The Flow Shop Problem: This is another classical optimization problem consid-
ered in operations research: n jobs have to be scheduled on a �xed sequence of
m machines. The execution of job i on machine j takes time pij and the goal is
to minimize the maximal total execution time of any job. Potential solutions are
represented as sequences of job numbers. As for the TSP several recombination
operators were tested. In the presented results we use the order crossover (cf. [21]).

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 8

The mutation operator exchanges arbitrary genes of the chromosome. For our test
runs we chose a fairly complex problem instance of 50 jobs on 10 machines from a
set of benchmark problems generated by Taillard [25].

� The Capacitated Lot-Sizing Problem (CLSP): A number of J di�erent items is to
be manufactured on one machine (i.e. restricted by a single capacity constraint).
The planning horizon is segmented into a �nite number of T periods. In period
t 2 f1; :::; Tg the machine is available with Ct capacity units. Producing one unit
of item j requires pj > 0 capacity units. The demand for item j in period t,
djt � 0, has to be satis�ed without delay. Setting up the machine for item j causes
setup cost sj > 0. Setup costs occur for each lot produced in a period (basic

assumption). Holding cost hj � 0 is incurred for the inventory of item j at the
end of a period. The objective is to minimize the costs for setups and holding. As
for the Resource Constrained Project Scheduling Problem potential solutions are
genetically represented by a string of real valued parameters controlling a heuristic
method for generating a feasible production schedule. The heuristic is an extension
of an approach used by Haase [15]. For recombination we use standard two-point
crossover. Mutation slightly changes the genetic values. We employed the well
known 120 benchmark instances described in [4], where T as well as J range from
8 to 50.

5 Results

In this section we present some of our results of testing the di�erent variants of parallel
genetic algorithms on the problems described above. Speci�cally, so far, the island model
has been tested systematically on the TSP and the RCPSP and the neighborhood model
on the Warehouse Location Problem and the Flow Shop Problem.

Furthermore, di�erent variants of the island model have been applied to a large
number of problem instances of the resource-constrained project scheduling problem and
one variant of the neighborhood model has been applied to a large number of problem
instances of the CLSP.

5.1 Island Model

Figures 4 to 7 show some typical results of our investigation of the island model. In all of
the test runs corresponding to these �gures we used the diallel mating scheme. Fig. 4 and
5 refer to a TSP with 51 cities and Fig. 6 and 7 to an RCPSP with 60 tasks on 4 machines.
The values are averaged over 4 independent runs of the genetic algorithm. Best results
have been obtained whenever all 4 directions have been used for migration (see Fig. 4).
Furthermore, Fig. 5 shows that a small migration intervall had positive in
uence on the
optimization behaviour.

Both �gures indicate that it seems to be advantageous to use 64 or 256 subpopulations.
The use of only one large population always led to inferior results. The decrease in
optimization quality for the largest numbers of islands is due to the fact that for 256 and
1024 subpopulations the genetic algorithm was stopped after 600 generations, whereas in
the other cases the algorithm terminated before due to convergence.

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 9

2

3

4

5

6

7

9

1

8 N

N-E

N-E-S-W

0

1 4 16 64 256 1024

%
 a

bo
ve

 o
pt

im
al

 s
ol

ut
io

n

populations

Figure 4: In
uence of the direction of migration on optimization quality (for a TSP with
51 cities)

14

12

0

2

4

6

8

10

15

30

50

%
 a

bo
ve

 o
pt

im
al

 s
ol

ut
io

n

1024256641641

populations

Figure 5: In
uence of the migration intervall on optimization quality (for a TSP with 51
cities)

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 10

80,5

78,5

78,0

77,5

79,0

79,5

80,0 q. r.

best

10242566416

populations

1 4

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Figure 6: Comparison of selection strategies: Best versus quality based roulette wheel
(for an RCPSP with 60 tasks on 4 machines)

30

40

50

10

20

60

 0

best

q. r.

