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Abstract

Four different initialization methods for parallel Branch-and-bound
algorithms are described and compared with reference to several
criteria. A formal analysis of their idle times and efficiency follows. It
indicates that the efficiency of three methods depends on the branching
factor of the search tree. Furthermore, the fourth method offers the
best efficiency of the overall algorithm when a centralized OPEN set is
used. Experimental results by a PRAM simulation support these
statements.

Keywords: parallel processing, static load balancing, optimization,
combinatorial algorithms, idle times, efficiency

1. Introduction

Branch-and-bound (B&B) is a well-known and general combinatorial
optimization technique which is used especially for NP-complete problems
where no special purpose algorithm can be developed. Because of the high
problem complexity, parallel implementations are required for speeding up
the computations. Algorithms with a high and stable efficiency, i.e., uti -
lization of the processing elements (PEs), are desired when variable number
of processors is used.

For comparisons, speed-up is a commonly used measure. It compares the
run time of the algorithm when different numbers of PEs are used. Here,
the speed-up is computed by dividing the run time of the parallel algorithm
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with one PE by the run time of the same parallel algorithm with multiple
PEs. The efficiency  is the speed-up divided by the number of PEs used in
the parallel case. It is a measure for the average utilization of PEs during
the total run time. High efficiencies, close to one, are desired with different
numbers of usable PEs. They indicate a good exploitation of the available
parallelism.

A brief description of the parallel B&B algorithm is given in the next
section. Thereby, a typical problem of parallel processing search trees is
formulated. Different initialization methods for solving this problem are
stated in Section 3. For these methods, the occurring idle times and the
resulting efficiency are analysed formally in Section 4. Finally, in Section
5, the analysis is verified by experimental results.

2. Parallel Branch-and-bound

The discrete combinatorial optimization problem is to find a vector x =
(x1, ..., xn), xi ∈ N, which minimizes a criterion function f(x) . In addition, a

set of constraints is given which has to be met by the solution vector. This
set can be subdivided into explicit and implicit constraints. The implicit
constraints describe the relationships between the variables xi , the explicit

ones are the value ranges of the variables. The set of vectors fulfilling the
explicit constraints define the search space which will be represented here
as a search tree.

For describing the parallel B&B algorithm solving this optimization
problem, we use a common version of the sequential B&B formulation as a
basis. In Fig. 1, a formulation in Pascal is stated in ref. [12]. Thereby, the
initialization is hidden behind a function call and is discussed in detail in
the following sections.

There are two main data structures on which the single PEs are working.
First, a set of nodes, called OPEN, stores the partial problems not yet
investigated. Second, the incumbent z  holds the best known solution so far.
Both of these data structures may be kept centralized with access of all PEs
or may be distributed over the PEs. In case of a distributed OPEN set, the
set is divided into subsets which are then located on the single PEs. The
kind of implementation is adapted to the underlying computer architecture.
In this paper, we assume a distributed OPEN set, except for the parallel
random access machine (PRAM).

With these data structures, the parallel B&B works quite similarly to the
serial algorithm. All the PEs execute the main loop of the B&B in parallel,
synchronously or asynchronously. Each PE grabs a node from an OPEN
set, expands it, and inserts the evaluated successors back into OPEN. If
necessary, the incumbent is updated.

Usually, a non-optimal solution is computed by a quick heuristic
algorithm before the B&B computes the optimum. This first solution serves
as upper bound for the cost estimation of the intermediate nodes. If the
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procedure Branch_and_bound(root :node);
set OPEN; /* set for unsolved nodes */
node x, y, /* x, y nodes of search tree
*/

z; /* z incumbent* /
begin

if solution(root) then z := root;

else z := ø; /* f(z) = ∞ *)
Init_B&B(OPEN, root);
while OPEN contains node x with g(x)<f(z) do

x := select(OPEN); /* h(x) = min */
for all successors y of x do begin

if solution(y) and f(y)<f(z) then
z := y;

if not leaf(y) and g(y)<f(z) then
OPEN := OPEN + {y};

end;
end;
if solution(z) then return(z);
else return(failure);

end;

Fig. 1: B&B algorithm in Pascal notation.

lower bound of a generated successor is evaluated to be worse than the
costs of the heuristic solution, then this successor may be pruned.

