
VALIDATION OF INFORMATION SYSTEM MODELS:
PETRI NETS AND TEST CASE GENERATION

Jörg Desel
Institut AIFB

Universität Karlsruhe
D-76128 Karlsruhe, Germany

E-mail: desel@aifb.uni-karlsruhe.de

Andreas Oberweis, Torsten Zimmer,
Gabriele Zimmermann

Institut für Wirtschaftsinformatik
J.W. Goethe-Universität

D-60054 Frankfurt am Main, Germany
E-mail: {oberweis|zimmer|zimmermann@

wiwi.uni-frankfurt.de}

ABSTRACT

High-level Petri nets are a graphical language for the
modeling of distributed information systems. Petri nets
can be validated by simulation. In this paper, a technique
is proposed which generates test cases for the simulation
of high-level Petri nets in a systematic way. The ap-
proach is called cause-effect-net-concept and is derived
from a program code testing concept, the so-called
cause-effect graphing. As an extension of the concept, a
method for test data generation is demonstrated.

1. INTRODUCTION

High-level Petri nets are a widely used modeling and
specification language for information system behavior
[10]. They combine the advantages of a simple graphical
notation with mathematical foundation. Moreover, they
allow to model the behavior of an information system
and its data structures in one integrated scheme [7]. Petri
nets are directly executable by a net interpreter. Thus,
Petri net simulation may be used for an early validation
of information system models. This can reduce testing
effort in later stages of the information system develop-
ment process.
An important sub-task of testing Petri nets is the identifi-
cation of an appropriate set of input data (i.e. initial
markings) which guarantees that all (functional) system
requirements are inspected by the simulation. In this
paper, we present a method for automated generation of
input data for the simulation of high-level Petri nets,
called cause-effect-net-concept.
Testing typically refers to program code and not to mod-
els used in earlier development stages, e.g. information
system models based on Petri nets. Yet the similarities
are apparent. The problem of generating input data refers
to both simulation of a Petri net model and testing of
program code. As far as program code testing is con-
cerned, this is a well-known problem which is usually
referred to as test case generation. According to [5], a
test case consists of a context in which the software is to
operate and a description of the behavior expected from

the software within this context. A test case for a Petri
net consists of input conditions (causes) and a descrip-
tion of the expected output conditions (effects) achieved
by the execution of the Petri net under the defined input
conditions. Initial markings and expected final markings
for simulation can be generated from these sets of con-
ditions.
We adopted a test case generation method called cause-
effect graphing [6] and transformed it into an approach
called cause-effect-net-concept. This approach allows
the derivation of test cases for Petri nets in an efficient
way. It automatically generates a special kind of Petri
nets (so-called process nets [1], [9]) as an intermediate
representation.
This concept is used for testing Predicate/Transition nets
(Pr/T-nets) [4]. Using these generated test cases it is
checked whether all specified functions are modeled
completely and correctly in the Pr/T-net. In the follow-
ing, this Pr/T-net is called test object.

Two questions are to be answered during simulation:
1. Is a specified function missing in the Pr/T-net?
2. Is a function modeled incorrectly?

Failure of a test case means that a simulation run which
starts with the selected initial marking does not lead to
the specified final marking. It indicates modeling errors,
such as missing places, missing transitions or incorrect
arc inscriptions.

2. BASIC TERMINOLOGY

Test cases
A test case for a Petri net consists of
a) a combination of defined input conditions and
b) a description of the expected output condition

achieved by the execution of the Petri net under the
input conditions mentioned in a).

Test data
By marking the places in a Petri net input conditions can
be represented. Test input data of a Petri net are initial
markings corresponding to the defined input conditions

of a test case. Also, a marking can be interpreted as an
output condition: Test output data of a Petri net are final
markings (e.g. of a simulation run) which correspond to
an (expected) output condition of a test case. Test data is
a collection of test input data and test output data.