1 4 16 64 256 1024

ge

ne
ra

tio
ns

populations

Figure 7: In
uence of selection strategies on the number of generations (for an RCPSP
with 60 tasks on 4 machines)

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 11

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

of generations

%
 a

bo
ve

 o
pt

im
al

 s
ol

ut
io

n

1 Island

4 Islands

16 Islands

64 Islands

256
Islands
1024
Islands

Figure 8: Evolution of �tness of the best individuals for variants of the island model (for
a TSP with 51 cities)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

11,00

12,00

13,00

14,00

15,00

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

of generations

%
 a

bo
ve

 o
pt

im
al

 s
ol

ut
io

n

1 Island

4 Islands

16 Islands

64 Islands

256
Islands
1024
Islands

Figure 9: Evolution of average �tness for variants of the island model (for a TSP with 51
cities)

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 12

The comparison of the two selection strategies (Fig. 6) showed a clear advantage of
the elitist (best) over the quality based roulette wheel selection. Again, the division of
the population into 64 or 256 islands was favorable. However, as can be seen in Fig. 7,
the division into many small subpopulations leads to a much larger number of generations
before good results are obtained.

The in
uence of the number of islands on the optimization behaviour is illustrated
in more detail in Fig. 8 and 9, referring again to the TSP with 51 cities, but this time
using the classical mating scheme. Obviously, the rate of convergence decreases with the
number of islands. The use of a medium number of islands seems to combine a rapid
detection of relatively good solutions with a su�ciently broad exploration of the search
space leading to high quality �nal solutions. For 1024 islands the rate of convergence
is much slower than in all other cases. A comparison of the two �gures shows for this
case a large di�erence between the best and the average �tness in the population. This
indicates a high remaining potential for further quality improvement. The �gures also
show very clearly the e�ect of migration: Every 15 generations there is a signi�cant quality
improvement.

Overall, one may conclude that the island model is well suited to observe the role of
diversi�cation and intensi�cation in the evolutionary optimization process: For instance,
each island might be seen as an intensi�cation in a particular region and, hence, a great
number of islands provides some diversi�cation in the global process. That's probably why
64 and 256 islands tend to give the best results; here, intensi�cation and diversi�cation
seem to be well balanced. For 1024 islands the population in each island might be too
small. Furthermore, the elitist selection is a form of intensi�cation while the roulette
wheel selection allows more diversity. So, since the diversi�cation is already provided by
a large number of islands, the roulette wheel selection looses its main advantage and the
elitist strategy performs better.

Since the main purpose of our experiments was a comparative evaluation of di�erent
parallel variants of genetic algorithms, we did not put too much e�ort in optimizing our
algorithms for the particular test problems. Nevertheless, we got remarkably good results.
In particular, for the 480 tested instances of the RCPSP with 60 tasks on 4 machines our
best solution matched the previously best known result in 342 cases, and for 136 instances
the previous upper bound was even improved.

5.2 Neighborhood Model

For the neighborhood model we tested the in
uence of the di�erent neighborhoods and of
the strategy for selecting the partner for reproduction on the optimization performance
and on the number of generations. For the Warehouse Location Problem all test runs
produced the same optimal solution. Therefore, in Fig. 11 we only give the number of
generations needed to �nd this solution whereas for the Flow Shop Problem, the best
objective function value is given (cf. Fig. 10).

Obviously, at least for our variants of genetic algorithms, the Flow Shop Problem
turned out to be much harder than the Warehouse Location Problem. For the Flow Shop
Problem the genetic algorithm improved slightly on the upper bound given by Taillard.
For this complex problem the neighborhood had only moderate in
uence on the quality
of the best solution, whereas the elitist selection strategy (called "best" in the �gure) was
clearly the best, especially for small neighborhoods.