In contrast to the serial algorithm, three different phases of processing
can be identified in the parallel B&B. These are the start-up phase, the
working phase, and the shut-down phase. In the start-up phase , the B&B
starts with the root node exploring the search tree. Down to a certain depth
of the search tree, there are fewer nodes than PEs. Therefore, some of the
PEs are idle waiting to receive a node. In the working phase , OPEN stores
many nodes and all processors are supplied with work. In the shut-down
phase, some PEs are idle again because only few branches of the search
tree are left to be investigated and therefore, compared with the number of
PEs, nodes are lacking.

One problem arising in parallel B&B algorithms is typical for parallel
processing search trees, especially when they are built up during
processing. If we assume that a synchronous parallelization at node level,
not all PEs can be used from the very beginning. The search tree has to be
explored node by node, and the amount of work which has to be done
increases with each iteration. Starting with one initial node (the root node of
the search tree), in the next iteration the number of nodes to be considered
is multiplied by the branching factor b of the tree. The number of nodes of
the search tree, and therefore, the number of active PEs can increase at
most by bd, where d is the current depth. The efficiency of the total
algorithm is reduced, since not all PEs are used from the beginning.

The reduction of the efficiency by this kind of initial ization is a problem-
inherent feature. Furthermore, it cannot be compensated for, though full PE
utilization is reached after several iterations. This problem even occurs with
an idealized parallel computer: the PRAM. With real parallel computers,
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the problem is worse due to the communication necessary to distribute the
generated nodes equally over the PEs. At least for these three reasons, the
problem of Initialization is worth being investigated.

3. Initialization Methods

In this section, four different variants for the initialization of the parallel
B&B algorithm are described and analysed. Generally, B&B initialization
covers the task of static load balancing. The aim is to provide each PE with
a certain amount of work. Ideally, the total (future) work to be done is
distributed equally over the PEs. Otherwise, additional effort for dynamic
load balancing slows the algorithm down. But in tree search, the future
work is hardly to predict without any domain knowledge. Therefore, about
one node is provided for each PE (static load sharing).

3.1. Root Initialization

Root initialization is the most common approach when parallel B&B is
described. This may be due to the fact that (1) the initialization is not the
main topic of the description, (2) a computational model was used which
ignores the communication between the PEs (e.g., PRAM), (3) or the
initialization has directly been taken over from the serial implementation of
B&B.

When applying Root Initialization, the root of the B&B-tree is inserted in
one of the local OPEN-subsets. On each PE, the main loop of the B&B is
running. Thus, the PE with the root node inserted grabs this node and
expands it. The successors of the root node are then distributed according
the load balancing scheme applied in the algorithm. The other PE receiving
a node proceeds in the same way. After a while, the total OPEN set
provides at least one node for eachPE and the whole B&B goes from the
start-up phase into the working phase.

It is assumed that the B&B is working on a search tree with a constant
branching factor. Thus, all PEs can receive at least one tree node after a
certain amount of time. This amount depends on the number of used PEs in
a logarithmic way. Processing a search tree with a branching factor b using
p  PEs, all PEs can receive one node in at least logbp iterations.

Additionally, the concrete term depends on the use load balancing mech-
anism.

This initialization has the advantage, that the load balancing method of
the main algorithm is used in the start-up phase, too. Thus, the Root
Initialization is very simple to implement and no additional code is neces-
sary. On the other hand, a relatively cost-intensive distribution of the
successor nodes is used. Each distribution is combined with a necessary
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communication overhead. Furthermore, many of the PEs are idle and wait-
ing to receive a node.

