
INCOME/WF - A Petri Net Based Approach to Workflow Management

A. Oberweis*, R. Schätzle**, W. Stucky**, W. Weitz**, G. Zimmermann*

*Institut für Wirtschaftsinformatik
J.W. Goethe-Universität

D-60054 Frankfurt am Main
Germany

{oberweis|gzimmermann}@wiwi.uni-frankfurt.de

**Institut AIFB 1

Universität Karlsruhe (TH)
D-76128 Karlsruhe

Germany
{schaetzle|stucky|weitz}@aifb.uni-karlsruhe.de

June 1996

Abstract

Flexibility of process support is a key requirement for current and future business applica-
tions. A technology which is designed to flexibly support various kinds of processes are
workflow management systems. In this paper we present INCOME/WF - a prototype of a
workflow management system based on high-level Petri nets as workflow modelling and exe-
cution language. Important requirements for INCOME/WF are easily adjustable workflow
schemes and support for unstructured or weakly structured activities. Both requirements are
not yet sufficiently fulfilled by existing WFMS.

1 Introduction

For almost thirty years database supported information systems have been used to implement
numerous business application systems. Traditional database supported application systems in
industry, business or public administration aim at the support of repetitive, non-creative ac-
tivities. Recently, there is an increasing demand for systems which support unstructured or
weakly structured creative "human-oriented" processes as well. These processes often require
cooperation between different agents, and tools and methods to support them must be highly
flexible as they should encourage human creativity rather than oppressing it by strict limita-
tions. Business processes are embedded in a frequently changing environment which reacts
sensitively to changing market conditions, the availability of new technologies, new laws or
new management strategies. Therefore flexibility of processes is a key requirement for current
and future business applications. A technology which is designed to support various kinds of
processes are workflow management systems (WFMS) [ElN93, CoE95, GHS94, MWF92,
She96, VoB96].

In this paper, we propose concepts for a flexible WFMS - INCOME/WF - which is based on
high-level Petri nets. INCOME/WF1 reuses many components of INCOME/STAR2, which
was implemented at the AIFB3 Institute between 1991 and 1995. INCOME/STAR is a co-

1 INCOME/WorkFlow
2 STAR stands for "distribution" and "cooperation".
3 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (Institute for Applied Computer Sci-
ence and Formal Description Methods)

2

operative environment for the development and maintenance of large, distributed information
systems. The INCOME/WF- and the INCOME/STAR-project were partly supported by the
Deutsche Forschungsgemeinschaft (DFG) in its program "Distributed Information Systems in
Business". Both projects had the same general objective: support for distributed, cooperative
processes. The first project - INCOME/STAR - took a more "traditional" approach based on
conventional information system engineering methods and database technology, and mainly
focused on software development. Although the INCOME/STAR project lead to valuable re-
sults (see below), it also confirmed what has already been stated above: Traditional, data-
centered information systems have some deficiencies in supporting non-routine tasks which
require a high amount of flexibility, such as the cooperative and creative subtasks of, e.g.
software development. In a software development environment based on classic information
systems, however, processes have to follow a rather strict scheme which is more or less "hard-
wired" in the application systems built around a database.

Obviously, this problem is not limited to software development processes: Most business
processes must also be easily adaptable to changing market factors, new technologies or stra-
tegic decisions. What is more, nearly every process in industry, business or public administra-
tion includes at least some creative and/or cooperative subtasks which should be easily adjust-
able to individual work styles and team dynamics. Hence, the follow-up project,
INCOME/WF, deals with computer support for all kinds of distributed and cooperative pro-
cesses, and uses modern information and communication technologies like WFMS instead of
classic, data-centered information systems.

This paper is structured as follows: In Chapter 2, we briefly describe some basic concepts re-
garding WFMS. Chapter 3 summarizes the main results of the INCOME/STAR project and
explains their impact on INCOME/WF. The central part of this paper, chapter 4, is devoted to
INCOME/WF which is our concept of an advanced, Petri net based WFMS. Special emphasis
is put on the subjects workflow modeling, architecture, support of unstructured or weakly
structured workflows, and distributed execution of cooperative activities. Chapter 5 briefly
surveys some related approaches, and the last chapter mentions some open problems and
comments on possible future extensions.

2 Workflow management systems

2.1 Aims of WFMS

A workflow is a collection of activities organized to accomplish business processes like office
or administration processes, shop-floor processes etc. [GHS94]. A WFMS "defines, manages
and executes workflow processes through the execution of software whose order of execution
is driven by a computer representation of the workflow process logic".4 The formal represen-
tation of a workflow is called workflow scheme. It describes the components of business proc-
esses: the activities to be performed, the corresponding data to be transformed and sequence
relationships between single activities.

General aims of WFMS are:

• increase in productivity and reduction of costs,

4 Glossary of the Workflow Management Coalition, available in the World Wide Web under URL
http://www.aiai.ed.ac.uk/WfMC/DOCS/glossary.html

3

• increase in product quality and reduction of errors,

• improvement of customer satisfaction,

• higher flexibility concerning organizational changes.

Several information processing technologies have influenced the development of WFMS such
as database management systems (active database management systems [BeM91, Cha89,
Day88], object oriented database management systems [Heu92]) and groupware systems
[Col92, EGR91].

2.2 Components of WFMS

As WFMS extend the capabilities of DBMS they have to provide further tools for the devel-
opment of workflow schemes and the execution of workflows. The following list contains
some components which are essential or at least desirable for a WFMS and briefly explains
their purpose.

• Similar to DBMS, WFMS have to include a dictionary, but in a WFMS it does not only
store information about the data scheme to be represented, like e.g. objects and relation-
ships. Even more important is the information about the activities to be executed and the
corresponding transformation of data.

• Editors for the modeling of workflow schemes and data schemes should be available.
Every object to be transformed during the execution of a workflow must be modeled in the
data scheme. Therefore controlled data exchange between different editors is necessary.

• Simulators can help to analyze, validate and improve workflows. Questions can be investi-
gated like, e.g.
− are the activities to be performed correctly specified?
− can those activities be optimized?
− are there any bottlenecks?

