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#� (IPP

-AY ��� ����

!BSTRACT

! STOCHASTIC CONTROL PROBLEM OF 3CHWEIZER IS CONSIDERED FOR SIMULTANEOUS

CONTROL OF CLAIMS AND INVESTMENT RISK� %XAMPLES WITH DIdUSION AND WITH

JUMPPROCESSES ARE GIVEN� &URTHERMORE� FOR THE CONTINUOUS CASE A PARTIAL

DIdERENTIAL EQUATION IS DERIVED FOR OPTIMAL HEDGING OF CONSTANT LIABILITIES�

�� )NTRODUCTION AND 3UMMARY

7E CONSIDER THE PROBLEM OF HEDGING A GENERAL CLAIM  A LIABILITY  IN AN INCOMPLETE

MARKET WITH SOURCES OF RANDOMNESS WHICH ARE DIdUSIONS OR PURE JUMP PROCESSES�

4HIS PROBLEM HAS BEEN STUDIED EXTENSIVELY BY 3CHWEIZER �SEE ;�= AND ;�=	� WHO GAVE

A COMPLETE SOLUTION TO THIS PROBLEM IN THE DISCRETE TIME CASE� AND IN THE CONTINU

OUS TIME CASE UNDER THE CONDITION THAT THE MEANVARIANCE TRADEOd IS DETERMINISTIC�

)N (IPP ;�= THE FORM OF THE OPTIMAL HEDGING STRATEGY IS GIVEN FOR THE CASE THAT

THE 'IRSANOV MARTINGALE DENSITY �THE MINIMAL MARTINGALE DENSITY	 ADMITS A SHORT

)T´ REPRESENTATION� %XAMPLES� SIMULATIONS� AND A PDE FOR THE COMPUTATION OF THE

OPTIMAL HEDGING STRATEGY FOR THIS CASE CAN BE FOUND IN (IPP ;�=� )N THIS PAPER

WE SHALL GIVE SEVERAL EXAMPLES IN WHICH EITHER THE LIABILITY OR THE TRADEABLE ASSET

CONTAINS A JUMP PROCESS� &URTHERMORE� A PDE WILL BE GIVEN FOR THE GENERAL CONTIN

UOUS TIME CASE �I�E� WITHOUT A SHORT )T´ REPRESENTATION	 FOR THE OPTIMAL HEDGING

STRATEGY WHEN THE LIABILITY IS A CONSTANT� &OR THE EXAMPLE OF A LINEAR DRIFT AND A

POWER DIdUSION TERM� WE PRESENT THE FORMULA AND PLOT FOR THE RESIDUAL RISK AND

GIVE SIMULATIONS FOR THE COMPARISON OF LOCALLY OPTIMAL AND GLOBALLY OPTIMAL HEDG

ING STRATEGIES� &OR FURTHER RESULTS IN THE CASE IN WHICH A SHORT )T´ REPRESENTATION

IS NOT POSSIBLE SEE $ELBAEN AND 3CHACHERMAYER ;�=�

7E CONSIDER A VERY SIMPLE MODEL IN WHICH TWO STOCHASTIC PROCESSES ARE GIVEN�
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WHERE 7�S� IS SQUARE INTEGRABLE AND MODELS THE ASSET PRICE PROCESS TO HEDGE WITH�

7�S� MIGHT EQUALLY WELL BE MULTIVARIATE� 7E ALSO ASSUME +�S� TO BE SQUARE INTE

GRABLE� +�3 � IS THE LIABILITY TO BE HEDGED� 4HE PROCESSES 5�6 ARE INDEPENDENT

STANDARD 7IENER� THE PROCESSES -�, ARE INDEPENDENT OF 5�6 AND ORTHOGONAL�

4HE FUNCTIONS m� n� o AND @� ���� D ARE ASSUMED TO BE PREDICTABLE� SMOOTH� AND

DEPENDING ON S� 7�S�� +�S�� AND ON CLAIM SIZES OBSERVED UNTIL TIME S� /UR PROCESS

�7�S�� +�S�� IS -ARKOVIAN AND DESCRIBES AN INCOMPLETE MARKET IN TWO RESPECTS�

IT IS INCOMPLETE SINCE IT INVOLVES COMPOUND 0OISSON PROCESSES� AND IS INCOMPLETE

SINCE THE QUANTITY +�S� IS NOT TRADED� /UR AIM IS TO çND A PREDICTABLE PROCESS t�S�

SUCH THAT
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t�R�C7�R�

IS DEçNED AND SQUARE INTEGRABLE FOR ALL S� AND SUCH THAT

$ �+�3 �`&3 �t��
�

IS MINIMIZED� &OR APPLICATIONS IN INSURANCE� +�S� WOULD BE �ESTIMATED	 PREMIUM

INCOME UP TO TIME S MINUS �ESTIMATED	 COST FOR CLAIMS NOTIçED UP TO TIME S� 4HE

PROCESS 7�S� WOULD BE THE PROCESS OF MARKET PRICES OF çNANCIAL ASSETS AND�OR IN

SURANCE FUTURES OR OPTIONS� )N ORDER NOT TO OVERLOAD THE PAPER� WE SHALL NOT DISCUSS

THE PROBLEMS CONCERNING CHOICE OF 3� CHOICE OF OBJECTIVE FUNCTION� STATISTICAL PROB

LEMS AND IMPLEMENTATION IN THE REAL WORLD� &OR REAL WORLD IMPLEMENTATION� THE

DISCRETE TIME APPROACH SEEMS SUITABLE SINCE IN THIS CASE WE HAVE OPTIMAL HEDGING

STRATEGIES IN THE GENERAL CASE� HOWEVER� THESE OPTIMAL SOLUTIONS ARE QUITE COMPLI

CATED� THEY CANNOT BE COMMUNICATED� (ENCE MAYBE A CONTINUOUS TIME SOLUTION

WHICH CAN BE COMMUNICATED MIGHT BE USEFUL� )N FACT� THE EXAMPLES WITH JUMP

PROCESSES CONSIDERED IN THIS PAPER� ARE QUITE INTUITIVE� /N THE OTHER HAND� WE

BELIEVE THAT THE CONTINUOUS CASE �o � � AND�OR B � D � �	 DOES NOT SOLVE THE

PROBLEM FOR INSURANCE LIABILITIES SINCE I	 DIdUSION APPROXIMATIONS FOR THE CLAIMS

PROCESS ARE BAD WHEN LARGE CLAIMS ARE POSSIBLE� II	 THE âUCTUATION IN PREMIUM

INCOME CAN BE MODELLED MUCH BETTER BY JUMP PROCESSES� AND III	 THE RESIDUAL RISK

WILL USUALLY BE LARGE IF A JUMP PROCESS IS HEDGED BY A CONTINUOUS PATHS PROCESS�

)N THE FOLLOWING� WE NEED THE CONCEPTS OF A MINIMAL MARTINGALE DENSITY� THE

VARIANCE OPTIMAL MARTINGALE DENSITY� THE SHORT )T´ REPRESENTATION� AND THE MEAN

VARIANCE TRADEOd PROCESS� ,ET &�S�� � v S v 3� BE THE NATURAL çLTRATION OF OUR

PROCESS �7�S��+�S���

4 � +� IS A MARTINGALE DENSITY �FOR 7�S�� � v S v 3� � IF $4 � � AND
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,ET t
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�S� BE THE SOLUTION OF OUR HEDGING PROBLEM FOR THE CONSTANT LIABILITY

+�3 � � �� 4HE VARIANCE OPTIMAL MARTINGALE DENSITY IS
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IT IS IN FACT THE UNIQUE MARTINGALE DENSITY ADMITTING A SHORT )T´ REPRESENTATION�
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� ��� BE THE JUMP SIZES OF -�S� WHICH ARE ASSUMED TO BE IID AND INDE

PENDENT OF 6�5� AND THE UNDERLYING COUNTING PROCESSES� 7RITE x
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4HE MINIMAL MARTINGALE DENSITY 9�3 � IS THE çNAL VALUE OF THE PROCESS 9�S�

GIVEN BY
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4HIS IMPLIES THAT UNDER ����	 THE OPTIMAL STRATEGY t
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4HIS DOES NOT SOLVE OUR PROBLEM� SINCE WE ARE STILL LEFT WITH THE QUESTION OF EX

ISTENCE AND ADMISSIBILITY OF t

�
�S�� "UT AT LEAST WE CAN TRY TO COMPUTE t

�
�S� WITH

THE ABOVE FORMULA AND TRY TO VERIFY ITS ADMISSIBILITY�

&OR GENERAL LIABILITIES +�3 � WE SHALL NEED THE FOLLOWING &¶LLMER3CHWEIZER DE

COMPOSITION FOR +�3 � �
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WHERE F�S� IS PREDICTABLE� AND 1�S� IS A MARTINGALE WHICH IS ORTHOGONAL TO 7� 7E

SHALL ALSO USE THE NAME INTRINSIC VALUE PROCESS �INTRODUCED BY 3CHWEIZER	 FOR THE
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7E CAN NOW STATE OUR çRST THEOREM�

4HEOREM ���� 5NDER ASSUMPTION ����	 THE OPTIMAL HEDGING STRATEGY FOR +�3 �

HAS THE FOLLOWING FORM�
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�� 4HE CONTINUOUS CASE

7E SHALL NOW HAVE A SOMEWHAT CLOSER LOOK AT THE CASE o � B � D � �� )N THIS

SITUATION� 9��S� � �� � v S v 3 �SEE $ELBAEN AND 3CHACHERMAYER ;�=	� )F 9�3 �

ADMITS A SHORT )T´ REPRESENTATION
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THEN 9��3 � � 9�3 � AND t��S� � `Y�S�� ,ET 0
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BE THE EQUIVALENT MARTINGALE