3.2. Enumerative Initialization

The second initialization method is very similar to the previous one. It is
used by the algorithms in refs. [16, 10]. The main difference is the
broadcast of the root node to every PE at the beginning of the initialization.
Thereafter, each PE has the same node in its OPEN-subset. This root node
is expanded by each PE according to the main loop of the sequential
algorithm. Altogether, the p PEs proceed until at least p nodes rest in the
OPEN-subset of each PE. Then the i -th PE keeps the i -th node of the set
and deletes the rest. With this node, the PE continues in the local B&B al-
gorithm and the total B&B process changes from the start-up phase into the
working phase. In summary, the nodes necessary for initialization of each
PE are quasi enumerated by all the PEs.

Additionally, there is a strategy necessary to preserve the correctness of
the algorithm. This problem occurs if more nodes than PEs available are
generated in the last step of the start-up phase. In this case, the above
initialization would discard the unprocessed nodes which could possibly
lead to the only optimal solution. An admissible method works in a round
robin fashion and distributes the unprocessed nodes over the PEs according
to their identifier.

With Enumerative Initialization, the number of iterations in the start-up
phase is similar to the Root Initialization. For generating at least p nodes,
about logbp steps are necessary if a constant branching factor b is assumed.

Although no improvement could be achieved in the number of iterations,
the Enumerative Initialization has advantages. If the search tree is expanded
by all PEs in the start-up phase, every PE computes its "local root" node
without any further communication. All the PEs are working from the very
beginning and are not waiting to receive a node. On the other hand, there is
redundant work because many PEs are processing the same nodes and
doing identical evaluation.

3.3. Selective Initialization

The Selective Initialization is a circular method first introduced by ref.
[2] and used by ref. [7] later on. It prevents the disadvantages of the
Enumeration Initialization by a local node selection strategy of the single
PEs.

This method starts, analogously to the Enumerative Initialization, with
broadcasting the root node over all the PEs. But instead of generating the
whole search tree down to a certain depth, each PE generates only one
single path. The paths of the PEs are distinct and they lead to the proper
node for initializing the PE. To generate this path, each PE cycles in an
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expansion-selection loop for a certain time. Thereby, the active node (the
root node at the beginning) is expanded and its successors generated.
Instead of storing all the successors in the OPEN-subset, only one node of
the successors is investigated in the sequel.

The selection of this node is done by a circular method, see ref. [2].
Thereby, every PE which participates at the B&B algorithm has a unique
identification number pu_id. The number of current PEs taking the same
path up to now is indicated by ncp . Assume that size  indicates the number
of successor nodes which have been generated, then the PE pu_id  chooses
the node denoted by g with

g = (( pu_ id − 1)MODsize) + 1 (1)
In the next iteration, the variables are updated by the following equations1:

delta =
1, g ≤ ncpMODsize

0, otherwise
⎧
⎨
⎩ (2)

pu_ id = pu_ id size⎡ ⎤ (3)

ncp = ncp size⎣ ⎦ + delta (4)
The loop ends, when size  becomes greater or equal to ncp. Then each PE

takes a number of successor equal to ⎣size  / ncp⎦ . The last PE takes the rest
of the nodes.

Compared with Root Initialization, this method has the same advantage
as the preceding one: only little communication. Additionally, the PEs are
doing less redundant work. Only the first part of the path of one PE is
identical with some other PE. In every iteration, the PEs of one path are
partitioned into the branches of the path. For this reason, the overall
efficiency of this initialization is greater than the previous methods.

On the other hand, the selection of nodes is not as good as with the
previous methods. In contrast to the serial B&B, this initialization generates
the nodes more or less independently of each other. The lower bound of the
nodes are not sorted or compared. To summarize, the PEs are not initialized
with the p best nodes.

In the circular method, nothing is said about the case when size  equals
zero. This happens if no successor of a node can be generated or all
successors are pruned by the upper bound. Furthermore, no load balancing
is applied in the start-up phase. Thus, the PEs with no successor will
become idle until they enter the working phase. Altogether, this method has
slightly more idle times as the previous two.

1The calculation of delta  is a corrected version of the formula in [2]
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3.4. Direct Initialization

The last initialization method described here is the Direct Initialization. It
is used for the Vertex-cover problem in ref. [17], and a serial version with-
out exploiting the parallelism is mentioned in ref. [1].