 As the simulator must execute the activities specified in the workflow scheme, it should
have access to both the workflow scheme and the data scheme. Additionally, realistic test
data should be available as a basis for system validation by simulation.

• During the execution of a workflow, the activities are controlled and driven by a so-called
workflow engine. This component controls resources, triggers the activities which have to
be performed next and informs persons involved in those activities.

• Different groups of persons involved in a workflow have to perform jobs, e.g. they have to
produce or change documents. For this purpose application programs like text-processing
systems, spreadsheet programs or document management systems have to be integrated.
The WFMS must trigger those application programs and control the results. A monitoring
component collects information about the current state of work, former and following sys-
tem states and the sequence of activities.

• As already mentioned WFMS must support teamwork, because persons working with the
system - possibly at geographically different locations - may have to interact during the
execution of a workflow. For this reason, a WFMS should include a groupware compo-
nent.

4

• Because users of WFMS are not necessarily computer professionals the system must pro-
vide various user interfaces for different types of users and applications. In many cases, hy-
permedia is an adequate interface for non-professional users.

3 INCOME/STAR - cooperative development and maintenance of dis-
tributed information systems

INCOME/STAR is an experimental, dictionary-based, cooperative software development en-
vironment which was designed and implemented at the AIFB Institute in Karlsruhe between
1991 and 1995 [OSS94]. Special emphasis was put on distributed, heterogeneous target sys-
tems like modern information system networks. The main components of the INCOME/STAR
prototype are:

z graphical editors for semantic object models, for high-level Petri nets and for other design
documents (such as, e.g., function hierarchies and object glossaries),

z simulation and prototyping facilities based on high-level Petri nets,

z database and application program generators,

z a dictionary to store development documents and to maintain consistency of documents,

z facilities for teamwork support and

z a component for software development process modeling and enactment.

In the following, a brief overview of the most important project results is given.

3.1 New methods for data and behavior modeling

Methods for conceptual modeling of information systems supported by INCOME/STAR
combine high-level Petri nets (for behavior modeling) and semantic data models (for data
modeling).

Petri nets are a graphical language for the formal specification of system behavior. A Petri net
is a bipartite graph, consisting of two types of nodes, places and transitions which are con-
nected by directed arcs. The usual graphical Petri net notation uses circles for places and rec-
tangles for transitions (see Figure 1 for examples). Generally, a place represents an object
storage, and a transition symbolizes an operation which removes objects (tokens) from its in-
put places and inserts objects in the output places. An assignment of tokens to a place is de-
noted as marking of the place. The marking of all places at one point of time defines a global
system state.

High-level Petri nets [BRR87] support an integrated description of object related and behav-
ioral system aspects, because tokens in high-level Petri nets are structured objects with attrib-
utes to which values are assigned. Predicate/transitions nets (Pr/T nets) [Gen87], which are
special high-level Petri nets, are closely related to relational databases: Places in a Pr/T net
represent relation schemes in first normal form which may be marked with relations of the
respective type. However, this type of net is too restrictive for adequately modeling the behav-
ior of complex structured objects (i.e. objects consisting of other objects which may them-
selves be complex structured objects). Such objects cannot be assigned to a single place in a
Pr/T net unless they are transformed into "flat" relations in first normal form. This transfor-

5

mation - in terms of the relational data model usually referred to as normalization - does not
only produce a less "natural" representation of objects, it also restricts the expressiveness of
the behavior scheme: concurrent access to different set-valued attributes of a complex struc-
tured object - which is a particular important behavior feature of cooperative information sys-
tems - cannot be modeled directly.

A

B

A

B

B

C

B

C

BA

A

A

C

C

(a)

(b) (c)

(d) (e)

Sequence:

Conflict:

Concurrency:

(a) activity A must be completed before activity B can start

(b) C can start after either A or B have completed
(c) either B or C can start after completion of A

(d) A and B can be executed independently (possibly in parallel), C cannot
start until both of them have occurred

(e) once A has occurred, B and C can be executed independently (maybe
parallel)

Figure 1: Possible relationships between activities in Petri net notation

One of INCOME/STAR’s most important results on the method side is the conception of
nested relation/transition nets (NR/T nets) [Obe96a, ObS96], a novel type of high-level Petri
nets for integrated modeling of concurrent processes and related complex structured objects in
distributed applications. To each place in an NR/T net, a complex structured object type (a so-
called nested relation) is assigned. A transition in an NR/T net represents a class of operations
on relations in the transition’s input- and output-places.

For the places in the nets, the local object structures are formally specified in a semantic data
model. Since the object structures are to be mapped on nested relations, a data model which
supports complex object structures is desirable. In INCOME/STAR, a model similar to the
semantic hierarchy model (SHM) [BrR84] is used. Figure 2 shows the graphical representa-
tion of the basic data structuring concepts of the SHM: aggregation, specialization and
grouping.

Aggregation GroupingSpecialization

employee

name department salary... ... employee

staffdepartment

production sales dept. marketing

Figure 2: Structuring concepts in SHM

6

Although SHM and its structuring concepts fit quite well to nested relations and NR/T nets,
the Entity Relationship model (ER model) is supported by INCOME/STAR as an additional
alternative for data modeling, because of its widespread use and general acceptance. However,
some problems arise when ER modeling is applied to the design of really large databases.
There is, e.g., neither a way to obtain a general view nor to perceive the global context of a
detailed data scheme with hundreds of entity and relationship types. Several approaches use
ER model clustering to overcome these problems, e.g. [FeM86, RaS92, TWB89]. In extension
of these approaches, INCOME/STAR offers three kinds of clustering:

Entity clustering creates an overview diagram from a detailed ER diagram by grouping related
sections of the detailed diagram together into so-called entity clusters. These clusters represent
(complex) entity types in the higher level ER diagram. The detailed relationship types between
entity types within a cluster are omitted in the higher level ER diagram. The others - so-called
outside-relationship types - are transformed to relationship types between the clusters which
contain the original detailed entity types.

