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Abstract

A stochastic control problem of Schweizer is considered for simultaneous
control of claims and investment risk. Examples with diffusion and with
jump-processes are given. Furthermore, for the continuous case a partial
differential equation is derived for optimal hedging of constant liabilities.

1. Introduction and Summary

We consider the problem of hedging a general claim - a liability - in an incomplete
market with sources of randomness which are diffusions or pure jump processes.
This problem has been studied extensively by Schweizer (see [4] and [5]), who gave
a complete solution to this problem in the discrete time case, and in the continu-
ous time case under the condition that the mean-variance tradeoff is deterministic.
In Hipp [3] the form of the optimal hedging strategy is given for the case that
the Girsanov martingale density (the minimal martingale density) admits a short
It6 representation. Examples, simulations, and a pde for the computation of the
optimal hedging strategy for this case can be found in Hipp [2]. In this paper
we shall give several examples in which either the liability or the tradeable asset
contains a jump process. Furthermore, a pde will be given for the general contin-
uous time case (i.e. without a short Itd representation) for the optimal hedging
strategy when the liability is a constant. For the example of a linear drift and a
power diffusion term, we present the formula and plot for the residual risk and
give simulations for the comparison of locally optimal and globally optimal hedg-
ing strategies. For further results in the case in which a short It6 representation
is not possible see Delbaen and Schachermayer [1].

We consider a very simple model in which two stochastic processes are given:

dX(t) = adt+ SdW(t) +~dN(t), X(0) = zo
dL(t) = adt+bdW (t) + cdN(t) + ddV (t) + edM(t), L(0) = Iy,



where X (1) is square integrable and models the asset price process to hedge with;
X(t) might equally well be multivariate. We also assume L(t) to be square inte-
grable, L(T) is the liability to be hedged. The processes V,W are independent
standard Wiener, the processes N, M are independent of V., W and orthogonal.
The functions «, 3, v and a,...,e are assumed to be predictable, smooth, and
depending on ¢, X (t), L(t),and on claim sizes observed until time £. Our process
(X (1), L(t)) is Markovian and describes an incomplete market in two respects:
it is incomplete since it involves compound Poisson processes, and is incomplete
since the quantity L(t) is not traded. Our aim is to find a predictable process 6(t)
such that

t
G(0) = / 0(s)dX(s)
0
is defined and square integrable for all ¢, and such that
E(L(T) = Gr(6))”

is minimized. For applications in insurance, L(t) would be (estimated) premium
income up to time ¢ minus (estimated) cost for claims notified up to time ¢. The
process X (1) would be the process of market prices of financial assets and/or in-
surance futures or options. In order not to overload the paper, we shall not discuss
the problems concerning choice of T', choice of objective function, statistical prob-
lems and implementation in the real world. For real world implementation, the
discrete time approach seems suitable since in this case we have optimal hedging
strategies in the general case; however, these optimal solutions are quite compli-
cated, they cannot be communicated. Hence maybe a continuous time solution
which can be communicated might be useful. In fact, the examples with jump
processes considered in this paper, are quite intuitive. On the other hand, we
believe that the continuous case (7 = 0 and/or ¢ = ¢ = 0) does not solve the
problem for insurance liabilities since i) diffusion approximations for the claims
process are bad when large claims are possible, ii) the fluctuation in premium
income can be modelled much better by jump processes, and iii) the residual risk
will usually be large if a jump process is hedged by a continuous paths process.

In the following, we need the concepts of a minimal martingale density, the
variance optimal martingale density, the short It6 representation, and the mean-
variance tradeoff process. Let F(t), 0 < ¢ < T, be the natural filtration of our
process (X (1), L(t)).

U € Ly is a martingale density (for X (t),0<¢<T,)if FU =1 and

E(U(X(t)— X(s))|F(s)) =0, 0< s<t<T.

U admits a short Ité representation if
T
U = —I—/ u(t)dX(1).
0
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Let 01(t) be the solution of our hedging problem for the constant liability
L(T) = 1. The variance optimal martingale density is

Z(T) = (1 = Gr(01))/E (1 = Gr(61))) -

Notice that Z1(T") admits a short It6 representation and is a martingale density,
it is in fact the unique martingale density admitting a short Ité representation.

Let Y7, Ys, ... be the jump sizes of N(t) which are assumed to be iid and inde-
pendent of W,V and the underlying counting processes. Write p, for the k—th
moment of ¥;. The drift of X equals a+Ayuy, the local variance of X is 5%+ My2u,.
The mean-variance tradeoff process is the predictable process

_ (et )
B+ M2p
Let A be the predictable process defined by
_at Ay
B+ M2,
The minimal martingale density Z(T') is the final value of the process Z(t)

given by B
dZ(t) = —AZ(t—)(BdW (t) + vdN(t))

with NV (1) = N(t) — Apyt. The martingale density is of the Girsanov type, but in
the case with jumps it looks a bit different: If 0 = Ty < Tj... are the jump times
and if Ny(t) is the counting process corresponding to N (%), then with

