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Abstract

During the last years, a number of formal speci�cation languages for knowledge-based

systems have been developed. Characteristic for knowledge-based systems are a complex

knowledge base and an inference engine which uses this knowledge to solve a given prob-

lem. Speci�cation languages for knowledge-based systems have to cover both aspects:

they have to provide means to specify a complex and large amount of knowledge and

they have to provide means to specify the dynamic reasoning behaviour of a knowledge-

based system. This paper will focus on the second aspect, which is an issue considered

to be unsolved. For this purpose, we have surveyed existing approaches in related ar-

eas of research. We have taken approaches for the speci�cation of information systems

(i.e., Language for Conceptual Modelling and Troll), approaches for the speci�cation of

database updates and the dynamics of logic programs (Transaction Logic and Dynamic

Database Logic), and the approach of Evolving Algebras. This paper, which is a short

version of a longer report, concentrates on the methodology of our comparison and on

the conclusions we have drawn. The actual comparison between the languages has been

removed from this version because of space limitations.

1 Introduction

Over the last few years a number of formal speci�cation languages have been developed

for describing knowledge-based systems (KBSs). Examples are DESIRE [vLPT92]; KARL

[Fen95b]; KBSSF [SitV94]; (ML)2 [vHB92]; MLPM [FG96] and TFL [PGT96]. In these

speci�cation languages one can describe both knowledge about the domain and knowledge

about how to use this domain-knowledge in order to solve the task which is assigned to

the system. On the one hand, these languages enable a speci�cation which abstracts from

implementation details: they are not programming languages. On the other hand, they

enable a detailed and precise speci�cation of a KBS at a level of precision which is beyond

the scope of speci�cations in natural languages. Surveys on these languages can be found in

[TW93, FvH94, Fen95a].4

A characteristic property of these speci�cation languages results from the fact that they

do not aim at a purely functional speci�cation. In general, most problems tackled with KBSs

are inherently complex and intractable (see e.g. [Neb96]). A speci�cation has to describe
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not just a realization of the functionality, but one which takes into account the constraints

of the reasoning process and the complexity of the task. The constraints have to do with

the fact that one does not want to achieve the functionality in theory but rather in practice.

In fact, a large part of expert knowledge is concerned exactly with e�cient reasoning given

these constraints: t is knowledge about how to achieve the desired functionality. Therefore,

speci�cation languages for KBSs also have to specify control over the use of the knowledge

during the reasoning process. A language must therefore combine non-functional and func-

tional speci�cation techniques: on the one hand, it must be possible to express algorithmic

control over the execution of substeps. On the other hand, it must be possible to characterize

substeps only functionally without making commitments to their algorithmic realization.

The languages mentioned are an important step in the direction of providing means for

specifying the reasoning of KBSs. Still, there is a number of open questions in this area.

The most important problem is the speci�cation of the dynamic behaviour of a reasoning

system. The speci�cation of knowledge about the domain seems to be well-understood. Most

approaches use some variant of �rst-order logic to describe this knowledge. Proof systems exist

which can be used for veri�cation and validation. The central question is how to formulate

knowledge about how to use this knowledge in order to solve a task (the dynamics of the

system). It is well-agreed that this knowledge should be described in a declarative fashion (i.e.

not by writing a separate program in a conventional programming language for every di�erent

task). At the moment, the afore-mentioned languages use a number of formalisms to describe

the dynamics of a KBS: DESIRE uses a meta-logic to specify control of inferences of the

object logic, (ML)2 and MLPM apply dynamic logic ([Har84]), KARL integrates ideas of logic

programming with dynamic logic, and TFL uses process algebra in the style of [BK85]. With

the exception of TFL, the semantics of these languages are based on states and transitions

between these states. (ML)2, MLPM and KARL use dynamic logic Kripke style models,

and DESIRE uses temporal logic to represent a reasoning process as a linear sequence of

states. On the whole, however, these semantics are not worked out in precise detail, and

it is unclear whether these formalisms provide apt description methods for the dynamics

of KBSs. Another shortcoming of most approaches is that they do not provide an explicit

axiomatization or proof calculus for supporting (semi-) automatic proofs for veri�cation.