Simple relationship clustering was introduced to refine relationship types by several seman-
tically similar ones. In this sense, simple relationship clustering is used top-down to formulate
integrity constraints more precisely. It may also be applied bottom-up to cluster semantically
similar relationship types into one single type.

Complex relationship clustering is proposed to refine relationship types by whole ER dia-
grams. In contrast to simple relationship clustering not only the relationship type is divided
into several similar relationship types, but additional entity and relationship types may be in-
troduced as well.

To combine the ER model and NR/T nets, a method was developed which maps hierarchically
structured ER views onto nested relations. The ER view is derived from an ordinary ER
scheme using SHM as an intermediate representation. A detailed description of
INCOME/STAR’s new concepts related to data modeling can be found in [Jae96].

3.2 Simulation concepts

In INCOME/STAR, simulation is an integral part of the system development process: simula-
tors are connected to the central design dictionary, where the formal behavior specification is
stored as a set of high-level Petri nets. Due to the formal semantics of the underlying net
model, this specification is directly executable by a net interpreter and it may therefore be
used for simulation. Hence, specifications can be verified at an early development stage and
may be enhanced step by step in an evolutionary development process. INCOME/STAR pro-
vides an open simulation environment in a sense that application specific visualization mod-
ules may be integrated which can provide a problem oriented display of the current system
state.

When dealing with large systems, multi-user support is required, because several developers
are involved in the design process of the corresponding Petri net model. This includes
• access control for Petri net models to avoid inconsistencies when multiple developers try to

manipulate a certain net at the same time,
• simultaneous visualization of a simulation run on an arbitrary number of workstations,
• a possibility for developers to influence a simulation run decentralized from their own

workstation.

7

Simulation may either be manually controlled by users or driven automatically. One problem
with automatically generated simulation runs is that they may consist of thousands of mark-
ings. Hence, it is not obvious how to check a given simulation run for certain behavior pat-
terns which are of interest to a system designer. For this reason a novel graphical query lan-
guage for simulation databases GTL (Graphical Temporal Language) [Sän96] was developed
which combines capabilities of temporal and graphical database languages.

3.3 Process model support and cooperative system design

Software development with INCOME/STAR is driven by a software development process
model called ProMISE (Process Model for Information System Evolution) [SOS94]. Pro-
MISE describes the methodology supported by INCOME/STAR as well as organizational and
cooperative aspects of the development process. Its main characteristics are evolutionary sys-
tem development, incremental refinement of design documents, coupling to tools for specific
methods and support of cooperative development.

Process model enactment offers active assistance to developers for tasks like monitoring de-
velopment activities, document and workflow management, control of project responsibilities
etc. The process model enactment system of INCOME/STAR consists of three parts:

• The first one, the model dictionary, contains executable parts of a sample development
process based on ProMISE ("process model fragments") specified in a Petri net based lan-
guage named PromiNets. Prior to the execution of a fragment, the corresponding net must
be instantiated with a project-specific marking, i.e. roles and team members, deliverables
and deadlines etc. are associated with each other. This is done using the second component,

• the process editor, which also allows an adaptation of a net to project specific needs
("tailoring"). Finally, the tailored and instantiated net model may be enacted by

• the process engine, which uses the INCOME/STAR Petri net interpreter.

Process model fragments which are independent from each other may be processed in parallel,
as the development process of large software systems is usually handled project teams. An
efficient coordination of the development activities is an important prerequisite for a success-
ful software engineering project. For this reason, the INCOME/ STAR environment contains a
role-based groupware component called RoCoMan (Role Collaboration Manager) [Wen95].

3.4 Lessons learnt - from INCOME/STAR to INCOME/WF

A common problem with existing software development environments is the absence of sup-
port for (partly) unstructured, non-standard activities. Most of these activities are strongly
human-oriented and include creative and cooperative tasks. A considerable amount of dynam-
ics is inherent in such processes as they must be adaptable to individual human work styles
and changing environmental conditions quite frequently. Hence, systems which support such
tasks should provide enough flexibility.

The insight that software development is just one application area where flexible coordination
and modeling of workflows plays a key role, lead us to the decision that workflow manage-
ment could be an interesting research area by itself.

Moreover, WFMS and software development environments with active process support (like
INCOME/STAR) have quite similar tasks [Fer93] as software development may be viewed as

8

a special kind of workflow. As a matter of fact, INCOME/WF can directly take up some of
INCOME/STAR’s results: First, Petri nets are a good instrument for integrated data and be-
havior modeling which is an important aspect of WFMS. Especially NR/T nets with their de-
scription facilities for distributed processes on complex structured objects may be a good basis
for a workflow description language. Secondly, the existing Petri net interpreter can become
the core of a workflow engine. Finally, some parts of INCOME/STAR’s teamwork support
system may be reused.

Of course, even with a broad base of knowledge and (partly) reusable prototypes to fall back
on, our goal of building a prototype WFMS for flexible management of distributed, coopera-
tive processes required some innovative concepts and the development of new methods and
tools. These new aspects are summarized in the next chapter where we present INCOME/WF,
our "vision" of an advanced WFMS.

4 INCOME/WF - workflow management based on Petri nets

In this chapter we survey some important aspects of the INCOME/WF prototype which is cur-
rently designed and implemented in a cooperation project between the AIFB Institute
(Universität Karlsruhe) and the IWI5 Institute (Universität Frankfurt/Main).

4.1 Workflow modeling

The INCOME/WF workflow modeling language [Obe96b] is based on high-level Petri nets.
For several reasons we think that Petri nets are a particularly well-suited notation for work-
flow schemes:

• Integration of data and behavior aspects,

• Support for concurrent, cooperative processes,

• Different degrees of formality,

• Availability of analysis techniques,

• Flexibility.

Petri net schemes are directly executable by an interpreter (which is the workflow engine of
the Petri net based WFMS), but they are not "hard-wired" application programs. This guaran-
tees a reasonable degree of flexibility, because of the "late binding" between activities and
objects. An adjustment of a workflow process is possible at run-time. As Petri net schemes
can be changed easily, they are an ideal language for simulation and analysis of workflows in
order to reorganize and improve workflows. Starting with reference processes for a certain
business area, workflows can be tailored to the users' individual needs.