The main strategy is not to built up the search tree explicitly in the start-
up phase. Instead, each PE directly computes its local (root) node for
initialization similarly to the circular method of Selective Initialization.
Because every PE should be served with a distinct node, all the nodes for
initialization are taken from a certain depth of the search tree. This depth is
determined such , that the amount of nodes in this depth is greater than the
number of PEs. Thus, every PE is supplied with at least one node. If there
are more nodes than PEs available, then some PEs take multiple nodes at
once to ensure the correctness of the algorithm. After initialization, every
PE continues with the standard parallel B&B algorithm using its node as a
(local) root. In summary, the parallel B&B algorithm starts its usual search
in a certain depth of the search tree instead from the root node.

This strategy is only applicable if the structure of the search tree is
known in advance. Then, a function for node generation can be set up. It
computes the i-th node in a certain depth d0  with d0 = ⎡logb p⎤.

This approach for initialization includes most of the advantages of the
previous two methods, i.e., little communication and no idle times.
Additionally, the PEs are not doing any redundant work and, therefore, the
efficiency is maximal. On the other hand, possible bad branches of the
search tree are not pruned by the upper bound, because no lower bound of
the nodes is computed during initialization. The pruning is possible at the
end of the start-up phase and will lead to PEs without work. The second
disadvantage is the same as in Selective Initialization: the selected nodes
are not the p best ones.

3.5. Comparison

In this section, the different initialization methods are compared with
reference to several criteria (see Table 1). The criteria are selected
according to their influence on the quality of the single method. A short de-
scription of each criterion follows:

- The first criterion indicates the amount of necessary communication
between the PEs during the start-up phase.

- Only if the PEs are working on distinct nodes is the potential
parallelism exploited. Therefore, the redundancy  of work is an
important criteria. It is measured in the number of multiple processed
nodes.

- The idle times of the PEs act as an indicator for decreasing efficiency.
In our model, they occur if a PE is waiting for work, i.e., receiving a
node from another PE.
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- An initialization method is called general if it is applicable to all
discrete optimization problems, which could be solved by the B&B
algorithm. As the table shows, not all initialization methods have this
property.

- The variable branching criterion indicates whether the method is
able to handle search trees with non-constant branching factors or
whether some branches may be pruned by their poor cost estimation.

- The last criterion specifies whether the nodes have been selected in a
best-first  fashion at the end of the start-up phase.

In Table 1, three marks (+, +/-, -) state how good (good, fair, poor) a
criterion fits to one initialization method relative to other methods. To
enable a homogeneous evaluation, the first three criteria have to be used in
their reverse forms. For example, comparing the redundancy, the Root and
Direct Init. evaluate as good, the Selective Init. as fair, and the Enumerative
Init. as poor concerning the avoidance of redundancy.

Root
Init.

Enumer-
ative Init.

Selective
Init.

Direct Init.

no comm. - + + +
no redundancy + - -/+ +
no idle-times - + -/+ +

generality + + + -
var. branching + + + -

best-first + + - -
references others [16, 10] [2, 7] [17, 1]

Table 1: Comparison of the four B&B initialization methods

4. Analysis

When investigating the different initialization methods, the resulting
efficiency of the overall algorithm is of high interest. Most of the criteria of
Section 3.5 more or less influence the efficiency. In this section, we analyse
a criterion which is more basic than the others. When regarding the
idealised parallel computational model (PRAM), only the idle times of the
PEs are relevant. The other criteria vanish because of the special PRAM
structure (see below). Regarding real parallel machines, all the problems of
the PRAM are included, too, plus several additional ones. Thus, the idle
times form a machine-independent and method-inherent feature of the B&B
initializations.

For the analysis, we assume a Parallel Random Access Machine with
concurrent read and write operations (CRCW-PRAM) as a model. Each PE
has access to the global memory in constant time. Thus, there is no need to
regard the communication because it can be done through the global
memory. In addition, no redundancy of best-first problems have to be
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considered because the PEs always receive the p best unique nodes from
the memory.