These shortcomings motivate our e�ort to investigate speci�cation formalisms from related

research areas to see whether they can provide insight in the speci�cation of (in particular the

dynamic part of) KBSs. We have analyzed related work in information system development,

databases and software engineering. Approaches have been selected that enable the user to

specify control and dynamics. The approaches we have chosen are:

� Language for Conceptual Modelling (LCM) of ([Wie95]) and Troll ([Jun93]) as exam-

ples from the information systems area. Both languages provide means to express the

dynamics of complex systems.

� Transaction Logic ([BK93]), Database Update Logic (PDDL ([SWM95]) and DDL

([SWM93])) as examples for database update languages which provide means to ex-

press dynamic changes of databases.

� Evolving Algebras ([Gur94]) from the theoretical computer science and software engi-

neering area. It o�ers a framework in which changes between (complex) states can be

speci�ed.



The informed reader probably misses some well-established speci�cation approaches from

software engineering: algebraic speci�cation techniques (see e.g. [Wir90]), which provide

means for a functional speci�cation of a system, and model-based approaches like Z [Spi92]

and the Vienna Development Method - Standard Language (VDM-SL) [Jon90], which de-

scribe a system in terms of states and operations working on these states. Two main reasons

guided our selection process. First, we have looked for novel approaches on specifying the

dynamic reasoning process of a system. Traditional algebraic techniques are means for a

functional speci�cation of a software system that abstracts from the way the functionality is

achieved. However, we are precisely concerned with how a KBS performs its inference process.

Although approaches like VDM and Z incorporate the notion of a state in their speci�cation

approaches, their main goal is a speci�cation of the functionality and their means to specify

control over state transitions is rather limited. In Z, only sequence can be expressed and in

VDM procedural control over state transitions is a language element introduced during the

design phase of a system. We were also not so much looking for full-
edged speci�cation

approaches but we were searching for extensions of logical languages adapted for the pur-

pose of specifying dynamics. A second and more practical reason is the circumstance that a

comparison with abstract data types, VDM, Z and languages for KBSs is already provided

in [Fen95a]. Finally, one may miss speci�cation approaches like LOTOS [BB87] that are well-

suited for the speci�cation of interactive, distributed and concurrent systems with real-time

aspects. Because most development methods and speci�cation languages for KBSs (a promi-

nent exception is DESIRE) assume one monolithic sequential reasoner, such an approach is

outside the scope of the current speci�cation concerns for KBSs. However, future work on

distributed problem solving for KBSs may raise the necessity for such a comparison.

The paper is organized as follows. First, in Section 2 we introduce two dimensions we

distinguish to structure our analysis. In Section 3, we introduce the di�erent approaches we

have studied. Section 4 provides a short comparison between the formalisms according to our

dimensions of analysis, and conclusions.

In this short version we concentrate on the methodology of our comparison and on the

conclusions we have drawn. The actual comparison between the languages has been removed

from this version because of space limitations. The interested reader is referred to the long

version [vEEF+97].

2 The Two Dimensions of Our Analysis

In the analysis of the di�erent frameworks, it will be convenient to distinguish two dimen-

sions (see Figure 1). On the horizontal axis, we list a number of concepts which should be

represented in a framework. On the vertical axis, we list a number of aspects to be looked at

for each of the concepts. We will explain these dimensions in some more detail.

The behaviour of a KBS can, from an abstract point of view, be seen as follows. It

starts in some initial state, and by repeatedly applying some inferences, it goes through a

sequence of states, and may �nally arrive at a terminal state. So, the �rst element in a

speci�cation of a KBS concerns these states. What are states and how are they described in

the various approaches? Second, we look at the elementary transitions that take a KBS from

one state to the next. Third, it should be possible to express control over a sequence of such

elementary transitions by composing them to form composed transitions. This de�nes the

dynamic behaviour of a KBS. We will look at the possibility of specifying how the reasoning



process achieves its results. This is called the internal speci�cation. It should also be possible

to relate the description of the reasoning process to the declarative description of its desired

e�ect. The description of what the reasoning process has to derive is called the external

speci�cation. One must be able to relate the internal speci�cation of a reasoning process

with the goal that should be achieved by it. This introduces two requirements: modelling

primitives are required that describe the desired functionality of a KBS (i.e., its external

speci�cation) and a proof calculus must be provided that enables to relate the internal and

external descriptions of a KBS.