The advantages of Petri net based workflow modeling has been widely recognized. [Aal96]
suggests a Petri net based conceptual standard for modeling and analysis of workflows and
expects an impact on workflow modeling which is comparable to the impact the ER model or
the relational data model had on DBMS.

5 Institut für Wirtschaftsinformatik (Institute for Management Information Systems)

9

4.2 The architecture of INCOME/WF

Figure 3 surveys the architecture of INCOME/WF. The central component is the WFMS dic-
tionary, a database which contains workflow data, i.e.
• data schemes describing the types of data items to be processed by the workflow system,
• workflow schemes, containing detailed descriptions of the workflows to be supported and
• information about currently active workflows (which are - possibly multiple - instances of

their corresponding data/workflow schemes).

The dictionary also provides access to
• simulation data generated by the Petri net simulator,
• user data which may partly be organized in a database ("structured data") and partly consist

of a more or less „unstructured“ collection of data files produced by various application
programs,

• system data, such as passwords, user names, access control lists and so on.

workflow engine

de
ve

lo
pm

en
t t

oo
ls

(e
di

to
rs

, s
im

ul
at

or
...

)

w
or

kf
lo

w
 d

e
ve

lo
pe

rs

end-users administrator

w
or

kf
lo

w

simulation
data

development
data

administration
tools

user application context
(groupware, hypermedia,data management system...)

D IC T IO N A R Y

structured
data

workflow
data

W F M S

� �

�

user documents
+ system data

Figure 3: Architecture of INCOME/WF

The dictionary may be centralized or distributed, depending on the structure of the origaniza-
tion using the WFMS, technical capabilities (hardware and software) and the overall size of
the WFMS. Distributed database management systems (DDBMS) provide a unified view of
the complete data available in the system and thus enable workflow designers to access this
information quickly and conveniently while at the same time the DDBMS may be running on
many different nodes (computers). Parts of the dictionary may be stored locally (possibly rep-
licated). Replication enhances data security and availability. On the other hand, additional
administration effort is required for keeping consistency among the replicated data.

A user of the WFMS may play different roles which in turn determine his access privileges,
user interface and many other attributes. The four major roles are:

• workflow system administrator,

10

• workflow developer,
• workflow administrator,
• end-user.

Depending on a user's role, the WFMS offers different applications and tools.

• Role: Workflow system administrator

The role equipped with the most privileges is the one of the workflow system administrator
since he has full access to all data in the system. His activities combine those of a system ad-
ministrator on a traditional multi-user computer system, such as creating new user accounts
and the installation / maintenance of application programs, and those of a database administra-
tor, e.g. granting and revoking access privileges and optimizing the overall system perform-
ance. All these activities are supported by tools quite similar to the system administration pro-
grams for traditional multi-user operating systems and databases.

• Role: Workflow developer

Workflow developers model and implement new workflow schemes using Petri nets. Special
graphical editors are available to "draw" the model of the workflow, rather than to describe it
in some sort of textual workflow programming language. Since models of complex workflows
tend to become very large there is a need to allow multiple developers concurrent access to the
same model. Hence the WFMS must enforce a locking scheme to prevent conflicting modifi-
cations by different developers.

Another important tool for developers is the workflow simulator which is used to validate a
preliminary workflow scheme and to help choosing the best from a set of design alternatives.
For later use of the simulation results, the sequence of system states reached during a simula-
tion run may be recorded in a simulation database which can later be accessed by analysis
tools. Simulator and editor are directly connected by a network link such that a developer who
has just finished his work on a workflow scheme can send it directly from the editor to the
simulator and can even watch an animation of the executing simulation in his editor window.
When the workflow scheme is sufficiently tested and ready for "real" use, it is loaded into the
workflow database where it can be accessed by the end-users.

• Role: Workflow administrator

While a workflow system administrator is a person with comprehensive technical knowledge
in the first place, a workflow administrator must have a good understanding of the problem
domain of the workflows he has to manage. He supervises the executing instances of "his"
workflows and supports end-users. For this purpose he uses graphical monitoring tools which
visualize relevant information such as estimated completion times for certain activities, sys-
tem load, number of documents waiting to be processed, and so on. If there are problems
during the processing of a workflow, the workflow administrator may need to do some excep-
tion handling by manual intervention. The WFMS provides means to perform this in a consis-
tency-preserving and safe way.

• Role: End-user

In our terminology, an end-user is the person to be supported in his daily work by the WFMS.
The WFMS helps to coordinate the work among different end-users and enables them to react
quickly to new requirements. A new workflow may be initiated by an end-user with appropri-

11

ate access privileges at any point of time. From this starting point, the system guides the user
through the necessary steps to create and modify the desired documents. It provides context
sensitive online help wherever it is needed. When the work on a document is finished by one
agent, the document is automatically forwarded to the next agent according to the procedures
specified in the workflow scheme. In practice, there will be numerous situations where there
are (possibly many) alternative stations for the processing of a given document. Since all ad-
missible choices are included in the workflow scheme, the WFMS can make intelligent deci-
sions to reach an optimal degree of "work load balancing" among the participating employees.

4.3 Support of unstructured or weakly structured workflows

Business processes and office work are partially unstructured, which means that work proce-
dures do not always follow a rigid (and repeating) structure. They may consist of unstructured
components like problem-solving, exception handling and communication with others. Even
work procedures that seem to be routine tasks are interwoven with unstructured work [EIN87,
Sac95, DiS93, Suc95]

[Sac95] describes two different views of office work: One is called the explicit, organiza-
tional view, where work is described in terms of business functions; this is the "official view"
of work which is found in handbooks with organizational guidelines and rules and in organi-
zation charts. The other view is called the activity-oriented view. It describes the work that
actually has to be done in order to reach certain goals. This knowledge mainly exists in the
head of experienced employees and is usually not explicitly documented.