B(t,u) = exp <—/ ABdW — %/ A2ﬂ2> —I—/ AvyApqds
t t t

we have
No(T)
2(T) = BTy, 1) ][ (B(Tir, T) = AT)(T3)Y)
k=1
Under the following condition
T
exp <—/0 /{(t)dt> is independent of W (t), 0 <t < T (1.1)

we have a simple expression for Z;(7T) :
T
Z1(T) = Z(T)exp <—/ /{(t)dt> .
0
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This implies that under (1.1) the optimal strategy 6, (¢) has the form
01(t) = A(t) (1 = Gi(61))

and the residual risk equals

E(1—Gy(6,))” = Eexp <—2/0T /i(t)dt> :

This does not solve our problem, since we are still left with the question of ex-
istence and admissibility of #1(t). But at least we can try to compute 64 (¢) with
the above formula and try to verify its admissibility.

For general liabilities L(1') we shall need the following F'éllmer-Schweizer de-
composition for L(T) :

L(T)= Lo+ /Tg(t)dX(t) + R(T),

where g(t) is predictable, and R(t) is a martingale which is orthogonal to X. We
shall also use the name intrinsic value process (introduced by Schweizer) for the
process

¢
L(t) = Lo —I—/ g(s)dX(s) + R(1).
0
We can now state our first theorem:

Theorem 1.1. Under assumption (1.1) the optimal hedging strategy for L(T)
has the following form:

0,(t) = g(t) + A(t) (E(t) - Gt,(eL)) .

2. The continuous case

We shall now have a somewhat closer look at the case v = ¢ = ¢ = 0. In this
situation, Z1(t) > 0,0 <t < T (see Delbaen and Schachermayer [1]). If Z(T)
admits a short It6 representation

Z(T) = 20 + / ' At)dX (1), (2.1)

then Z1(T) = Z(T) and 6,(t) = —=z(t). Let P* be the equivalent martingale
measure with density Z;(7T"). Then there exists a standard Wiener process V;
which - under P* - is orthogonal to X. If (2.1) holds, then V' = V;. We obtain our

next theorem:



Theorem 2.1. If 5 > 0, if L(T') admits a Féllmer-Schweizer decomposition

LGU:lm+:/Tﬂde@y+/Th@MVK0

and if the adjusted intrinsic value process is

E@:%+Agﬂm@+1h@ww%

then the optimal hedging strategy 0r(t) for L(T) has the form

0u(t) = 9(0) + o5 (E0) = Gulow)).
The residual risk equals
E(L(T) - Gr(01)) = Lo/EZ(T)

+F /0 R%(1) ZZ%IQ%) dt.

We refer to the calculations of Hipp [2] which are easily adapted to our more
general situation. Existence and admissibility of 67, are investigated in the recent
paper by Rheinldnder and Schweizer [6]. In cases for which the optimal hedging
strategy for the constant 1 cannot be given, a possible alternative would be the
locally optimal hedging strategy which is defined by

0400) = a(0) + g (20 = Gilo).

The hedging strategy 0% (t) minimizes the residual risk
E(L(T) = Gr(6))’

under the probability measure P with a density proportional to

([ 0)

Often, the performance of these alternative hedging strategies is quite poor.
If (2.1) holds, then 0,(t) can be computed via a partial differential equation
which is derived in Hipp [2]: let h = h(z,t) be the solution of

2
1
he + %h + 5B haa — ahy =0, h(z,T) = 1. (2.2)
Then 0 (t) h
1 x
= A(t) — —.
Z1(t) *) h



Example 2.2. Let X(t) be defined by
dX(t) =aX(t)dt + X (t)"dW (1), X(0) = xo.

The Ansatz
h(z,t) = exp (C’(t)a:Q(l*T) + D(t))
yields

a s

O = 550 (tan(a(l—r)(T—t) 4)+1)

Dty = (1-r)(1- 27")/t C(s)ds.

If r =1, then k is constant. If r # 1, then we have a singularity and must restrict
the range for T :

3T
T ———ifa(l —
< 4a(1—7")1 a(l —r) >0,
7T
T ———ifa(l — .
4a(1—7")1 a(l—r) <0

For fixed Liability L(T) = 1 we consider two hedging strategies:

0:(1)
0'(t) = A(t)(1— Gy(0"))

the globally optimal strategy 0(t) and the locally optimal hedging strategy 0'(t).
Under condition (2.1), which is true here, the residual risk for Ql(t) equals

E(1-Gp(0)" = Bexp <— /OT /{(t)dt> .

The following figures deal with the case a = 1,7 = 1/2. In Figure 2.1 we show the
residual risks for both strategies: the functions

exp(—1 —tan(7/2 — 7 /4))

exp (1 + v/3tanh (?T — %bg(? - \/§)>>

the last one not going to zero if I' — oo. Figure 2.2 shows simulations for the gains
process for the globally optimal, Figure 2.3 for the locally optimal strategy.The
hedging strategies 01 () in these simulations are given in Figure 2.4. Surprisingly,

and

there is little for the investment manager to do until day 130.