In the PRAM, OPEN is kept in the global shared memory. Therefore, the
first three initialization methods reduce to one method. It is the
development of the search tree beginning from the root. The root is inserted
in the global OPEN set as initialization. Then the nodes in OPEN are
successively expanded and the search tree is built up. This procedure is the
same for the first three initialization methods. On the other hand, the fourth
initialization method directly generates the appropriate nodes in a certain
depth of the tree. Thus the start-up phase is shortened.

4.1. Idle Times

With special consideration of the three phases of the B&B, we will take a
closer look into the start-up phase in the following paragraphs. In this
phase, the first three initialization methods build up the search tree suc-
cessively. Each PE grabs a node from OPEN and expands it. With a
constant branching factor of b, the algorithm can expand at most bd  nodes
in depth d. By definition, the start-up phase ends when there is at least one
node for each PE. This is the case in the depth d0 , with

d0 = logb p⎡ ⎤ (5)

From the very beginning of the algorithm, all of the p PEs are available and
in every iteration all nodes in OPEN can be expanded. Thus, the start-up
phase takes d0  + 1 iterations, beginning the first iteration in depth zero.

In every single iteration, p nodes could potentially be expanded. So, the
amount of expanded nodes cab be as high as p(d0 + 1). But not all PEs can

do a reasonable amount of work during the start-up phase. Some of the PEs
are working and the rest are idle waiting to receive work. Let ai and bi

denote the number of idle and working PEs in iteration i, respectively.
Additionally, we define the sums over all iterations (depth zero up to d0) of

the start-up phase by

A = add =0

d0∑  and 
B = bdd =0

d0∑ (6)
Clearly, adding these sums of working and idle PEs over the total start-up
phase will give the total amount of potential expandable nodes in this
phase:

A + B = p d0 + 1( ) (7)

The number of working PEs is determined by the number of expandable
nodes per each iteration. Assuming that the iteration corresponds with
depth d+1 in the search tree, which holds in the start-up phase, then bi can

be calculated by min(p,  bi+1). Thus, the sum of working times B is

B = min( p,bi−1

i=1

d0 +1∑ ). (8)
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Fig. 2: Different quantities of PE times in parallel B&B algorithm are
indicated by following areas: A: idle times, B: working times in start-up

phase, C: working times in working phase.

Accordingly, the sum A can be calculated by

A = p(d0 + 1) − min( p,bi

i=0

d0∑ ) (9)

By choosing the number of PEs p with p = bk, for some k > 0, this
equation can be simplified. The minimum operator is superfluous and a
closed form of the second term is given through the geometric sum. The
branching factor b  is greater than 1. Otherwise there will be only a
pathological search tree. Additionally, we view A  as a function depending
only on the number of PEs p, and the branching factor b. With this, the sum
of idle PEs over all start-up iterations is

A( p,b) = p(1 + logb p) − pb − 1
b − 1 (10)

In Fig. 2, all the above-mentioned quantities are shown. The maximum
number of expandable nodes of the search tree and the number of working
PEs are plotted against the iteration. The total amount of idle and working
PE times are indicated by A and B, respectively. The area C denotes the
ideal working phase of the B&B, where about p nodes are expanded in each
iteration.

4.2. Efficiency

With the quantification of idle times caused by the initialization, it is easy
to estimate the efficiency of the overall algorithm. Therefore, it is assumed
that the complete (balanced) search tree has to be explored for solving the
problem, which is certainly unfavourable. With dmax  indicating the tree

depth, the total number of nodes to be investigated is calculated by bdmax .
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Fig. 3: Efficiency of the overall B&B algorithm when one of the first three
initialization methods is used.

This corresponds to the iteration number of the serial algorithm. With the
parallel B&B, the amount of idle times has to be added. Thus, the number
of iterations I is

I( p) = bdmax + A( p,b)
p

⎡
⎢
⎢

⎤
⎥
⎥

(11)
Thereby, the term A is chosen according to the last section. The speed-up

S is calculated by S(p) = I(1) / I(p) and the efficiency by E(p) = S(p) / p.
Thus, the overall efficiency E  of the algorithm is

E( p) = bdmax

p

p

A( p,b) + bdmax

⎡
⎢
⎢

⎤
⎥
⎥

(12)
Notice that the length of the start-up phase depends on the branching

factor b and on the number of processors p. In Fig. 3, the efficiency is
plotted against the number of processors p and the branching factor b.
Thereby, the depth dmax  of the search tree is 20. The efficiency increases

when the branching factor becomes greater than a certain threshold
depending on p.