Nevertheless, most current WFMS mainly support structured and repeating tasks and their
modeling tools only capture the explicit, organizational view of work. In order to support un-
structured or weakly structured work, one has to use groupware systems. However, real work
is neither purely structured nor purely unstructured but instead a constant change between
both categories. So what is really needed is a tool that incorporates characteristics of WFMS
and groupware systems.

4.3.1 Modeling

The first area where unstructured or weakly structured tasks are taken into consideration are
the modeling capabilities of INCOME/WF. It is rarely necessary (aside from being hardly
possible) to describe a workflow in full detail. The approach taken in INCOME/WF is to de-
scribe the so-called core workflows on a relatively abstract level. Core workflows are roughly
the equivalent of business processes or office procedures. These procedures do not capture
office work in it’s entirety but nevertheless form a good framework for its description. Instead
of trying to specify the details at the same modeling phase, this task is left for a second model-
ing phase.

In this second modeling phase, which can take place when the workflow system is already in
use, the individual end-users have the opportunity to describe the details, i.e. their so-called
private workflows. Depending on the skill of the end-user, this can be done with the help of an
experienced workflow developer or by the end-user himself.

The user can decide, if his (private) tasks - or part of these - really need workflow support (in
the sense of a structured and well-defined task flow), or if he just wants support by some
groupware concepts of INCOME/WF. In this way the end-user can adapt the system to his
personal needs and his working style in a independent manner, i.e. he is not forced into the

12

role of an "assembly line blue collar worker in an office environment" [KoB95] as existing
WFMS often do.

The longer the workflow application is in use, the more of it is utilized and the more it cap-
tures the structure of an organization. As the end-users can change and adapt their private
workflows at any time, the system reflects the constantly changing nature of office work.

At the same time, this modeling approach solves another problem of conventional WFMS.
Experience with the introduction of workflow-systems in organizations has shown, that
sometimes WFMS do not lead to the desired flexibility but to a "cementation" of task flows.
The reason behind this problem is the vast amount of time and effort that has to be invested
using traditional workflow modeling and execution techniques, so that the willingness to
change anything afterwards is quite low.

4.3.2 Support of cooperative work

Since it is not possible to capture the nature of unstructured or weakly structured work
through rigid formalisms [WaW93], this sort of work can only be supported by providing an
elaborate groupware infrastructure. This infrastructure has to support the exchange and the
availability of information; structured information (e.g. in databases) as well as unstructured
information (e.g. in operating system files) has to be included.

The INCOME/WF environment gives the user access to data stored in a relational database, as
well as to documents which are administered by a document management system. The docu-
ment management system is equipped with a security scheme, that is specifically designed for
teamwork in order to overcome the deficiencies of security schemes [Bro93] found e.g. in
operating systems.

An important aspect is the presentation of data on the user’s desktop. There is a need to pres-
ent all the necessary information but at the same time to avoid information overload. Here we
introduced the concept of a context in INCOME/WF. People in offices usually have to work
on different tasks. While they are working on a specific task they are working in a certain
context, i.e. only specific information is necessary to get the work done and only a specific
group of people is involved. Contexts differ in the required information and the involved
people. This characteristic of work is exploited in the user-interface. The user is able to define
his own working-contexts and to switch between them as needed. In this way the system can
present relevant information in the current context.

In addition to information sharing communication also has to be addressed by a system that
supports unstructured work. Unstructured work consists in large parts of communication be-
tween people, the creation and interaction of teams and strategic alliances, also known as so-
cial nets. The main communication tool in INCOME/WF is an E-mail system that supports
structured messages similar to the Information Lens system [MGL93]. This is in contrast to
the extended E-mail system of INCOME/STAR, where we used an approach based on the
speech act theory [WiF86]. Experience has shown that this approach works well in certain
application areas, but in general it makes too strong assumptions on how work is done and
how communication takes place.

Another tool for communication and coordination is the notification tool. The user is able to
show interest in certain events like the completion of a task, arrival of a document etc. and is
henceforth informed whenever this event occurs. In combination with this notification

13

mechanism it is possible to formulate ECA-Rules (Event-Condition-Action rules), i.e. the user
is able to tell the system that whenever a certain event occurs and an additional condition
holds, the system should perform some pre-defined action. With the aid of this tool the user
has the possibility to express weakly structured workflows. In this way we have a smooth
transition between structured, weakly structured and unstructured activities.

Much work is done by groups instead of individuals. Groups are often created in an ad hoc
manner. These groups (in the following called social nets) may have members from different
hierarchical levels and even from different organizations. The social nets in which the indi-
vidual user is involved are represented in INCOME/WF with the aid of a tool that shows the
members of a social net (using icons) in a window on the user’s desktop. Thereby the user
may explicitly express his view of the organizational structure. Each social net is associated
with a context and is accordingly displayed whenever the context is active. By clicking on an
icon which represents a person, all information concerning that person can be reached. This
includes the person’s address, documents sent, documents received etc.; furthermore, e-mail
can be sent directly, and for the future we have planned the integration of a video-
conferencing system, so that face-to-face communication will be possible.

With this integrated combination of data-sharing, communication, coordination and represen-
tation of social nets INCOME/WF provides an infrastructure that supports all important as-
pects of unstructured and weakly structured cooperative work.

4.4 Distributed execution of cooperative activities

One advantage of using high-level Petri nets for workflow specification is that Petri nets allow
formal analysis and are at the same time directly executable by a net interpreter. The common
graphical notation for Petri nets can directly be used to visualize the workflow execution.

An obvious problem in this context is that most end-users of workflow applications do not
have sufficient background knowledge to fully understand Petri net models. The main reason
for this is that end-users usually cannot identify the relationship between the graphical net
representation (i.e. rectangles, circles and interconnecting arcs) on the one hand and the terms
of their respective application domain.

To bridge this gap, the INCOME/WF workflow engine offers a flexible and open environment
for the execution of Petri nets, based on distributed object technology. It provides means to
connect a graphical display of the whole or certain relevant parts of the executed system to a
Petri net interpreter [SäW95]. A high-level graphics toolkit is used to ensure that the imple-
mentation of the visualization components itself can be done in a rapid-prototyping manner.