Process nets
A process net describes one single behavior of a system
or of a Petri net. A process net consists of a special kind
of Petri net, a so-called occurrence net with labeled
places and transitions. The labels describe the relation-
ship between the tokens and transition occurrences in the
system run and the places and transitions of the occur-
rence net [1], [9]. Minimum elements of a process net
are elements without predecessor nodes and they are
labeled according to the initial marking. Maximum ele-
ments of a process net are elements without successor
nodes. In this paper, we use process nets for the deriva-
tion of test cases and for the test object inspection.

Cause-effect-net-concept
The cause-effect-net-concept was derived from cause-
effect graphing, a black box program testing concept:
The program is tested against its external specification.
First, a natural-language specification is transformed into
a formal specification. The logical relationships between
inputs (causes) and outputs (effects) are represented in a
Boolean graph. By tracing back from each effect to find
all possible combinations of causes, the graph is con-
verted into a so-called test case table. Each column in
this table corresponds to a test case. As pointed out in
[6], the most difficult aspect of cause-effect graphing is
obtaining the test case table from the graph. We will
present an efficient way to compute the relationship
between causes and effects by generating process nets.
The test case table is derived from the process nets by
interpreting each process net as one test case.
In our concept, the relationships between causes and
effects are not represented by a Boolean graph, but in-
stead by a Condition/Event net (C/E-net), which is a
low-level Petri net. In this C/E-net places are interpreted
as conditions and transitions as events. We call this net
cause-effect-net. Causes correspond to conditions with-
out predecessors and effects to conditions without suc-
cessors. Alternative causes which belong to the same
effect are represented by an (exclusive) OR-relationship
(see Fig. 1). Common causes which belong to one effect
are represented by an AND-relationship (see Fig. 2).
Negated causes are represented by so-called complement
conditions. A cause which directly leads to one effect is
represented by a SINGLE-relationship (see Fig. 3). To
express more complicated relationships, intermediate
nodes are introduced.
In a first step, the cause-effect-net is generated by read-
ing the natural-language specification and by identifica-
tion of all causes and effects. In a second step, the
semantic content of the specification is analyzed and

transformed into the causal-effect-net by linking the
causes and effects using the OR-, AND- and SINGLE-
relationships.

s2 t2

s3

t1s1

Fig. 1: OR-relationship

s1

s2

s3t1

Fig. 2: AND-relationship

s2t1s1

Fig. 3: SINGLE-relationship

Using the cause-effect-net, test cases can be derived by
converting the direction of all arcs. The resulting Petri
net is simulated. For every simulation run, only one
effect is marked. The used simulation concept generates
so-called process nets (see [3] for the description of a
process generating tool). A process net describes one
single behavior of a Petri net. Every process net repre-
sents a relationship between an effect and its causes. For
each relationship a column is inserted into a test case
table. Every column in the test case table corresponds to
a test case.

ALTERNATE-relationship
A single cause or a combination of causes may lead to
different effects (alternatives). This situation is repre-
sented by an ALTERNATE-relationship and modeled by
a forward branched place (the place has more than one
successor transition). Fig. 4 shows an example of the
ALTERNATE-relationship.

Cause or
combination
of causes

t2

t1
effect 1

effect 2

Fig. 4: ALTERNATE-relationship

In an ALTERNATE-relationship, at least two causes-
effect relationships have the same cause or the same
combination of causes. The causes-effect relationships
are combined to one test case.

Test input data
The causes of a test case are transformed into test input
data. Correspondingly, for the Petri net an initial mark-
ing which corresponds to the causes is generated. First,
the attributes of the predicates representing the causes
are investigated (the relationships between the causes
and the attributes are identified). These relationships are
described in a reference table causes/attributes.
Attributes of test input data may mutually depend on
each other. If both attributes describe the same object
then the assignment of an attribute depends on the
assignment of the other attribute. In the following, these
dependencies are called referential integrity constraints
for attributes.
Using the reference table causes/attributes and respect-
ing the referential integrity constraints for each test case,
the test input data is generated. For this task a test data
base which stores available example-data can be used.

Test output data
First, to each test case the causes and the effects are
considered and all attributes of the Petri net are identi-
fied which must be assigned after the occurrence of the
effects. These relationships are inserted into a reference
table test case/attributes.
Using the initial marking (the test input data), the speci-
fication and the reference table test case/attributes for
every test case the test output data is computed (without
considering the test object!).