The second dimension of our analysis concerns three aspects of each of the concepts

described above. First of all, we look at the language of each of the formalisms (the syntax).

Which modelling primitives does the language o�er to describe a state, elementary transitions,

etc? Second, we examine the semantics of the language. A formal semantics serves two

purposes: it enables the de�nition of a precise meaning of language expressions and it enables

proofs of statements over language expressions. These proofs can be formalized and semi-

automatic proof support can be provided if an axiomatization based on a formal semantics

has been developed. Therefore, we look at axiomatization and proof calculi. Restricted but

still very useful support for the validation of speci�cations could be provided by prototyping

or partial evaluation based on an operational semantics.

elementary
transition

composed
transition

operationalization

semantics

syntax

axiomatization &

state

Figure 1: The two dimensions of our analysis

2.1 The Three Concepts Involved in the Reasoning of KBSs

As mentioned in the previous subsection, we distinguish two styles for the speci�cation of

composed transitions: external and internal. The former speci�es a system as a black box in

terms of its externally visible behaviour. It de�nes what should be provided by the system.

The latter speci�es a system in terms of its internal structure and the interaction between

parts of its internal structure: it describes how the system reaches its goals. Both description

styles appear in speci�cation languages for KBSs: external descriptions may appear at the

lowest and at the highest level of speci�cation of a KBS, while internal speci�cations relate

the description at the lowest and highest levels.

The elementary inferences of a KBS as well as its overall functionality should be describ-

able in an external style, as the internal details of an elementary inference are regarded as

implementational aspects. (A speci�cation should not enforce any commitments to its al-

gorithmic realization.) The overall functionality of a KBS, that is, the goals it can reach,



should be describable independent from the way they are achieved. Note that current KBS

speci�cation languages do not provide this at all levels of speci�cation. Actually, the equiv-

alence of the functional speci�cation of the goals (or task) and the external speci�cation of

the reasoning process of the KBS is a proof obligation for the veri�cation of the KBS.

Internal speci�cation techniques are necessary to express the dynamic reasoning process

of a KBS. A complex reasoning task may be decomposed into less complex inferences and

control is de�ned that guides the interaction of the elementary inferences in achieving the

speci�ed reasoning goals. This also allows successive re�nement. A complex task should be

hierarchically decomposed into (easier) subtasks. These subtasks are speci�ed externally and

treated as elementary inferences. If a subtask de�nes a computationally hard problem, it can

again be decomposed into a number of subtasks, along with an internal speci�cation of how

and when to invoke these subtasks.

In the following we discuss these di�erent concepts of a speci�cation in more detail.

2.1.1 States

With regard to the representation of the states of the reasoning process one can distinguish

(1) whether it is possible to specify a state at all; (2) whether a state can be structured (i.e.

decomposed into a number of local states and (3) how an individual state is represented;

Not each speci�cation approach in software or knowledge engineering provides the explicit

notion of a state (either global or local). An alternative point of view would be an event-

based philosophy useful to specify parallel processes (compare [Mil89]). TFL uses processes

as elementary modelling primitives that are further characterized by abstract data types in

the style of process algebra. No explicit representation of the reasoning state is provided.

The other approaches from knowledge engineering agree on providing the notion of a state

but di�er signi�cantly in the way they model it. (ML)2, MLCM and KARL represent a

global state. Still, it may be decomposed in what is called knowledge roles or stores. DESIRE

provides decomposition of a global state of the reasoner into local states of di�erent reasoning

modules (subcomponents of the entire system).

Semantically, the main descriptions of a state are: as a propositional valuation (truth

assignments to basic propositions, as used in the propositional variants of Dynamic logic and

Temporal logic ([Kro87])), as an assignment to program variables (as in the �rst-order variant

of Dynamic Logic), as an algebra (we will see that in Evolving Algebras), or as a full-
edged

�rst-order structure (as in the �rst-order variants of temporal logic).

2.1.2 Elementary Transitions

Elementary transitions should be describable without enforcing any commitments to their al-

gorithmic realization. A pure external de�nition is required, as a speci�cation should abstract

from implementational aspects. Still, `elementary' does not imply `simple'. An elementary

transition can describe a complex inference step, but it is a modelling decision that its inter-

nal details should not be represented. An important criterion for speci�cation approaches for

KBSs is therefore the granularity of the elementary transitions they provide.