The workflow engine integrates different components:

• An information server keeping track of the distributed system components. Its main pur-
pose is to help its clients locating required resources, such as some unloaded node running
a workflow engine. In the future, aspects like global load balancing or system-wide logging
and statistics may be integrated.

• Execution server programs which instantiate one or more Petri net interpreters on request.
Each of these can independently execute a given Petri net workflow model and control a
number of connected visualization components.

• Visualization programs which can be connected to a (running) workflow.

14

• External control components which can take control over running workflows.

With the exception of the information server which exists only once, an arbitrary number of
these components may be installed on one or more workstations. Due to technical restrictions
there can be only one instance of an execution server on a given machine (which is not a
problem since an execution server may spawn as many independent workflow interpreter
processes as are needed) and only one data keeping component of a given type (i.e. DBMS- or
file-based).

Currently, most components are written in the object-oriented programming language Python
[RoB91]. For the communication between the distributed parts of the systems the ILU infra-
structure is used. This system, which has been developed at Xerox PARC, facilitates the crea-
tion of and method calls between distributed objects.

A user of the workflow system may request the workflow engine to be informed whenever
some interesting event occurs. The following event types are available:

• an activity may occur (the respective transition in the workflow model is enabled),

• an activity occurs (the respective transition occurs),

• a data object is created (the respective object is inserted into a place),

• a data object is deleted (the respective object is deleted from a place).

This implies that the visualization application can be implemented very easily as an event-
driven system that just reacts on the received events (cf. Figure 4). Since it is made sure that
only relevant events are forwarded, the necessary ‘administrative overhead’ (event filtering,
program flow control) can be kept very low. A short example may illustrate this: We want to
implement a visualization program which should print out a line whenever a tuple is inserted
into the data store ‘jobs ’ in interpreter interpr . The following code should give an idea of
how easy the implementation of a simple visualization client is. For the sake of simplicity, we
assume that the variable interpr already holds a proxy object for some running execution
somewhere in the system which it may have queried from the information service or via an
interactive execution selection box which is part of INCOME/WF:

import WFObserver
import OBS
import ilu

class Visualizer (WFObserver.WFObserver):
def notify (self, execStepNo, eventType, objName, valueList):

print ‘a new job has arrived:’, valueList[0]

obs = Visualizer (exec)
interpr.registerObserver(obs , ‘jobs’, OBS.Event.PlaceIns)

ilu.RunMainLoop()

The class Visualizer inherits the standard behavior from the class WFObserver in the
previously imported module of the same name, which is part of INCOME/WF. The only thing
a visualization client has to provide itself is a notify method that is called by the interpreter
whenever necessary. This method is called with the current interpretation step number, the
event type and name of the object (place/transition in the underlying Petri net workflow

15

scheme) the notification refers to and a list of values. The latter reflects the tuple which is
inserted into a place or removed from a place, or the variable assignment under which a tran-
sition is enabled / has fired. The registerObserver method of the interpreter then attaches
the instance of the Visualizer class, obs , to the interpretation and triggers the notify

method whenever the event PlaceIns (insertion of a tuple into a place) for place jobs oc-
curs.

Visualization client

Interpreter

Figure 4: Interpreter and visualization clients

It should be noted that there is not necessarily a 1:1 relationship between interpreter and
visualization clients. It is possible for a visualization client to register with different interpret-
ers whenever this is helpful or to connect more than one visualization program to a running
interpretation. Clients can even be dynamically added to and detached from an already execut-
ing workflow.

The great flexibility of Python makes it a natural choice not only to implement INCOME/WF
components but also to serve as a scripting language to glue together and control distributed
INCOME/WF services easily. With this purpose in mind, several Python operators have been
overloaded to provide a natural and easy to understand notation as the following examples
may show:

• Contact to a service running on some node in the net is simplified by instantiating an object
of the desired type and providing the name of the service and the host name as parameters.
Proxy objects are generated automatically. These objects automatically forward method
calls to the real implementation of the object on the remote machine. In the following ex-
ample, the variables 'db ' and 'inter ' are assigned proxy objects of a database service on
host 'aifbknuth ' and a new interpreter instance spawned by an execution server on host
'aifbkorsar ', respectively:

 db = PetriBase('PetriBase@aifbknuth.aifb.uni-karlsruhe.de')
 inter = PetriInt('PetriInt@aifbkorsar.aifb.uni-karlsruhe.de')

• A database object is accessed like a two-dimensional associative array in Python where the

first dimension specifies the type of data to be accessed (Petri net schemes or markings)
and the second one the name of the desired net or marking. In the following example, the
Petri net scheme with the name 'example1 ' is retrieved from the remote database object
and assigned to a variable n. After that, the marking 'mark1 ' is copied back to the name
'copy1 ' in the database:

 n = db['net']['example1']
 db['marking']['copy1'] = db['marking']['mark1']

16

• An interpreter object is seen as a special database object which can only hold one net and
where the admissible names in the 'marking ' dimension are restricted to those of the
places occurring in the net. Continuing the example from above, the following line re-
trieves the Petri net scheme 'transport ' from the database and loads it into the remote
interpreter. The marking of two places in the net is fetched in the same way:

 inter['net'] = db['net']['transport']
 inter['marking']['station1'] = db['marking']['st1']
 inter['marking']['station2'] = db['marking']['st88']

All these operations are type-checked. An attempt to assign a marking to an incompatible
scheme would lead to an exception, which can easily be handled using Python's built-in ex-
ception-handling constructs.

• Let int1 and int2 be interpreter instances and db be an instance of a database object.

Then, the expressions

 int1['marking']['warehouse1'] = int2['marking']['warehouse2']
 + db['marking']['orders1']

 compute the set union of the marking of place 'warehouse2 ' from workflow int2 and the
tuples in marking 'orders1 ' of the database object and marks place 'warehouse1 ' in in-
terpreter int1 with the result. It should be noted that all three operands are objects that
may be located on different nodes in the net, while syntactically the expression does not
differ from a common addition/assignment where the operands are associative arrays. Im-
plementation aspects of distribution and the different types of the operands (interpreter and
a database objects) are completely transparent to the user.