Test object inspection
The test object inspection is executed by checking all
test cases. In a first step, the Pr/T-net is marked with the
test input data (initial marking). In a second step, the
initialized test object is simulated by a process net gen-
erator. In a third step, the test case is analyzed: The test
case finds no error, if the final marking of the generated
process net corresponds to the test output data. Using an
ALTERNATE-relationship, the simulation of the test
object generates several process nets. If the final mark-
ings of the created process nets correspond to the differ-
ent effects of the test case (test output data) then no error
is found.

3. EXAMPLES

Example 1
An example specification for the development of an
information system with a Pr/T-net is a simplified library
with the following functionality:
Available books can be lent, if a book order arrives. A
book which is already lent can be reserved or returned. If
a reserved book is returned, the reserving person will
receive the book.
In the Pr/T-net of Fig. 5, the actions lend book, lend
reserved book, reserve book and return book of the
library are modeled.

lent
books

(B3,N2)lend book (B,N)

<B, N>

<B, N>
book orders

(B1,N1)

book
stores
(B2)

<B,N1>

<B,N>

<B,N>

reserved
books

(B4,N3)

lend reserved book (B,N)

reserve book
(B,N,N1)

<B,N>

<B,N>

<B,N>

return book (B,N)

Fig. 5: Library modeled as a Pr/T-net

The generation of the cause-effect-net
In the first step, the following causes and effects are
identified:

Causes: book is reserved, book is available, book order
is arrived, book is lent.

Effects: book is lent, book is reserved, book is returned.

In the second step, the identified causes and effects are
linked using the OR- and AND-relationships. The
resulting cause-effect-net is represented in Fig. 6.

t2

book order
is arrived

book
is lent

book is
returned

book is
reserved

book
is lent

book is
available

t3

t4

t1
book is
reserved

Fig. 6: Cause-effect-net of the library model

The generation of the test cases
In a first step, the direction of the arcs in the cause-
effect-net are converted. In a second step to each of the

effects book is lent, book is reserved and book is
returned a simulation run is executed. In every simula-
tion run, only one effect is marked. The following four
process nets (Fig. 7 - 10) are generated by simulation:

t2
book order
is arrived

book is
available

book
is lent

Fig. 7: Process net 1 to the causal-effect-net

t1
book is
reserved

book is
available

book
is lent

Fig. 8: Process net 2 to the causal-effect-net

t3

book
is lent

book is
reserved

book order
is arrived

Fig. 9: Process net 3 to the causal-effect-net

t4
book is
lent

book is
returned

Fig. 10: Process net 4 to the causal-effect-net

From the process nets the test cases are derived: For
example, the process net 1 has the maximum elements
(causes) book order is arrived, book is available and the
minimum element (effect) book is lent. From this process
net, test case 1 is derived and inserted into the test case
table (see Tab. 1). In this manner, all test cases are iden-
tified and recorded.

Test Case 1 2 3 4
Causes:
book is reserved 0 1 0 0
book is available 1 1 0 0
book order is arrived 1 0 1 0
book is lent 0 0 1 1

Effects:
book is lent 1 1 0 0
book is reserved 0 0 1 0
book is returned 0 0 0 1

Tab. 1: Test case table to Fig. 5

Test input data generation
To generate the test input data to every test case, the
attributes of the predicates of the Pr/T-net representing

the causes are identified. They are described in the refer-
ence table causes/attributes (see Tab. 2).

Causes Attributes (Predicates)
1 book is reserved B4, N3 (reserved books)
2 book is available B2 (book stores)
3 book order is arrived B1, N1 (book orders)
4 book is lent B3, N2 (lent books)

Tab. 2: Reference table causes/attributes

Analyzing the specification, the following referential
integrity constraints for attributes are identified:

1. If cause 1 and cause 2 are part of a test case, then
 B2 = B4
2. If cause 2 and cause 3 are part of a test case, then
 B1 = B2
3. If cause 3 and cause 4 are part of a test case, then

B1 = B3 and N1 ≠ N2

Respecting the referential integrity constraints for attrib-
utes, the initial markings to the test object are generated
by using Tab. 1 and Tab. 2. For this task a test data base
(for example B1, B2, B3, B4 ∈ {lord of the flies, faust,
hamlet, dictionary}, N1, N2, N3 ∈ {miller, john, smith})
can be used (see Tab. 3).

