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Abstract

We propose the use of the universal relation as a user interface to provide transparent access to a network of
distributed, heterogeneous, and autonomous information sources. We implement this interface in two layers.
The lower layer consists of access scripts, which encapsulate knowledge about information sources and are
capable of answering basic queries. The upper layer uses combinations of these scripts to answer user queries
phrased in terms of a universal relation. Access scripts know how to obtain information either directly from
sources or from service providers (mediators, traders, and the like). They present this information in relational
form, but with an inherent direction, in the sense that whenever values for a fixed subset of attributes of the
relation are given, the access script will deliver values for the rest of the attributes in the relation. In this
paper, we address the problem of defining the semantics of a user query posed against the universal relation
and of finding a sequence of access script invocations that gathers the information requested in the query.

1 Introduction

Motivation. In the past few years the number of services being available on the net has grown rapidly. So
far the user has to “surf” the net in order to get the information he needs. That is, he needs to find the
adequate information sources or service providers on his own, perhaps assisted by search tools, and he needs to
combine information from different sources without any further support. In our approach the user is supplied
with a relatively simple model of the net, which he can use to formulate queries. The model offers complete
transparency, that is, the user need not be aware of the existing information sources or service providers and
their locations. Usually a number of service providers and information sources are involved in answering a user
query. It is the task of the system to choose these service providers and information sources and to coordinate
their execution via a query evaluation plan.

Approach. We assume that we have a network of information providers of various kinds: primary sources
(connected to the network through wrappers), mediators, traders, providers of value-added services, etc., see
Fig. 1. Together, they provide a set of services that we call the services interface. To make use of the services
interface a number of access scripts are defined. An access script is a program that implements a basic interaction
with the services interface that is deemed to be needed rather often. Examples include: accessing a trader to
find a provider of a particular service, obtaining offers for goods or services, accepting an offer, and the like. An
access script exports an interface that is a set of atiributes drawn from some agreed-upon universe of attributes
(there may be several distinct attribute universes corresponding to unrelated application domains). Some of the
attributes in the interface are designated as inputs; the others are outputs of the script. Given values for the
input attributes, the access script will produce (possibly many) values for the output attributes. Each access
script therefore defines a relation over its input and output attributes, but a relation that can only be accessed in
a particular way. The collection of available access scripts may be viewed together as constituents of a universal
relation whose schema is the attribute universe. The user interacts with the system only through this universal
relation. Given a user query referencing certain attributes in combination, it is the task of the system to find
the proper connection between these attributes and to choose a sequence of access scripts implementing that
connection. This task is complicated by the fact that input and output attributes of access scripts must be
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respected, that is, it is not possible to provide values for the outputs and deduce the corresponding inputs.
Moreover, in our setting the universal relation represents a much looser aggregation of information than in
traditional universal relation systems. In particular, no dependencies are available on the schema, and the
semantics of attributes is typically less strictly defined. Therefore, classical work on the universal relation
interface is only of limited help. In this paper, we present a formal model of a universal relation interface to a
set of “directed” relations and describe possible ways of implementing it.
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Figure 1: Interfaces to a Network of Information Sources

Example. Consider a travel information system. We assume that there are information sources on various
means of transport (air lines, trains, car rental companies, etc.), traders that know the location of these sources,
and mediators that perform semantic integration. We moreover assume that we have access scripts to implement
the following functions:

e Script S1: Given a service category, ask a trader for mediators that understand requests in that category
(type Category — Mediator).

e Script S3: Given a mediator and a service category, determine the list of parameters needed in order to
obtain a bid (type Mediator x Category — Parameters).

e Script S3: Given a list of parameters, obtain values for them from the user (type Parameters — Values).

e Script Si: Given a mediator, a service category, and a list of values for the parameters of that service
category, obtain bids (type Mediator x Category x Values — Bid).

Suppose the user wants to rent a car. He selects the service category “car-rental” and asks for bids b. The system
searches for a combination of access scripts that, given values for the Category attribute, finds values for the Bid
attribute and derives the execution plan (written as a conjunctive query)

S1(“car-rental”, m), Sa(m, “car-rental”, p), S3(p, v), Sa(m, “car-rental”, v, b).

When this plan is executed, the following happens. 57 locates a mediator m providing the “car-rental” service
(it is assumed that, through mediation, this service comes with some standard interface). S; obtains from m
a description p of the parameters of this service. S3 uses p to build and display a form that the user fills in,
providing the specifics of his request (pickup and return dates, car class, location, etc)., which Sy then uses to
obtain bids from m.