• A final example: The interpretation in int1 has reached some interesting stage. We now
wish to 'clone' the state of the (already running) interpreter int1 to some newly created
interpreter int2 and have both execute synchronously as long as the marking of place
'customers ' remains the same in int1 and int2 :

 int2 = PetriInt('PetriInt@aifbbrahms.aifb.uni-karlsruhe.de')
 int2.copy(int1)

 steps = 0
 while int1['marking']['customers']==int2['marking']['customers']:

 int1.execStep()
 int2.execStep()
 steps = steps + 1

 print "marking differs after", steps, "steps"

Registration of external components together with scripting provide very powerful means to
implement arbitrary occurrence strategies for certain transitions, to interconnect different
running workflows and to support "forward looking" simulation with Petri nets.

17

5 Related work

Several other approaches use Petri nets as a formal basis for the specification of workflows
[ElN93] or business process modeling which was one driving force leading to the develop-
ment of WFMS (as well as, on the other hand, WFMS are an enabling technology for business
process modeling) [VoB96].

There are further proposals for extending Petri net based behavior modeling by semantic data
modeling concepts, e.g. in the area of office automation, workflow management or informa-
tion system design [EKT87, HPR93, Lau88, SoK93]. A common limitation of these ap-
proaches is that they do not offer sufficient modeling concepts for concurrent access to differ-
ent components of the same complex structured object. This can lead to unnecessary locking
of an object in a WFMS when different activities try to access different parts of this object at
the same time.

A commercial WFMS using Petri nets is the Leu environment [DiG96]. Some other commer-
cial WFMS are surveyed and discussed in [Jab95, Obe96a, HaL91]. A common drawback of
many existing WFMS is, as it has been already stated above, a lack of support for unstructured
or weakly structured activities.

6 Conclusion

In the area of information system development, behavior modeling has been recognized as
being of similar importance as traditional data modeling. Consequently, there is a growing
interest in WFMS supporting these two aspects appropriately. In our opinion currently avail-
able commercial WFMS mostly focus on features for behavior modeling and neglect aspects
of data modeling.

In this paper a Petri net based approach was presented for integrated modeling of both data
and behavior related aspects of workflow oriented business application systems. Since Petri
nets have a well-defined formal semantics, various analysis and validation techniques can be
applied to ensure a high level of quality for the resulting product. For the same reason, Petri
nets are directly executable and thus can be used as an executable specification of the envis-
aged workflow, serving as direct input to the workflow engine.

Curently we are working on questions of workflow fragmentation and allocation in distributed
environments, e.g. in Internet-based wide area networks. For database systems, database re-
search has provided many elaborated concepts for data fragmentation, allocation and replica-
tion. However, the distributed management of workflows (i.e. of collections of business ac-
tivities) is not yet sufficiently supported. There exist different (technical) proposals for dis-
tributed execution but there is no methodological support available for the planning and de-
sign of distributed workflow applications. We think that Petri nets are an appropriate model
for fragmentation, allocation and replication of workflows, just as the relational data model is
an appropriate model for fragmentation and allocation of data.

Acknowledgement

We wish to thank our former colleagues Peter Jaeschke, Volker Sänger, and Thomas Wendel
for valuable discussions and many useful comments on earlier versions of this paper as well as
for their contribution to INCOME/STAR and INCOME/WF.

18

References

[Aal96] W.M.P. van Aalst: Petri-net-based workflow management. In: [She96], pp.114-118
[BeM91] C. Beeri, T. Milo: A model for active object oriented databases. In: G.M. Lohmann, A. Sernadas, R.

Camps (Eds.): Proc. 17th Int. Conf. on Very Large Data Bases, Barcelona (1991), pp. 337-349
[Bro93] J. Brooke: User interfaces for CSCW systems. In: [DiS93], pp. 23-30
[BrR84] M.L. Brodie D. Ridjanovic: On the design and specification of database transactions. In: M.L. Bro-

die, J. Mylopoulos, J.W. Schmidt (Eds.): On Conceptual Modelling, Springer (1984), pp. 278-306
[BRR87] W. Brauer, W. Reisig, G. Rozenberg (Eds): Petri Nets: Central Models and Their Properties. Ad-

vances in Petri Nets 1986, Springer (1987)
[Cha89] S. Chakravarthy: Rule management and evaluation: an active DBMS perspective. SIGMOD

RECORD, Vol. 18 (3) (1989), pp. 20-28.
[CoE95] N. Comstock, C. Ellis (Eds.): Proc. Conf. on Organizational Computing Systems. Mipitas/California,

ACM Press (1995)
[Col92] D. Coleman (Ed.): Groupware ‘92. Morgan Kaufman Publishers (1992)
[Day88] U. Dayal: Active database management systems. In: C. Beeri, J.W. Schmidt, U. Dayal (Eds.): Proc.

3rd Int. Conf. on Data and Knowledge Bases: Improving Usability and Responsiveness, Jerusalem
(1988), pp. 150-169

[DiG96] G. Dinkhoff, V. Gruhn: Entwicklung Workflow-Management-geeigneter Software-Systeme. In:
[VoB96], pp. 405-421

[DiS93] D. Diaper, C. Sanger (Eds.): CSCW in Practice: an Introduction and Case Studies. Springer (1993)
[EGR91] C.A. Ellis, S.J. Gibbs, G.L. Rein: Groupware: some issues and experiences. Communications of the

ACM, Vol. 34 (1) (1991), pp. 39-58
[EKT87] J. Eder, G. Kappel, A.M. Tjoa, A.A.: Wagner: BIER - the behaviour integrated entity relationship

approach. In: S. Spaccapietra (Ed.): Proc. 5th Intern. Conf. on the Entity-Relationship Approach,
North-Holland (1987), pp. 147-168

[ElN87] C.A Ellis, N. Naffah: Design of Office Information Systems. Springer (1987)
[ElN93] C.A. Ellis, G.J. Nutt: Modeling and enactment of workflow systems. In: M.A. Marsan (Ed.): Proc.