2.1.3 Composed Transitions

One can distinguish non-constructive and constructive manners to specify control over state

transitions. A non-constructive or constraining speci�cation of control de�nes constraints



obeyed by legal control 
ows. That is, they exclude undesired control 
ows but do not

directly de�ne actual ones. Examples for such a speci�cation can be found in the domain

of information system speci�cations, e.g., LCM and Troll. Constructive speci�cations of

control 
ow de�ne directly the actual control 
ow of a system and each control 
ow which is

not de�ned is not possible. In general, there is no clear cutting line between both approaches,

as constructive de�nitions of control could allow non-determinism which again leads to several

possibilities for the actual control.

Another distinction that can be made is between sequence-based and step-based control.

In sequence-based control, the control is de�ned over entire sequences of states. That is, a

constraint or constructive de�nition may refer to states anywhere in a sequence. In a step-

based control de�nition, only the begin state and the end state of a composed transition are

described. For example, in Dynamic Logic, a program is represented by a binary relation

between initial and terminal states. There is no explicit representation of intermediate states

of the program execution. Other approaches represent the execution of a program by a

sequence of states (for example, approaches based on temporal logic). It begins with the

initial state and after a sequence of intermediate states, the �nal state is reached, if there is

a �nal state (a program may also run forever, as in process-monitoring systems).

For the representation of the reasoning process of KBSs this distinction has two important

consequences: (1) in a state-pair oriented representation, a control decision can only be made

on the basis of the actual state. A state-sequence oriented representation provides the history

of the reasoning process. Not only the current state but also the reasoning process that

leads to this state is represented. Therefore, strategic reasoning on the basis of this history

information becomes possible. For example, a problem-solving process that leads to a dead-

end can re
ect on the reasoning sequence that led to it and can modify earlier control decisions

(by backtracking); (2) with a representation as a sequence of states it becomes possible to

de�ne dynamic constraints that do not only restrict valid initial and �nal states but that

restrict also the valid intermediate states. Such constraints are often used in speci�cations of

information systems or database systems.

2.2 The Three Aspects of a Speci�cation of the Reasoning of KBSs

Perpendicular to the three speci�cation concepts are the three aspects syntax, semantics and

axiomatization/operationalization. For each of the concepts, these three aspects together

determine how and to which extent a concept can be used in a speci�cation: they constitute

the practical materialization of the concepts state and (elementary and composed) transition.

2.2.1 Syntax

Each of the four elements of a speci�cation is represented by a part of the syntax of a

speci�cation framework. A spectrum of 
avours of syntax can be distinguished. At one end

of this spectrum, speci�cation languages with an extensive syntax can be found, resembling

(conventional) programming language syntax. Usually, such a language is speci�ed by EBNF

grammar rules, and operators and other syntactic elements are represented by keywords

easily handled by software tools that support the speci�cation process. At the other end of

the spectrum, languages can be given by de�ning a notion of well-formed formulae composed

of logical operators and extra-logical symbols, possibly using one or two grammar rules.



2.2.2 Semantics

Semantics of speci�cation elements can be viewed as a function that interprets well-formed

formulae or syntactic expressions in some semantical domain, usually a mathematical struc-

ture. To support rigid proofs of speci�cation properties, such a semantics should be formal.

The semantics should be intuitive and relatively easy to understand so users are able to

precisely comprehend what a speci�cation means.

2.2.3 Proof Calculus and Operationalization

One of the main reasons for developing formal speci�cations of a system is to be able to rigidly

prove properties of the system speci�ed. To support such proofs, speci�cation frameworks

should include a formal proof calculus or proof system, which precisely speci�es which prop-

erties can be derived from a given speci�cation. At the very least, such a proof system should

be sound: it must be impossible to derive statements about properties of a speci�cation that

are false. Second, a proof system should ideally be complete, which means that it is powerful

enough to derive all properties that are true.