Related work. A number of architectures allowing integration of information from heterogeneous information
sources has been developed. I?, the ARPA-sponsored Intelligent Integration of Information program [7], includes
a generic system architecture designed to present an initial categorization of the principal services that can be
used to support the intelligent integration of highly heterogeneous information sources. TSIMMIS, the Stanford-
IBM Manager of Multiple Information Sources [3], is a system implementing parts of the I3 architecture using
a simple object exchange model [12]. The focus of the TSIMMIS project is to support the development of
components facilitating the integration of information, such as mediators [6] and wrappers [13]. DIOM [9]
proposes a query mediation framework to support customizable information gathering across heterogeneous and
autonomous information sources. Another approach is described in the Manifesto on Cooperative Information
Systems [4]. There, a generic four-layer architecture for cooperative information systems is introduced, which
also includes support for human collaboration and global organizational concerns.

In contrast, the focus of our work is not on the integration of information. We assume that semantic integration
is handled by mediators and that the knowledge to carry out interactions with the network is encapsulated in
access scripts. Our concern is how to present the functionality provided by these access scripts in a simple model
that can be understood by non-expert users. For this, we adopt the universal relation model where the underlying
relations can be understood as views with binding patterns.

There has been a lot of work on the design and implementation of universal relation systems (see, e.g.,
[11, 10, 17, 8] for surveys of various aspects and [16] for an introduction to the topic and its history). An
important question in this context is the proper choice of the universal relation instance. We follow Rajaraman
and Ullman [15] in adopting the full disjunction [5] of the underlying relations as the “right” instance of the
universal relation. While [15] is concerned with ways of computing the full disjunction by a sequence of outerjoins,
we do not want to materialize the universal relation, and focus on the translation of queries instead. Here the
problem is that the underlying “relations” (i.e., the access scripts) cannot be combined arbitrarily, but only in
ways prescribed by their input and output attributes. Rajaraman, Sagiv, and Ullman study a similar problem
in [14]. They consider a setting where certain information sources are given and binding patterns are used to
specify so-called query templates that a given source can answer. Each query template defines a view of the
underlying information source that has certain input and output attributes and whose semantics is specified as
a conjunction (or more generally, a datalog program) over certain base predicates. Queries are similar to query
templates in that they are datalog rules with a binding pattern attached to the rule head and a body consisting
of base predicates. The task 1s to find a conjunction of views, respecting their binding patterns, such that the
semantics of the query is the same as the semantics of the conjunction of views. The problem studied in this
paper is somewhat different, because the semantics of a query 1s not prespecified, but must be derived from the
attributes that it mentions. Moreover, as we shall see later on, in our setting it is usually impossible to retrieve
all parts of the universal relation relevant to a particular set of attributes, so we cannot expect to have a perfect
match of the semantics of a query (defined in terms of the universal relation) and the semantics of an access
script sequence that implements it. We must therefore be content to look for compositions of access scripts that
do not produce any incorrect answers, and as many correct answers as possible.

Contributions. In summary, the technical contributions of this paper are as follows: First, we propose the
use of access scripts to encapsulate basic functionality in accessing and manipulating a network of information
sources, and to present this functionality to the non-expert user in terms of a universal relational model. Second,
we study the notion of a universal relation where the underlying relations are “directed”, and we define a notion
of sound interpretations of user queries. Third, we show how to obtain sound interpretations of a given user
query and discuss an execution model for such interpretations.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we present a formal
description of the semantics of a universal relation interface to a set of access scripts. Sections 3 and 4 are
concerned with the implementation of this interface. In Section 3, we describe the translation process that
converts queries posed against the universal relation into a series of calls to access scripts, and in Section 4, we
discuss how such a sequence is executed. We conclude in Section 5 with a discussion of our results and future
work.

2 The Model

As stated in the introduction, we want to present the user with a view of the access script layer that is just a single
universal relation. The user phrases queries as combinations of one or more predicates, which express relationships



between certain attributes of the universal relation. For example, suppose there are two access scripts: one that,
given the name of an institution, produces a list of ftp servers at that institution (e.g., by probing all hosts within
the institution), and another one that, given an ftp server and a file name pattern, produces a list of all files
available on the server whose names match the specified pattern. To the user, these access scripts would appear
as a single relation over attributes I(nstitution), S(erver), P(attern), F'(ile), and a query might specify predicates
such as Prpp(“uni-karlsruhe”, “.ps”, f), which asks for all PostScript files available via ftp from some server at
the University of Karlsruhe. This query can be answered in a straightforward way by first determining via Access
Script 1 the set of ftp servers at the University of Karlsruhe and then for each server via Access Script 2 the
set of “x.ps” files that it stores. However, the similar query Prpp(é, “+.ps”, “juicy-tales.ps”), which asks for all
institutions that offer a file called “juicy-tales.ps” from one of their ftp servers, cannot be answered from the
available access scripts, because they cannot be operated “backwards”.