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 13

3100

3080

3060

3040

3020

3120

3240

3260

3280 random

best

quality roulette

rank roulette

mixed

4-n 8-n 16-n

neighborhood

24-n (m)16-n

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Figure 10: In
uence of selection strategies and neighborhoods on optimization perfor-
mance (for the Flow Shop Problem with 50 jobs on 10 machines)

random

best

quality roulette

rank roulette

mixed

40

50

60

70

80

90

100

110

120

130

4-n 8-n 16-n 24-n (m)16-n

neighborhood

ge

ne
ra

tio
ns

Figure 11: In
uence of selection strategies and neighborhoods on the number of genera-
tions (for the Warehouse Location Problem with 200 locations and 200 customers)

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 14

For the Warehouse Location Problem, the elitist strategy was again the winner, but
here, the larger neighborhoods had a clear advantage. Especially the neighborhoods with
distant missionaries performed best under all selection strategies.

To further investigate the optimization potential of the neighborhood model on hard
optimization problems we used it on the Capacitated Lot-Sizing Problem. Our empirical
study [16] shows that the results obtained by the parallel genetic algorithm has the same
solution quality as the state of the art algorithm from Kirca and K�okten [17], which
outperforms the heuristics of Dixon and Silver [7] and Thizy and Van Wassenhove [29].
Some of these results are shown in Table 1. Z� denotes the best result obtained by
the three algorithms. The results indicate that our parallel genetic algorithm is superior
for problems with 50 items, 8 periods and slightly better for problems with 8 items, 50
periods. For problems with 20 items, 20 periods Kirca and K�okten get better results. But
on the average, our results in this category are only 1.44% behind.

Table 2 shows the number of problem instances for which each algorithm found the
best result of all three algorithms.

As shown in [3], our massively parallel genetic algorithm is easily adapted to a slightly
di�erent CLSP with linked lot-sizes of adjacent periods where it outperformed all other
known optimization methods by 5 to 20 percent.

Table 1: Computational results for the CLSP
(% deviation from the best solution Z� found by DS, KK or PGA,

averaged over 40 instances per problem type)
Dixon-Silver Kirca-K�okten parallel GA

50 items, 8 periods 1.29 0.65 0.17
20 items, 20 periods 7.55 0.06 1.50
8 items, 50 periods 9.57 0.99 0.76
total average 6.14 0.57 0.81

Table 2: Number of best results for the CLSP
Dixon-Silver Kirca-K�okten parallel GA

50 items, 8 periods 4 12 24
20 items, 20 periods 0 37 3
8 items, 50 periods 0 19 21
total number 4 68 48

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 15

6 Conclusion

Our comparative evaluation of the performance of several �ne-grained parallel genetic
algorithms shows that they have clear advantages over the sequential version: In addi-
tion to achieving a large speedup by parallel execution, the �ne-grained parallel genetic
algorithms also show better optimization performance due to the larger genetic diversity
obtained by dividing the population into a number of subpopulations.

The results presented in this paper do not allow a comparative evaluation of the
island model and the neighborhood model. Nevertheless, the results of test runs of the
island model with 64 populations on the Flow Shop Problem with 50 jobs on 10 machines
indicate that the island model converges much earlier than the neighborhood model but
it does not produce as good solutions. This is consistent with our statements on the
optimization potential of the variant having 1024 islands which is relatively close to the
neighborhood model.

In order to get more general statements on the quality of parallel genetic algorithms
one should apply the di�erent parallel models to other problem sizes and other types of
problems. It is especially interesting to further compare the performance the �ne-grained
implementations of the island and the neighborhood model.

We believe that the good optimization performance of our genetic algorithms for the
RCPSP and the CLSP is partially due to the genetic representation of potential solutions
by a set of parameters controlling a heuristic method to produce feasible solutions. In
this way the search process seems to be directed towards more promising regions of the
search space. This e�ect will be subject of further studies.