Test Case Predicates marked with test input data
1 book stores (B2:= faust)

book orders (B1:= faust, N1:= miller)
2 reserved books (B4:= faust, N3:= smith)

book stores (B2:= faust)
3 book orders (B1:= faust, N1:= miller)

lent books (B3 := faust, N2:= smith)
4 lent books (B3:= lord of the flies, N2:= john)

Tab. 3: Test input data to the library model

Test output data generation
In a first step, to every test case the causes and the
effects are considered and all attributes of the predicates
which must be assigned after the occurrence of the effect
are identified. The relationships are represented in the
reference table test case/attributes (see Tab. 4).

Test
Case

Predicates Attributes of
the Predicates

1 lent books B3, N2
2 lent books B3, N2
3 reserved books

lent books
B4, N3
B3, N2

4 book stores B2

Tab. 4: Reference table test case/attributes

In a second step, using the test input data, the specifica-
tion of the information system and the reference table

test case/attributes (Tab. 4), the test output data is gen-
erated. Tab. 5 contains the expected test output data for
every test case.

Test Case Predicates marked with test output data
1 lent books (B3:= faust, N2:= miller)
2 lent books (B3:= faust, N2:= smith)
3 reserved books (B4:= faust, N3:= miller)

lent books (B3:= faust, N2:= smith)
4 book stores (B2:= lord of the flies)

Tab. 5: Test output data to the library model

Test object inspection
The inspection of the test object is done by simulation.
The Predicate/Transition net is marked with the test
input data of every test case and the simulator generates
process nets. Since the maximum elements of the process
nets (see Fig. 11 - 14) correspond to the test output data,
no model errors are found in the Petri net.

lent books
(faust,miller)

lend book
(faust,miller)

book orders
(faust,miller)

book stores
(faust)

Fig. 11: Process net for the inspection of test case 1

lent books
(faust,smith)

lend reserved
book (faust,smith)

reserved books
(faust,smith)

book stores
(faust)

Fig. 12: Process net for the inspection of test case 2

lent books
(faust,smith)

lent books
(faust,smith)

book orders
(faust,miller)

reserve book
(faust,miller,smith)

reserved books
(faust,miller)

Fig. 13: Process net for the inspection of test case 3

lent books
(lord of the flies, john)

return book (lord of
the flies, john)

book stores
(lord of the flies)

Fig. 14: Process net for the inspection of test case 4

Example 2
The following example demonstrates a modeling error
and its detection with the cause-effect-net-concept. Ad-
ditionally, the test output data generation is demon-
strated.
The same specification as in example 1 is given, but the
library Petri net model contains an error: An occurrence
of the transition reserve book removes a tuple from the
place lent books, but the tuple is not inserted back. To
inspect the Pr/T-net, the test cases and test data gener-
ated in example 1 (Tab. 1, Tab. 3, Tab. 5) can be used.

lent
books

(B3,N2)lend book (B,N)

<B, N>

<B, N>
book orders

(B1,N1)

book
stores
(B2)

<B,N1>

<B,N>

<B,N>

reserved
books

(B4,N3)

lend reserved book (B,N)

reserve book
(B,N,N1)

<B,N>

<B,N>

<B,N>

return book (B,N)

Fig. 15: Library model containing a model error

A simulation with the test input data from test case 3
(book order (faust,miller), lent books (faust,smith)) gen-
erates the process net of Fig. 16.

lent books
(faust,smith)

book order
(faust,miller)

reserve book
(faust,miller,smith)

reserved books
(faust,miller)

Fig. 16: Process net for the inspection of test case 3

The maximum elements of the process net (reserved
books (faust,miller)) are compared with the test output
data of test case 3 (reserved books (faust,miller), lent
books (faust,smith)). The missing correspondence indi-
cates a model error in the Pr/T-net.

The example demonstrates that causes of an effect also
can remain valid after the occurrence of the effect.