Formal speci�cation frameworks can enable the automatic development of prototypes of

the system being speci�ed. Such prototypes can then be evaluated to assess soundness and

completeness of the speci�cation with respect to the intended functionality of the system

being speci�ed. The `operationalization' of a speci�cation framework is meant to refer to the

possibilities and techniques for such automatic prototype generation.

3 Languages

In this section, we will give a very brief description of all of the frameworks we have studied.

The reader interested in more detail can either consult the original works, or read the longer

version of this paper. In that paper, we describe an example of a knowledge-based system

which has a non-trivial control of reasoning. This example was taken from the Sisyphus

project ([Lin94]), which was an extensive comparative exercise in the KBS community. This

example has been (partly) speci�ed in all frameworks, in order to make a realistic comparison

between the languages. A speci�cation of the top-level of the system is given, together with

a re�ned version of one of the parts of the system (to test the possibility of external and

internal speci�cations). The results in this paper are partly based on our experience with the

example, and again, the interested reader should consult the longer version. We will now list

and describe the frameworks studied.

Dynamic Database Logic ((P)DDL)

PDDL is a logic for describing state and state change in deductive databases. It is based

on Dynamic Logic, with special operators IHp and D
Hp where p is an atom, and H is a

de�nite logic program. IHp means that the fact p is inserted in the database, after which the

database is closed under the rules of H, and DHp means that p is deleted from the database,

which is then closed under the rules of H. Apart from these operators, the language contains

the Dynamic Logic operators for sequence, test and iteration. The semantics are like those of

Dynamic Logic (Kripke models with relations for the programs), with special interpretations

for the operators (the I operator should cause insertion for example). A proof calculus and an

operational semantics is provided. The �rst-order variant (DDL) allows conditional insertion.



Transaction Logic (T R)

T R is also a logic of state and state change in databases. In contrast to DDL, atomic actions

are a parameter of the logic: they are to be described in a transition oracle which sanctions the

transition from a state to another for each elementary transition. The only dynamic operator

is sequence. Semantically, formulas are interpreted over sequences of database states (in

contrast to DDL, where the meaning of a program is a binary relation on states). A program

contains formulas which constrain the allowed sequences of states (these formulas are often

in the form of Prolog-like rules). A proof system for the Horn fragment of the language is

provided, and T R has an operational semantics.

Evolving Algebras (EA)

The basic concept of EA's is simple: an EA speci�cation consists of rules that can (only)

change the value of a function in a particular argument (they are of the form f(t) := s). A

run of an EA is a sequence of algebras generated by consecutively �ring all the rules in the

current algebra. Many extensions of these rules exist, notably conditional function updates.

EA do not have a �xed proof system, but rather the user is to employ general mathematical

proof techniques.

Troll

Troll is an object-oriented speci�cation language for information systems, and has a rich

syntax. Objects with attributes and events can be speci�ed, together with interactions be-

tween objects. The e�ects of events can be speci�ed by giving constraints on the behaviour of

the objects through time. The semantics of Troll are obtained via a translation into OSL,

a temporal logic for reasoning about objects. This logic is equipped with a proof system. An

execution mechanism is provided for a fragment of Troll (lacking the temporal language).

Language for Conceptual Modeling (LCM)

LCM was developed as a tool for the conceptual analysis of object-oriented databases. The

basic language of LCM is equational logic (for specifying abstract data types). These data

types can be used to specify objects. Finally, some version of Dynamic Logic may be used

to specify e�ects and preconditions of actions (LCM is parameterized by the choice of the

operators). LCM has a proof calculus.

4 Comparison and Conclusions

In this section we will brie
y compare the di�erent formalisms using our two dimensions of

analysis, and then discuss a number of implications for the speci�cation of (in particular

control of) knowledge-based systems.

4.1 A Short Comparison

We will give a brief overview of the frameworks in terms of the three concepts mentioned in

the introduction.