In the following, we formalize the notion of a universal relation interface to a set of access scripts. In particular,
we define the universal relation corresponding to a set of access scripts, the syntax and semantics of queries, and

a soundness criterion for access script sequences.

Attributes. As usual in the universal relation model, we assume that there is some finite universe Attr
of attributes that suffice to describe all aspects of the world under consideration.! Moreover, we require that
attributes are used consistently by all access scripts, in the sense that occurrences of the same attribute A € Attr
always refer to the same “role”. At the very least, such occurrences should refer to the same fixed domain, which
we denote by dom(A). We refer to domain elements as constants.

Other assumptions that are commonly made in connection with the universal relation model are the rela-
tionship uniqueness assumption and the one flavor assumption (cf. [11]). The first states that for any set of
attributes A, there should be a unique (or at least distinguished) conceptual relationship between them, which
is sometimes called the window or connection on A. We feel that for the purpose of facilitating the use of the
network for non-expert users, a rather “wide” window is appropriate, which may include extraneous information
rather than exclude relevant information. We therefore use a full disjunction window, explained below.

The one flavor assumption asserts that if multiple access paths are available to compute the window on A,
tuples from different access paths are “comparable” in the sense that they express the same relationship between
their components. In our setting, this may be enforced to some degree by judicious design of access scripts
and their attribute names. However, the semantics of access scripts ultimately depends on the availability and
contents of the underlying information sources, which may change frequently and in ways beyond the control of
the access script designer. We therefore adopt an ad-hoc approach to access path selection, where the system
generates (in a way explained below) several plausible access paths, which may be examined, evaluated, and
refined by the user, if he so chooses.

Access scripts. An access script is a combination of an access script type and an extension of that type.
Access script types are triples (S,Z,0), where S is a unique name and 7 and O are disjoint sets of attributes
called the input and output attributes of S. We write access script types in the form S: 7 — O.

An eztension of an access script type S:Z — O is a relation over Z U O, that is, a subset of the Cartesian
product ®AEIUO dom(A). We do not require this relation to be finite or single-valued, because we want to allow
access scripts that, for example, convert from dollars to German marks (infinite) or produce a set of tourist
attractions for a given city (multivalued). The access script type restricts the way the underlying extension
may be accessed: the only allowed operation is a “lookup” where values for the input attributes are given and
the corresponding values for the output attributes are retrieved. In other words, the only way the access script
extension may be accessed is by computing the natural join of the extension and some relation over the input
attributes.

To simplify the following discussion, we assume that there is a fixed set AS of access script types describing
the access scripts of interest and that Attr is the set of attributes mentioned in these types. An instance of AS
is a mapping I that assigns to every access script type in AS an extension of that type.

Universal relation. We adopt the universal relation as a user interface (see “Related Work” above). Most
universal relation models exploit dependencies in the data to define the connections between attributes. However,
we believe that in our setting a fairly “loose” notion of connection, which treats every join-consistent combination
of tuples as valid, is more appropriate. Therefore, we use as universal relation instance what Galindo-Legaria [5]

1There may be different attribute universes corresponding to unrelated contexts, in which case the user chooses a context before
posing his query.



calls a full disjunction.? This is defined as follows.

Let R be a set of relations, and let A be the union of the schemas of the relations in R. The full disjunction
of R, written FD(R), is a relation over schema A. Tt is obtained by taking all subsets & € R, forming for each
subset S the natural join of its members (which may involve forming Cartesian products if the schemas are not
connected), padding all tuples so obtained with null values to obtain tuples over A, and collecting the padded
tuples into FD(R). Formally,

FD(R) = Uscr padA([Xl S),

where pad 4 denotes the operation of padding with null values to obtain tuples over A. If I is an instance of AS,
we denote by FD(I) the full disjunction of the extensions of the access scripts in I.