14th Int. Conf. on Application and Theory of Petri Nets, Chicago, Springer (1993), pp. 1-16
[FeM86] P. Feldman, D. Miller: Entity model clustering: structuring a data model by abstraction. The Com-

puter Journal, Vol. 29 (4) (1986), pp. 348-360
[Fer93] C. Fernström: PROCESS WEAVER: adding process support to UNIX. In: Continuous Software

Process Improvement, Proc. 2nd Int. Conf. on the Software Process, Berlin, IEEE Computer Society
Press (1993), pp. 12-26.

[Gen87] H.J. Genrich: Predicate/transition nets. In: [BRR87], pp. 207-247
[GHS94] D. Georgakopoulos, M. Hornick, A. Sheth: An overview of workflow management: from process

modeling to workflow automation infrastructure. In: Distributed and Parallel Databases, Kluwer
Academic Publishers (1994)

[HaL91] K. Hales, L. Lavery: Workflow Management Software: the Business Opportunity. Ovum Ltd. (1991)
[Heu92] A. Heuer: Objektorientierte Datenbanken. Addison-Wesley (1992)
[HPR93] C.A. Heuser, E.M. Peres, G. Richter: Towards a complete conceptual model: Petri nets and Entity-

Relationship diagrams. Information Systems, Vol. 18 (5) (1993), pp. 275-298
[Jab95] S. Jablonski: Workflow-Management-Systeme: Modellierung und Architektur. International Thom-

son Publishing (1995)
[Jae96] P. Jaeschke: Integrierte Unternehmensmodellierung - Techniken zur Informations- und Geschäfts-

prozeßmodellierung. Deutscher Universitäts-Verlag (1996)
[KoB95] S. Koshafian, M. Buckiewicz: Introduction to Groupware, Workflow and Workgroup Computing.

John Wiley & Sons (1995)
[Lau88] G. Lausen: Modelling and analysis of the bahaviour of information systems. IEEE Transactions on

Software Engineering, Vol. 14 (11) (1988), pp. 1610-1620
[MGL93] T.W. Malone, K.R. Grant, K. Lai, R. Rao, D.A. Rosenblitt: The information lens, an intelligent sys-

tem for information sharing and coordination. In: R.M. Baecker (Ed.): Readings in Groupware and
Computer-Supported Cooperative Work. Assisting Human-Human Collaboration, Morgan Kauf-
mann Publishers (1993), pp. 461-473

[MWF92] R. Medina-Mora, T. Winograd, R. Flores, F. Flores: The action workflow approach to workflow
management technology. In: J. Turner, R. Kraut (Eds.): CSCW´92 Sharing Perspectives, Proc. Conf.
on Computer Supported Cooperative Work, Toronto, ACM Press (1992), pp. 281-288

[Obe96a] A. Oberweis: Verteilte betriebliche Abläufe und komplexe Objektstrukturen. Ein integriertes Model-
lierungskonzept für Workflow-Managementsysteme. B.G. Teubner (1996)

19

[Obe96b] A. Oberweis: An integrated approach for the specification of processes and related complex struc-
tured objects in business applications. Decision Support Systems, Vol. 17 (1996), pp. 31-53

[ObS96] A. Oberweis, P. Sander: Information system behavior specification by high-level Petri nets. To ap-
pear in: ACM Transactions on Information Systems (1996)

[OSS94] A. Oberweis, G. Scherrer, W. Stucky: INCOME/STAR: Methodology and tools for the development
of distributed information systems. Information Systems, Vol. 19 (8) (1994), pp. 641-658

[RaS92] O. Rauh, E. Stickel: Entity tree clustering - a method for simplifying ER design. Proc. 11th Int. Conf.
on the Entity-Relationship Approach, Karlsruhe (1992), pp. 62-78

[RoB91] G. van Rossum, J. de Boer: Interactively testing remote servers using the Python programming lan-
guage. CWI Quarterly, Vol. 4 (4) (1991), pp. 283-303.

[Sac95] P. Sachs: Transforming work: collaboration, learning and design. Communications of the ACM, Vol.
38 (9) (1995), pp. 36-44

[Sän96] V. Sänger: Eine grafische Anfragesprache für temporale Datenbanken. Shaker (1996)
[SäW95] V. Sänger, W. Weitz: Entwurfsvalidation für verteilte Informationssysteme mit dem graphischen,

mehrbenutzerfähigen Pr/T-Netz-Simulator GAPS+. In: F. Huber-Wäschle, H. Schauer, P. Widmayer
(Eds.): GISI 95 - Herausforderungen eines globalen Informationsverbundes für die Informatik,
Springer (1995), pp. 407-414

[She96] A. Sheth (Ed.): Proc. NSF Workshop on Workflow and Business Process Automation in Information
Systems: State-of-the-art and Future Directions. Athens/Georgia, (1996)

[SoK93] A. Solvberg, D.C. Kung: Information Systems Engineering. Springer (1993)
[SOS94] G. Scherrer, A. Oberweis, W. Stucky: ProMISE - a process model for information system evolution.

Proc. 3rd Maghrebian Conf. on Software Engineering and Artificial Intelligence, Rabat (1994), pp.
27-36

[Suc95] L. Suchman: Making work visible. Communications of the ACM, Vol. 38 (9) (1995), pp. 56-65
[TWB89] T.J. Teorey, G. Wei, D.L. Bolton, J.A. Koenig: ER model clustering as an aid for user communi-

cation and documentation in database design. Communications of the ACM, Vol. 32 (8) (1989), pp.
975-987

[VoB96] G. Vossen, J. Becker (Eds.): Geschäftsprozessmodellierung und Workflow-Management - Modelle,
Methoden, Werkzeuge. International Thomson Publishing (1996)

[WaW93] D.G. Wastell, P. White: Using process technology to support cooperative work: prospects and design
issues. In: [DiS93], pp. 105-126

[Wen95] T. Wendel: Computerunterstützte Teamarbeit in einer verteilten Software-Entwicklungsumgebung.
Deutscher Universitäts-Verlag (1995)

[WiF86] T. Winograd, F. Flores: Understanding Computers and Cognition. Ablex (1986)