Example 3
Example 3 demonstrates a cause-effect-net using an
ALTERNATE-relationship. Fig. 17 shows a cause-
effect-net which specifies the processing of two
resources A and B to two different products (product 1,
product 2).

resource A

resource B product 2

product 1

t1

t2

s1

t3

Fig. 17: Cause-effect-net with ALTERNATE-rela-
tionship

The process net generation to the marked effect 1 and
effect 2 leads to the same combination of causes (the
same final markings of process nets). If the causes are
transformed into the same test input data, an inspection
of the test object leads to two process nets with different
final markings. Therefore, both effects and the combina-
tion of causes are combined to one test case.
The corresponding test case is represented in the test
case table of Tab. 6.

Test Case 1
Causes:
resource A 1
resource B 1

Effects:
product 1 1
product 2 1

Tab. 6: Test case table to Fig. 17

6. CONCLUSION

In this paper, we have presented a technique which gen-
erates test cases for the validation of high-level Petri nets
in a systematic way. This approach is derived from the
cause-effect graphing (a method for program code test-
ing). The difference between both methods is the repre-
sentation of the relationships between causes and effects.
In our approach this task is done by using a Condi-
tion/Event net. Then, the test cases can be derived in an
efficient way. A simulator generates so-called process
nets and each process net corresponds to one test case.
Additionally, in this paper a concept is proposed which
creates test input and test output data to the test cases.
The test input data is generated by identification of the
relationships between the causes of the test case and the

(attributes of the) predicates of the test object. The test
output data is created by using the test input data, the
specification of the information system and the relation-
ships between effects and (attributes of the) predicates of
the Pr/T-net. Some examples have demonstrated how the
test object inspection using the cause-effect-net-concept
and the generation of test data is performed.
The work is part of a project called VIP (Verification of
Information systems by evaluating partially ordered
Petri net runs) [2].
We use the concept in an information system develop-
ment environment called INCOME/STAR, which was
designed and implemented as a research prototype at the
University of Karlsruhe [8].

7. ACKNOWLEDGEMENTS

The authors wish to thank Volker Guth for many valu-
able comments on an earlier version of this paper.

8. REFERENCES

[1] E. Best and C. Fernandez, Nonsequential processes:
A Petri net view, EATCS monographs on Theoretical
Computer Science, Springer-Verlag, 1988.
[2] J. Desel, T. Freytag, A. Oberweis and T. Zimmer, A
partial-order-based simulation and validation approach
for high-level Petri nets, to appear in: Proc. of the 15th

IMACS World Congress on Scientific Computation,
Modeling and Applied Mathematics, Berlin, Aug. 1997.
[3] J. Desel, A. Oberweis and T. Zimmer, Simulation-
based Analysis of Distributed Information System Be-
haviour, in: Proc. of the 8th European Simulation Sym-
posium ESS 96, Genua, A. Bruzzone and E. Kerckhoffs
(eds.), 1996, pp. 319-323.
[4] H. Genrich, Predicate/Transition Nets, in: Petri Nets:
Central Models and Their Properties, W. Brauer, W.
Reisig and G. Rozenberg (eds.), Springer-Verlag, 1987,
pp. 207-247.
[5] J.D. McGregor, An overview of testing, in: Journal
of Object-Oriented Programming; Vol. 9, No. 8, 1997,
pp. 5-9.
[6] G.J. Myers, The art of software testing, New York,
NY: John Wiley & Sons, Inc., 1979.
[7] A. Oberweis, An integrated approach for the specifi-
cation of processes and related complex structured ob-
jects in business applications, Decision Support Systems,
Vol. 17, 1996, pp. 31-53.
[8] A. Oberweis, G. Scherrer, and W. Stucky, IN-
COME/STAR: Methodology and tools for the develop-
ment of distributed information systems, Information
Systems, Vol. 19, No. 8, 1994, pp. 641-658.
[9] W. Reisig, Petri nets: an introduction, EATCS
monographs on Theoretical Computer Science, Springer-
Verlag, 1985.
[10] W. Reisig, A Primer in Petri Net Design, Springer-
Verlag, 1992.