For example, suppose that AS is {S1: A — B,S5: A — C,S3: B — C} and that instance I assigns extensions
by = {{a,b)}, ba = {{a,c)}, and b3 = {{¥,¢)} to S1, Sa, and Ss, respectively. Then the full disjunction of I is

A|B|C
a |b
a c
I
b | ¢
a |V |c

where null values are represented as blanks.

It is important to observe that the full disjunction of an instance of AS may contain information that is not
“reachable” in certain cases. In the example above, suppose the user provides the value a for attribute A and
asks for corresponding values of attribute B. We can use S7, which maps A values to B values, to obtain the
value b. However, finding the value &', which is also associated with a in the full disjunction, would require going
from a to ¢ by means of S5 and then operating S5 “backwards” to find &, which is impossible. Thus, for certain
queries it is entirely possible that, although the information is present in principle, there is no access path to
compute it.

Queries. The queries we consider are conjunctive queries over a set of predicates that correspond to total
projections® of the universal relation. To make the syntax precise, we introduce a countable set V = {z,y, z,...}
of variable symbols and for every attribute set {A1,..., A,} C Attr an n-ary predicate symbol P4, 4.3 A
query predicate, then, is an expression of the form Py, . a.1(e1,...,e,), where ¢; € dom(A;) UV for 1 <i < n,
and a query is a conjunction of query predicates.

Queries are conveniently written as tableaux, e.g., the tableau corresponding to query Pyapy(a, ), Pracy(z,c)
over attribute set Attr = {A, B,C, D} is

A B C D
a =z
z c

In general, the tableau corresponding to a query ¢ is a matrix (a;;) with one column for every attribute in Attr
and one row for every predicate in ¢. For row i corresponding to query predicate Pra, . a,j(e1,...,¢,) and
column j corresponding to attribute A, the entry a;; is ey if A = Ay for some k € {1,...,n}, and blank
otherwise.

Given a universal relation instance u and a query ¢, an answer to ¢ w.r.t. v 1s a valuation, i.e., a mapping
from variables to constants, that makes all predicates in the query true. This means that for every predicate
Pra, .. a(e1,. .., eq) occurring in ¢, the tuple (eq,...,e,) must, after replacement of variables with their as-
signed values, occur in the total projection of u onto {A1,..., A,}. The set of all answers to ¢ w.r.t. u is denoted
by [g](w).

We have adopted this somewhat uncommon notion of answer (rather than saying that an answer is some
set of tuples?), because we want to be flexible regarding the presentation of answers to queries. For example,
one interface might present answers in a tableau style, where a copy of the query tableau is generated for each

2 Actually, our definition of full disjunction is not quite the same as Galindo-Legaria’s, because we allow Cartesian products in a
full disjunction, and we do not minimize with respect to tuple subsumption. However, this is not essential to our model and merely
a matter of technical convenience.

3Recall that the total projection IT] 4(r) of arelation r onto attribute set A is defined as the set of tuples in the ordinary projection
of r onto A that do not contain any null values.

40Of course, answers in the sense of our definition can be regarded as tuples over V, the set of variables.



answer, with variables replaced by their values. This style would be convenient for, e.g., queries requesting travel
itineraries, where each resulting tableau corresponds to one possible itinerary. Another interface might support
annotations in queries (e.g., in the form of a summary row or QBE-style “P.” operators [18]), whereby the user
can mark variables of interest to him, and in that case the result would truly be a set of tuples, constructed by
projecting answers in the appropriate way. To factor out these presentation considerations from our model, we
need a notion of answer that retains the maximal amount of information returned by a query.

Access script sequences. Queries are evaluated by translating them into a sequence of calls to access scripts
and then executing the sequence. These sequences correspond to conjunctive queries against the available access
script extensions, and their precise syntax and semantics is as follows.

We introduce for every access script type S:Z — O in AS a predicate symbol S7.0 of arity |Z U O| and say
that an access script predicate is an expression of the form Sir, 1 140, 0.3(€1,. ., €men), Where Iy, ... I,
and Oq,...,0, are the input and output attributes of S, respectively, and each argument e; is either a variable
or a constant of the appropriate domain. Arguments ey, ... e, are called the inputs of the predicate and the
remaining arguments are called the outputs of the predicate.

An access script sequence is a list of access script predicates. It is executable if every variable symbol that
occurs as an input of some predicate also occurs as an output of an earlier predicate. This condition is clearly
necessary for executing the sequence (the execution mechanism will be discussed in more detail later on), because
an access script cannot be activated unless all its inputs are known, either from earlier computations or because
they are constants.