In the previous analyses, the occurring idle times and the efficiency of
the B&B start-up phase are formulated. Thereby, two facts can be observed.
First, the idle times increase with the number of PEs, assuming that the
problem instance chosen is complex enough. Second, by increasing the
branching factor of the search tree, this idle times can be reduced.
Therefore, if there is a choice between different enumeration schemes, the
schema generating the broader tree is preferable. This holds only if one of
the first three initialization methods is used.
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Fig. 4: Comparison of different initialization methods in a PRAM
simulation. E: efficiency, p: number of processors.

Considering the Direct Initialization, the behaviour of the start-up and
working phase cannot be analysed in that way. With this method, there is
no start-up of this kind. Thus, there are no idle times in the start-up. But,
because of the missing start-up phase, the following working phase is
influenced. Thus, the overall behaviour of the different initialization
methods will be compared by experiments outlined in the next section.

5. Experimental Results

We solve a typical scheduling problem, as an application domain of the
parallel B&B. A fixed number n of elementary jobs with different
processing times operate on m identical machines. Thereby, the single job
is not preemptable and there are no precedence relations between the jobs.
The optimization problem is to find the sequence of jobs on each machine
which minimizes the total processing time (makespan) of the system.

The B&B algorithm uses partial (incomplete) schedules as intermediate
nodes of the search tree. The branching factor b and the depth dmax  of this

tree are determined by the number n of machines and the number m of jobs,
respectively. The search tree is built up by successively placing single jobs
on all machines. Thereby, the next job is selected according the maximum
processing time. The lower bound of each partial schedule is computed by
its makespan plus the average processing time still needed. Very long jobs
can lengthen the second term. The B&B selects the nodes from OPEN in a
best-first fashion. Conflicts are solved by depth-first prioritization in the
search tree: Deeper nodes and more left nodes are preferred.

The experiments were performed by a PRAM simulation, cf. Section 4.
The problem solved consists of three machines (b = m = 3) and twelve jobs
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(dmax  = n = 12) with different processing times (4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6,

6). Thus, the search tree has a total size of about 7.9*105  nodes. The
implemented B&B expands in average by about 6.000 nodes. In Fig. 4, the
two types of the presented initialization methods are compared by solving
this problem. The efficiency of the Root Initialization and the Direct
Initialization are plotted against increasing number of processors. The latter
method is split up generating more (k≥ p) or less (k ≤ p) initial nodes than
PEs available.

The comparison of the three initialization methods supports the results of
the analysis, given in Section 4. The values of the Root Initialization
correspond to one section of the efficiency in the plot of Fig. 3. The effi -
ciency of the Direct Initialization is better than the previous one throughout,
though it decreases with increasing p, too. Comparing the different numbers
k of expanded nodes in the first iteration, the method with more nodes than
PEs (k > p) is preferable.

6. Conclusion

The results indicate that the differences of the single initialization
methods are significant. The performance of the overall algorithm is
influenced by the method chosen for the start-up phase. The efficiency of
the first three methods (Root, Enumerative, and Selective Init.) depends on
the branching factor of the search tree. An enumeration scheme generating
a broad search tree is preferable.

 For the Direct Initialization, the PRAM analysis and simulation show
that it has the best efficiency, assuming it is applicable. This holds,
especially if more nodes than processors are generated in the first iteration.
One drawback of the Direct Initialization is the lack of heuristic pruning.
After initialization of a distributed OPEN set, due to pruning some PEs will
become idle until the dynamic load balancing will provide them with nodes
again. The fraction of pruned nodes depends on the application domain,
thus, the final decision pro or contra Direct Initialization cannot be done in
general.