MEASURE WITH DENSITY 9��3 �� 4HEN THERE EXISTS A STANDARD 7IENER PROCESS 5�

WHICH  UNDER 0
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7E REFER TO THE CALCULATIONS OF (IPP ;�= WHICH ARE EASILY ADAPTED TO OUR MORE

GENERAL SITUATION� %XISTENCE AND ADMISSIBILITY OF t+ ARE INVESTIGATED IN THE RECENT

PAPER BY 2HEINL¤NDER AND 3CHWEIZER ;�=� )N CASES FOR WHICH THE OPTIMAL HEDGING

STRATEGY FOR THE CONSTANT � CANNOT BE GIVEN� A POSSIBLE ALTERNATIVE WOULD BE THE

LOCALLY OPTIMAL HEDGING STRATEGY WHICH IS DEçNED BY

t

K

+
�S� � F�S� 


@�S�

A

�
�S�

r
B
+�S�`&S�t+�

s
�

4HE HEDGING STRATEGY t

K

+
�S� MINIMIZES THE RESIDUAL RISK

$ �+�3 �`&
3
�t��

�
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/FTEN� THE PERFORMANCE OF THESE ALTERNATIVE HEDGING STRATEGIES IS QUITE POOR�

)F ����	 HOLDS� THEN t��S� CAN BE COMPUTED VIA A PARTIAL DIdERENTIAL EQUATION

WHICH IS DERIVED IN (IPP ;�=� LET G � G�W� S� BE THE SOLUTION OF
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%XAMPLE ���� ,ET 7�S� BE DEçNED BY
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)F Q � �� THEN v IS CONSTANT� )F Q �� �� THEN WE HAVE A SINGULARITY AND MUST RESTRICT

THE RANGE FOR 3 �

3 �

�{

�@�� ` Q�

IF @�� ` Q� � ��

3 � `

{

�@�� ` Q�

IF @�� ` Q� � ��

&OR çXED LIABILITY +�3 � � � WE CONSIDER TWO HEDGING STRATEGIES�
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4HE FOLLOWING çGURES DEAL WITH THE CASE @ � �� Q � ���� )N &IGURE ��� WE SHOW THE

RESIDUAL RISKS FOR BOTH STRATEGIES� THE FUNCTIONS
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THE LAST ONE NOT GOING TO ZERO IF 3 ��� &IGURE ��� SHOWS SIMULATIONS FOR THE GAINS

PROCESS FOR THE GLOBALLY OPTIMAL� &IGURE ��� FOR THE LOCALLY OPTIMAL STRATEGY�4HE

HEDGING STRATEGIES t

�
�S� IN THESE SIMULATIONS ARE GIVEN IN &IGURE ���� 3URPRISINGLY�

THERE IS LITTLE FOR THE INVESTMENT MANAGER TO DO UNTIL DAY ����
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�� ! PDE FOR THE CONTINUOUS CASE

7E SHALL NOW DERIVE A PDE FOR THE VALUE FUNCTION OF OUR STOCHASTIC CONTROL PROBLEM

IN THE CONTINUOUS CASE o � B � D � �� &OR R� W� K � 2 LET 4�R� W� K� S� BE THE RESIDUAL

RISK OF THE OPTIMAL HEDGING STRATEGY t FOR THE CONSTANT LIABILITY R IN THE INTERVAL
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&OR THE FUNCTION % � �� WE OBTAIN THE SOMEWHAT SIMPLER PDE
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4HE BOUNDARY CONDITIONS ARE

 �W� K� 3 � � % �W� K� 3 � � ��

7E CANNOT GIVE A GENERAL SOLUTION TO ����	� IN SPECIAL CASES� HOWEVER� WE OBTAIN

THE OPTIMAL HEDGING STRATEGIES WHICH ARE KNOWN SO FAR�

q m

�
�n

�

DETERMINISTIC� I�E� NOT DEPENDING ON W OR K� ONLY ON S� IN THIS CASE %
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4HIS IS EXACTLY THE PDE ����	� AND THE OPTIMAL HEDGING STRATEGY GIVEN ABOVE

FOR THIS CASE� .OTICE THAT IN THIS CASE WE HAVE A SHORT )T´ REPRESENTATION FOR
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REPRESENTATION FOR 9� 4HE RESULTING PDE DIdERS FROM ����	� BUT THE CASE C � �

WAS NOT CONSIDERED IN (IPP ;�=�

�



�� %XAMPLES WITH JUMP PROCESSES

)N THE CONTINUOUS CASE� THE VARIANCE OPTIMAL MARTINGALE DENSITY WAS OF MAJOR

IMPORTANCE� 4HIS IS NO LONGER TRUE IN THE PURE JUMP CASE� #ONSIDER -�S� A

COUNTING PROCESS� -��� � �� ALL JUMPS OF SIZE �� 4HE ONLY RANDOM VARIABLE 9
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