3. A pde for the continuous case

We shall now derive a pde for the value function of our stochastic control problem
in the continuous case y = ¢ =e = 0. For s,z,1 € R let U(s, z,l,t) be the residual
risk of the optimal hedging strategy 6 for the constant liability s in the interval
(t,T), i.e. 0 minimizes

<s — /tTQ(T)dX(T)>

and the minimal value equals U (s, z,1,t). Notice that

2

E X(t) =z, L(t) = z]

Us,z,1,t) = s?U(1,z,1,t) =: s>A(x,1,1).

If A is smooth, the relation
U(s,z,l,t) =FE [U(s —/ O(r)dX (r), X(u), L(u),u)
t

together with Ito’s lemma yields for v =t 4 dt

U(s,z,1,t) = BU(s—0dX, 2 +dX,l+dL,t+dt)
= U(s,z,l,1) + Rdtl

where
L o9 L
R = Ut—QozUs—l—§9 I5; U55+ozUm—|—§ﬂ Use
1oy 2
+alU; + 2(b +d* Uy — 06Uy — 080U + BbUy,.
From R = 0 we obtain the following equation for A(x,1,1) :
1
0 = s2A, —2s0aA+ A+ as’A, + §ﬂ232Am
1
—I—CLSQAZ —|— 5(62 —|— d2)82A”
—203%s A, — 208bsA; + Bbs® Ay

Here, 0 = 6(t) is the optimal choice for # in the interval (¢,¢ + dt), which must be
chosen to minimize the residual risk, which leads to

—20sA+ 2032 A — 28%sA, — 28bsA; = 0



or
Q A:c ﬂ Al
0=0t)=s|—=+—+-—].
0= |5+ 545
Inserting this and omitting s? which is a common factor to all terms we obtain
a? ab
0 = At—OéAm—EA—I— <CL—2E> Al

1 1 1
—(BAa + DAY + 53 Awy + S (07 + d°) A + BbAw
For the function F' = 1/A we obtain the somewhat simpler pde

a? ab

+d’F?/F — %ﬂQFM — %(52 +d*) Fy — bFy
The boundary conditions are
Alx,1,T) = F(x,1,T) = 1.
We cannot give a general solution to (3.1); in special cases, however, we obtain
the optimal hedging strategies which are known so far:

o o?/ (3% deterministic, i.e. not depending on z or I, only on ¢: in this case F
also does not depend on x,[, the same is true for A, and therefore

o(t) = ﬂﬁs,

2

the solution given by Schweizer in [4].

° a2/ﬂ2 does not depend on [/, but only on x and ¢ : Then F' (and A) also does
not depend on [, and (3.1) reduces to
a? 1

0:_E+aFm_EF_§ﬂ2meu

and the optimal 6 is given by

Q(t):s<%—%>.

This is exactly the pde (2.2), and the optimal hedging strategy given above
for this case. Notice that in this case we have a short It6 representation for

Z.

e d = 0 : In this case, we have a linear pde, and we again have a short It6
representation for Z. The resulting pde differs from (2.2), but the cased = 0
was not considered in Hipp [3].



4. Examples with jump processes

In the continuous case, the variance optimal martingale density was of major
importance. This is no longer true in the pure jump case: Consider N(t) a
counting process, N(0) = 0, all jumps of size 1. The only random variable 7
which admits a short Ité representaton of the form

Z=z+ /Tz(t)dN(t)

which is a martingale density for N(t), equals - up to a norming constant -

Z = lnr)=o).
We start with examples in which the mean variance tradeoff process is constant.

Example 4.1. Let X(t) be Poisson with intensity A, and L(t) be compound
Poisson with the same jump times and jump sizes Yy, k = 1,2, ... with mean p,
and second moment p.,,. With T}, the time of occurence of claim k, the optimal
hedging strategy reads

ot) = m, 0<t <,
= Yy 1, Tp 1 <t <,

and the residual risk equals
E(L(T) = Gr(0))" = (ks — 1) (1 — exp(=AT)).

Example 4.2. Now interchange the réle of X and L : X (1) is compound Poisson,
and L(t) is Poisson. Here, with oo = py/py and =1 — pya,

L(t) L(t)

o) =ad [0 —a¥) +a,

j=1 i=j
and the residual risk is

L(T) L(T)-1

E(L(T) — Gr(0)’ = E Z # +2F Z s

which remains bounded if T" — oo.



Example 4.3. Let X(1), L(t) be independent Poisson processes with intensities
w, A. Here we have R

L(t) = XT —t) + L(t)
and R

0(t) = L(t) — G (0).

Let Sy,...,Sy , k= X(T), be the jump times for X. Since hedging stops at Sy, we
have

L(T) — Gr(0) = L(T)— Gg,_(0) +0(Sk)
= L(T)— L(Sy) — MT — Sj).

So we obtain the following residual risk for 6 :
E(L(T) = Gr(0)" = ME(T —Sx)’

= AE (S} S <T)P{X(T) > 0} + MTP{X(T") = 0}
— 2\/p?, T — oo.
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