4.1.1 States

With the exception of PDDL, where a state is a propositional valuation, a state is either an

algebra (EA and LCM) or a �rst-order structure (DDL, T R and Troll/OSL). Syntactically,

algebras are described in equational logic, while �rst-order structures are described in �rst-

order predicate logic. In Troll and LCM, the language is sorted, in the other frameworks

it is unsorted. In PDDL, a state is described in propositional logic. DDL and PDDL have

an operational semantics in which a state is a set of �rst-order structures (DDL) or a set

of propositional valuations (PDDL). One last point is whether the interpretation of function

symbols is �xed over all states, or whether it may vary. In EA and LCM (in which there

are only functions), functions are of course allowed to vary over states. In LCM, only the

attribute functions and boolean functions (which play the role of predicates) are allowed to

vary; functions speci�ed in the data value block (addition on the integers, for instance) must

be the same in all states. In DDL, there are no function symbols, only constants, which

should be the same in all states. In Troll, functions are not allowed to vary, however in T R

they are.

4.1.2 Elementary Transitions

With respect to the speci�cation of elementary transitions, two approaches can be distin-

guished: user-de�ned and pre-de�ned, �xed elementary transitions. In Troll and LCM, the

user de�nes a set of elementary transitions (i.e., speci�es their names) and describes their

e�ects using e�ect and precondition axioms. For instance, in Troll, the user de�nes for each

object class a set of events, which are the elementary transitions from one point in time of

a Troll model to the next. Associated with each event e is a predicate occurs(e), which is

true in a time point t i� event e occurs in time point t, leading to a new state at time point

t+1. Using this predicate, the user describes the intended behaviour of e. In LCM, the user

also de�nes a set of events for each object class. For each event e, the user can de�ne e�ect

axioms of the form � ! [e] and precondition axioms of the form heitrue !  . The events

denote binary relations over states. On the other hand, in (P)DDL and EA, there is only a

pre-de�ned, �xed set of elementary transitions, which resemble the assignment statement in

programming languages. In (P)DDL, there are two prede�ned elementary transitions, and

there is no possibility for the user to de�ne additional ones. These prede�ned transitions are

I
Hp (set p to true) and DHp (set p to false) and their variants Ip and Dp, which just insert p

into or delete p from a database state. (DDL adds to this the possibility to perform parallel

updates and choice.) Semantically, Ip and Dp are relations that link pairs of states (m;n)

where m = n for all predicates but p. In EA, there is only one type of elementary transitions,

namely function updates expressed as f(t) := s, which links two algebra's A and A0 that only

di�er in the values for f(t). The T R approach is in-between these two approaches: as in

Troll and LCM, the user de�nes a set of elementary transitions, but unlike in Troll and

LCM, it is possible to constructively de�ne their e�ect in a transition oracle. Semantically, in

T R an elementary transition is a relation between database states, where the transition oracle

de�nes which pairs of database states are related. In T R it is also possible to describe the

e�ect of an elementary transition without explicitly de�ning that transition in the transition

oracle.



4.1.3 Composed Transitions

In EA, the main possibility to specify composed transitions is to make them conditional

using an if-then-else construction. There is no possibility to specify sequential composition

or iteration. For the other frameworks, two approaches can be distinguished. In Troll

and T R, elementary transitions can be composed using sequencing, iteration and choice.

In both frameworks, the composed transitions thus formed are interpreted over sequences

of states. In LCM and (P)DDL, elementary transitions can be composed using a syntax

derived from process algebra, which also amounts to having sequencing, iteration and choice

for composition. However, unlike in Troll and T R, a composed transition is not interpreted

over a sequence of states, but as a relation between pairs of states: the state at the beginning

of the composed transition and the �nal state of the composed transition, as in Dynamic

Logic. The transition relation associated with a composed transition is of the same kind as

the transition relation associated with an elementary transition in LCM and (P)DDL, and no

intermediate states are accessible in the semantics, so it is impossible to express constraints

on intermediate states.

There is another important di�erence between Troll and T R on the one hand, and

LCM and (P)DDL on the other hand. In P(DDL) and LCM, specifying control in composed

transitions in a constructive way (`programming' with sequencing, choice and iteration) is the

only possibility. However, in Troll and T R, control can also be speci�ed by constraining

the set of possible runs of a system, e.g., in Troll control over runs of the system can also

be speci�ed by expressing constraints using temporal logic.

4.2 Conclusions

In this second part of the concluding section we will make a number of observations that

are relevant for future users of the speci�cation languages discussed above, and for future

designers of KBS speci�cation languages, in particular as far as the choice of speci�cation

language features for control is concerned.