7. Acknowledgements

This research work was founded by the Deutsche
Forschungsgemeinschaft (DFG) with a stipend in the frame of the
"Graduiertenkolleg". The work was performed at the Institute for Real-
Time Computer Systems and Robotics, Prof. Dr.-Ing. U. Rembold and Prof.
Dr.-Ing. R. Dillmann, University of Karlsruhe, D-76128 Karlsruhe,
Germany.



14

8. References

[1] Abdelrahman T. S. and T. N. Mudge, 1988, "Parallel branch and bound
algorithms on hypercube multiprocessors", Proceedings of the 1988 ACM
Conference on Lisp and Functional Programming, pp. 1492-1499.

[2] El-Dessouki O., Huen W. H., 1980, "Distributed enumeration on network
computers", IEEE Trans. on Computers, vol. 29, pp. 818-825.

[3] Huang S.-R and Larry S. Davis, "Parallel Iterative A* Search: An Admissible
Distributed Heuristic Search Algorithm", Proceedings of the eleventh
International Joint Conference on Artificial Intelligence, 1989, pp. 23-29.

[4] Imai M., Fukumara T., Yoshida Y., 1979, "A paral lelized branch-and-bound
algorithm: Implementation and efficiency", Systems-Computers-Control, vol.
10, no. 3, pp. 62-70.

[5] Janakiram V. K., et al., 1988, "A randomized parallel branch-and-bound
algorithm", Int. Jour. of Parallel Programming, vol. 17, no. 3, pp. 277-301.

[6] Lai T-H., Sprague A., 1985, "Performance of Parallel Branch-and-Bound
Algorithms", IEEE Transactions on Computers, vol. C-34, no. 10, pp. 962-
964, MAG Lab papers, no. 33.

[7] Ma R. P., Tsung F. S., Ma M. H., 1988, "A dynamic load balancer for a
parallel branch-and-bound algorithm", Proc. of the 3rd Conf. on Hypercubes
Concurrent, Computers, and Applications, Pasadena, CA, pp. 1505-1513.

[8] Miller D. L., Pekney J. F., 1989, "Results form al parallel branch-and-bound
algorithm for solving large symmetric traveling salesman problems",
Operations Research Letters, vol. 8, pp. 129-135.

[9] Mohan J., 1983, "Experience with two parallel programs solving the traveling
salesman problem", Proc. of the Int. Conf. on Parallel Processing, Bellaire,
Michigan, Aug. 1983, pp. 191-193, IEEE Comp. Soc., Washington, D. C.

[10] Pargas R. P., Wooster E. D., 1988, "Branch-and-bound algorithms on n
hypercube", Proc. of the 3rd Conf. on Hypercube, Concurrent Computers, and
Applications, Pasadena.

[11] Quinn M. J., Deo N., 1986, "An upper bound for the speed-up of parallel best-
bound branch-and-bound algorithms", BIT, vol. 26, no. 1, pp. 35-43.

[12] Roucairol C., 1988, "Parallel branch and bound algorithms: An Overwiew",
Proc. of the Int. Workshop on Parallel and Distributed Algorithms, Gers,
France, pp. 153-163.

[13] Schwan K. and B. Blake and W. Bo and J. Gawkowski, 1989, "Global Data
and Control in Multicomputers: Operating Systems Primitives and
Experimentation with a Parallel Branch-and-Bound Algorithm", Concurrency:
Practice and Experience, vol. 2, pp. 191-218, vol. 1

[14] Sprague A. D., 1991, "Wild anomalies in parallel branch-and-bound", Tech.
Rep.91-04, CIS, UAB, Birmingham.

[15] Taudes A., Netousek T., 1991, "Implementing branch-and-bound algorithsm
on a cluster of workstations", eds: Grauer M., Pressmar D. B., Parallel
cpmputing and mathematical optimization, Proceedings, Springer.

[16] Vornberger O., 1986, "Implementing Brach-and-bound in a ring of
processors", Proc. of CONPAR 86, Lecture Notes on Computer Sci. 237,
Springer.

[17] Vornberger O., 1987, "Load balancing in a network of transputers", Second
Int. Workshop on Distributed Algorithms, Amsterdam, pp. 116-126.