Although all our experiments have been run on the MasPar MP1, our conclusions are
not restricted to this type of architecture. In particular, the island model could as well be
implemented on a coarse-grained parallel machine, but with the disadvantage of a much
smaller speedup. The types of neighborhood we used are clearly in
uenced by the X-net
interconnection structure of the MasPar MP1, but they could be implemented as well on
other types of architectures. Our results clearly show that a large number of islands is
advantageous as long as the size of the subpopulations is not too small. Therefore, in a
coarse-grained implementation with only a few processors the number of islands should
be higher than the number of processors, i.e. several islands should be simulated on one
processor.

It might be advantageous to design new variants of the island model by either dividing
the population into islands of di�erent sizes or by adjusting the number and size of the
islands dynamically in order to combine the advantages of high genetic diversity and rapid
quality improvement.

Acknowledgements

We gratefully acknowledge valuable remarks and suggestions of anonymous referees.

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 16

References

[1] J.E. Beasley, An algorithm for solving large capacitated warehouse location problems, Eu-
ropean Journal of Operational Research, 33 (1988) 314{325.

[2] J. Branke, H. C. Andersen, and H. Schmeck, Global selection methods for massively parallel

computers, in Proceedings of the AISB Workshop on Evolutionary Computing, T. C. Fogarty
ed., volume 1143 of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp.175{188.

[3] J. Branke, U. Kohlmorgen, H. Schmeck, and H. Veith, Steuerung einer Heuristik zur

Losgr�o�enplanung unter Kapazit�atsbeschr�ankungen mit Hilfe eines parallelen genetis-
chen Algorithmus, in Proceedings Workshop Evolution�are Algorithmen in Management-

Anwendungen, J. Kuhl, V. Nissen eds., G�ottingen, 1995, pp.21{31.

[4] D. Cattrysse, J. Maes, and L.N. van Wassenhove, Set partitioning and column generation
heuristics for capacitated lotsizing, European Journal of Operational Research, 46 (1990)

38{47.

[5] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards, Punctuated equilibria: a
parallel genetic algorithm, in Proceedings of the Second International Conference on Genetic

Algorithms, J. J. Grefenstette ed., Lawrence Erlbaum Associates, 1987, pp.148{154.

[6] R. J. Collins and D. R. Je�erson, Selection in massively parallel genetic algorithms, in
Proceedings of the Fourth International Conference on Genetic Algorithms, R. K. Belew

and L. B. Booker eds., Morgan Kaufmann, San Diego CA, 1991, pp.244{248.

[7] P.S. Dixon and E.A. Silver, A heuristic solution procedure for multi-item single-level, limited
capacity, lot-sizing problem, Journal of Operations Management, (1981) 23{39.

[8] W. Domschke and A. Drexl, Einf�uhrung in Operations Research, Springer-Verlag, Berlin,

Heidelberg, 1991.
[9] D. Duvivier and P. Preux and E. G. Talbi, Parallel genetic algorithms for optimization

and application to NP-complete problem solving in Int. Workshop on Combinatorics and

Computer Science, Brest, France, 1995
[10] D. Eichberg, Untersuchung des Insel-Modells Genetischer Algorithmen auf einem massiv

parallelen Rechner, Diplomarbeit, Institut AIFB, Universit�at Karlsruhe, 1996.

[11] D. Eichberg, U. Kohlmorgen, and H. Schmeck, Feink�ornig parallele Varianten des Insel-
Modells Genetischer Algorithmen, in Mitteilungen - Gesellschaft f�ur Informatik e.V.,

Parallel-Algorithmen und Rechnerstrukturen, PARS-Workshop, Stuttgart, Oct. 9-11, 1995,

pp.74{80.
[12] T. Fogarty, Implementing the genetic algorithm on transputer based parallel processing

systems, in H.P. Schwefel and R. M�anner eds., Parallel Problem Solving from Nature -

PPSN I, volume 496 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1991,
pp. 145{149.

[13] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, Reading MA, 1989.