Constructive or Constraining Speci�cations

In all of the languages discussed in this paper, the constructive style of speci�cation is sup-

ported. Examples of this are the program expressions in DDL, or the communicating algebra

expressions in LCM. In contrast with the widely supported constructive style of speci�cation,

only Troll and T R support the constraining style of speci�cation. We think that for the

speci�cation of control of the reasoning process of a KBS, both styles are valuable. It would

be especially useful to be able to combine both styles in one speci�cation, as is possible in

T R and Troll.

Modularity

The languages di�er in the extent to which control must be speci�ed globally, for an entire

system, or locally, separately for individual modules of a system. In particular, DDL and

T R only allow a single, global control speci�cation, while Troll and LCM allow the spec-

i�cation of control that is local for individual modules. Because the arguments in favour

of either approach resemble very much the arguments in favour or against object-oriented



programming, we will not go into any detail here, but refer to that discussion, with the pro-

viso that we are concerned here with notions of modularity and encapsulation, and not so

much with inheritance and message passing. Besides such general software engineering ar-

guments in favour of object-oriented techniques, knowledge modelling has particular use for

such techniques: frames have a long tradition in knowledge representation, and are a precur-

sor of object-oriented techniques. Dealing with mutually inconsistent subsets of knowledge is

a particular example of the use of localized speci�cations.

Control Vocabulary

With `control vocabulary' we mean the possibilities (in a technical sense) that the language

gives us to construct composed transitions from more primitive ones. Here, the news seems

to be that there is relatively little news: there is a standard repertoire of dynamic type

constructors that every language designer has been choosing from. This repertoire always

contains sequential compositions, and often one or more from the following: iteration, choice,

parallelism (with or without communication).

Two languages take a rather di�erent approach however, namely LCM and EA. The

designers of LCM suggest the use of some form of process algebra for their dynamic signature,

but make no strong commitment to any particular choice, and LCM should perhaps be viewed

as parameterized over this choice. In the case of EA it seems that there is no possibility

at all to include any control vocabulary in the language: EA provides only its elementary

transitions (the algebra updates). It provides neither a �xed vocabulary for building composed

transitions, nor does it seem parameterized over any choice for such a vocabulary.

The languages di�er in their treatment of intermediate states that might occur during a

transition from an initial to a terminal state. In DDL, as in dynamic logic on which DDL

is based, there is no representation of any intermediate states of a program execution: any

execution is represented as a pair of initial and terminal states (step-based control speci�ca-

tion). Similar properties hold for the other languages, with the exception of Troll and T R.

In these languages, the execution of a program is represented as a sequence of intermediate

states (sequence-based control speci�cation). As explained in section 2.1.3, this has important

consequences for the representation of the reasoning process in a KBS.

A �nal point concerns the treatment of non-terminating processes. Such non-terminating

processes might occur in the speci�cation of knowledge-based systems for process control

and monitoring. Troll, LCM and EA can all deal with such non-terminating processes.

Although it is of course possible to specify non-terminating processes in (P)DDL and T R, it

is not possible to derive any useful properties of such programs.

Re�nement

It is commonly accepted in Software Engineering that a desirable feature of any speci�cation

language is to have the possibility of re�nement. By this we mean the ability to specify

program components in terms of their external properties (i.e., a functional speci�cation,

sometimes called a \black box" speci�cation), and only later unfold this black box speci�cation

into more detailed components, and so on recursively.

In the context of speci�cation languages, a necessary condition for the possibility of re�ning

is the presence of names for actions: one needs to be able to name a transition which is

atomic on the current level (i.e., a \black box" speci�cation), but which is perhaps a complex



of transitions on a �ner level. Without such names for actions, one cannot give an abstract

characterization of transitions. Of course, such an abstract characterization (in terms of

preconditions, postconditions etc.) should be possible in the framework to allow re�nement

later on.

It is not immediately clear how the languages discussed above behave in this respect. DDL

clearly does not allow re�nement (names referring to composed actions simply do not exist in

DDL), while LCM does (at least, if we choose the signature of the process algebra sort rich

enough). The external functions of EA give us the means to make black box speci�cations.

However, it is not possible within the EA framework to specify the behaviour of such black

boxes, which by implication also precludes the possibility of proving within the EA framework

that a given implementation (re�nement) of a black box satis�es the speci�cations. The

designers of the EA framework prefer to use general mathematical techniques for treating

re�nement. The simple mathematical structure of the EA framework makes this feasible.

Although the transaction base from T R resembles the external functions of EA, T R is

stronger than EA in this respect: the transaction base can be used to model black-box transi-

tions, but unlike the external functions in EA the transitions of T R can be speci�ed by means

of pre- and post-conditions. Furthermore, it is possible to later provide an implementation of

a transaction in T R and to prove that this implementation is indeed a correct re�nement of

the functional speci�cation.

In Troll it seems that there is almost the possibility to say that one speci�cation re�nes

the other. Troll enables both constraining speci�cation (based on atomic transition), but

also constructive speci�cation of composed transitions (in terms of more detailed atomic

transitions). What is lacking is a way to relate such a constructive speci�cation to an atomic

transition, so it cannot be expressed that this more detailed speci�cation is a re�nement of

the atomic transition.

Finally, desirable as the presence of names for composed actions may be, there is a price

to be paid for having the option of black box speci�cations. A black box speci�cation of a

transition usually only states which things change, with the assumption that all other things

remain the same. It should not be necessary for the user to explicitly specify what is left

una�ected by the transition. The problem of how to avoid statements of what remains the

same (the frame axioms) has proven to be very di�cult. This so-called frame problem is the

price that has to be paid.

In languages with only pre-de�ned transactions (like in DDL), the designers of the lan-

guage have speci�ed the required frame-axioms. For languages with user-de�ned atomic

transactions there is no way out for the user but to write down the frame axioms explicitly.

For the purposes of execution, the frame problem can be circumvented by an implementa-

tion of the primitive transactions outside the logic. However, the languages we are dealing

with are meant to specify systems, and the price for such externally implemented primitive

transactions has to be paid at veri�cation time. For veri�cation purposes, we would want the

primitive transactions to be speci�ed in the logic, which then brings back the frame problem.

Proofs

Since the languages discussed in this paper are intended as tools to formally specify software

systems, we would expect them to be equipped with a proof calculus which enables us to

prove that a speci�cation exhibits certain properties. Of the languages discussed, only T R

and (P)DDL pay extensive attention to a proof calculus. Troll has to rely on its translation



to OSL in order to use the axiomatization of OSL, while EA relies on general mathematical

reasoning, without a formal proof calculus. LCM has a proof calculus based on equational

logic.

Syntactic variety

There is a large variety in the amount of syntactic distinctions which are made by the various

languages. On the one hand languages like Troll and LCM provide a rich variety of syntac-

tic distinctions, presumably to improve ease of use by human users, while on the other hand

approaches like (P)DDL, EA and T R provide a much more terse and uniform syntax. This

issue is related with the di�erent goals which the di�erent proposals are aiming at. Syntac-

tically rich languages like Troll and LCM do indeed aim at being a full grown speci�cation

language, while formalisms like EA and T R aim instead at providing a framework (a logical

framework, in the case of T R) that should be used as the foundation of a speci�cation, rather

then being a speci�cation language themselves.

4.3 Final Remarks

The original motivation of the research reported in this paper was the lack of consensus

among KBS speci�cation frameworks concerning the speci�cation of control for KBSs. We

had hoped that neighboring areas might have solved this problem, or at least have established

more stable notions than what had been achieved in the KBS area.

Our investigations among non-KBS speci�cation languages have revealed a number of

constructions that could certainly be of interest for the KBS speci�cation language community.

Examples of these are the notions of constructive and constraining control speci�cation (and

in particular the idea to combine both of these in a single language), the idea to de�ne

transitions in terms of sequences of intermediate states instead of just the initial and terminal

state of the transition, and the rich variety of semantic characterizations of the notion of

state. Furthermore, these constructions are not just initial ideas, but have often reached a

state of formal and conceptual maturity which make them ready to be used by other �elds

such as the speci�cation of KBSs.

However, this wide variety of well worked out proposals, is at the same time a sign of much

un�nished work. As in the �eld of KBS speci�cation languages, the neighboring �elds have

not yet reached any sort of consensus on the speci�cation of control, neither in the form of a

single ideal approach, nor in the form of guidelines on when to use which type of speci�cation.
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