[14] M. Gorges-Schleuter, Explicit parallelism of genetic algorithms through population struc-

tures, in Parallel Problem Solving from Nature Schwefel and M�anner eds., Springer-Verlag,

Berlin, 1991, pp.150{159.
[15] K. Haase, Capacitated lot-sizing with linked production quantities of adjacent peroids,

Technical Report No. 334, Institut f�ur Betriebswirtschaftslehre, Universit�at Kiel, 1994.

[16] K. Haase and U. Kohlmorgen, Parallel genetic algorithm for the capacitated lot-sizing prob-
lem, in Operations Research Proceedings 1995, P. Kleinschmidt et al. eds., Springer-Verlag,

Berlin, 1996, pp.370{375.

[17] �O. Kirca and M. K�okten, A new heuristic approach for the mult-item dynamic lot sizing
problem, European Journal of Operational Research, 75 (1994) 332{341.

[18] R. Kolisch, A. Sprecher, and A. Drexl, Characterization and generation of a general class

of ressource constrained project scheduling problems, Management Science, Vol. 41, No. 11

U. Kohlmorgen, H. Schmeck, and K. Haase / Parallel Genetic Algorithms 17

(1995).

[19] B. Kr�oger, P. Schwenderling, and O. Vornberger, Parallel genetic packing on transputers, in

Parallel Genetic Algorithms: Theory & Applications, J. Stender ed., IOS Press, Amsterdam,
1993, pp.151{185.

[20] B. Manderick and P. Spiessens, Fine-grained parallel genetic algorithms, in Proceedings

of the Third International Conference on Genetic Algorithms, J. D. Scha�er ed., Morgan
Kaufmann, San Mateo CA, 1989, pp.428{433.

[21] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-

Verlag, Berlin, 1996.
[22] G. Reinelt, TSPLIB - a traveling salesman problem library, ORSA Journal on Computing,

Vol. 3, No. 4(1991) 376{384.

[23] M. Schwehm, Implementation of genetic algorithms on various interconnection networks,
in Proceedings of the International Conference PACTA, M. Valero et al. eds., IOS

Press/CIMNE, 1992, pp.195{203.

[24] M. Schwehm, Th. Oparterny, and K.-H. Kirsch, Plazierung von Makrozellen durch
genetische Algorithmen auf verteilten und massiv parallelen Rechnern, in Mitteilungen -

Gesellschaft f�ur Informatik e.V., Parallel-Algorithmen und Rechnerstrukturen, Workshop

1994, 1995, pp.69{74.
[25] E. Taillard, Benchmarks for the basic scheduling problems, European Journal of Operational

Research, 64 (1993) 278{285.

[26] E. G. Talbi and P. Bessire and J. M. Ahuactzin and E. Mazer, Parallel cooperating genetic
algorithms in Practical Handbook of Genetic Algorithms: New Frontiers L. Chambers ed.,

CRC Press, 1995, pp.93-109.

[27] R. Tanese, Distributed genetic algorithms, in Proceedings of the Third International Confer-
ence on Genetic Algorithms, J. D. Scha�er ed., Morgan Kaufmann, San Mateo CA, (1989),

pp.434{439.

[28] U. Tempel, Vergleich lokaler Selektionsstratgien f�ur feink�ornig parallele genetische Algo-

rithmen zur L�osung von schweren Optimierungsproblemen, Diplomarbeit, Institut AIFB,

Universit�at Karlsruhe, 1995.

[29] J.M. Thizy and L.N. Van Wassenhove, Lagrangean relaxation for the multi-item capacitated
lot-sizing problem: a heuristic implementation, IIE Transactions, 17 (1985) 308{313.

[30] L.D. Whitley and T. Starkweather and D'Ann Fuquay, Scheduling problems and traveling

salesman: the genetic edge recombination, in Proceedings of the Third International Con-

ference on Genetic Algorithms, J.D. Scha�er ed., Morgan Kaufmann, San Mateo CA, 1989,

pp.133{140.

[31] L. D. Whitley and T. Starkweather, Genitor II: a distributed genetic algorithm, Expt.
Theor. Artif. Intell., 2 (1990) 189{214.