(Given an access script sequence s and an instance [ of AS, an answer to s w.r.t. I is a valuation that makes
all access script predicates in the sequence true w.r.t. I. This means that for every predicate Sz.o(e1, ..., €mtn)
occurring in s, the tuple (ey, ..., em4n) must, after replacement of variables with their assigned values, occur
in I(S). The set of all answers to s w.r.t. I is written as [s](]).

Given a query ¢, selecting an access script sequence for evaluating ¢ corresponds in some ways to selecting a
window function for a query against an ordinary universal relation system. The difference is that the selection
of an access script sequence depends not only on the set of attributes mentioned in the query, but also on the
particular placement of constants and variables, because that affects which access scripts are applicable. We
have already seen earlier that usually there is no hope of finding a single access script sequence that computes
all answers to ¢ (in fact, some answers may not be computable by any access script sequence), so the best we
can do 1s to find access script sequences that compute no wrong answers and that do not unreasonably rule out
correct answers. The following somewhat technical definition captures this intuitive notion.

Given a query ¢, we say that an access script sequence s is sound for ¢ if it satisfies the following three
conditions.

1. s 1s executable.

2. Suppose that ¢ is written as a tableau (a;;) as described above, and that all blank entries in (a;;) are
replaced by fresh variables that occur nowhere else. Then the arguments of every access script pred-
icate S{r, .. 71,.}:{01,..,0.}(€1,- -, €myn) in s must be projections of some row of (a;;), in the sense that
(e1,...,€mtn) are the entries of that row in the columns corresponding to attributes Iy, ..., I, 01, ..., Oy.

3. For every query predicate Pa,  a,(e1,...,en) in ¢, there exists a subsequence s’ of s such that: (a) the
argument tuple of every access script predicate in s’ is a projection, in the sense of property (2), of the
tableau row corresponding to P, a,(e1,...,es), and (b) the union of the input and output attributes of
the access script predicates in s’ contains {Aq, ..., A, }.

Condition (1) is clearly necessary, because we want to be able to execute the sequence. Condition (2) says that
arguments of an access script predicate must be drawn from a single row of the tableau corresponding to the
query. This restriction is necessary to eliminate unwanted answers, as the following example shows.

Suppose there is a single access script of type S1: A — B with extension {{(a,b), {a’,b"}}. Consider the query q¢

A B
a it
oy

and the access script sequences Sl{.A}){B}(a, z), Sl{A}){B}.(a’,.y) and S1,, 5 (a,y), Sl{A}){B}.(a’, z). Thé first is
sound for ¢ and produces the valuation = b, y = ', which is an answer to q. The second violates condition (2)
and produces the valuation # = #', y = b, which is not an answer to q.



It should be noted, however, that condition (2) in some cases eliminates the only access script sequences that
produce answers to a query at all. Suppose that in the example above, the query had been phrased as

A B
a =z
Y

In this case it is easy to see that there is no sound access script sequence for ¢q. However, the access script sequence
S1aye (@ %), 51 45,5, (@, ), which violates condition (2) above, produces the answer z = b,y = b, which in
fact 1s an answer to ¢q. Nevertheless, it seems more appropriate in this case to reject the query as under-specified,
rather than introducing arbitrary assumptions about the A values associated with y.

Condition (3) requires that each argument occurring in some query predicate be covered by some access
script predicate in the access script sequence. Clearly, this should be true for variables occurring in the query,
because they must be computed somewhere. But it also should apply to constants in the query, as the following
example shows. Suppose that access script types S1: A — B and S3: C — B with extensions {{(a,b), {a,b’')} and
{{t/,¢), (b, ¢)} are given. Their full disjunction w is

Al B |C
a | b
a | b
b/
b//
a | b

Assume that we want to find an access script sequence for the query

A B C

a xr c

If we do not require each argument in the query to be covered by at least one access script predicate, we can
produce the access script sequence Sl{A};{B}(a, z). This sequence has two answers, namely z = b and z = ¥'.
However, the tuple {a, b, ¢) is not in u, and therefore the first valuation is not an answer to q.

If we do require each argument to be covered by at least one access script predicate, we obtain the access
seript sequence i, gy (4, 2), 52,0y 5y (6, 2) (o1 So ) o (€,2), 5104, (5, (@, 7)) leading to the valuation z = ¥/,
which is an answer to q.

Although condition (3) eliminates access script sequences that lead to “wrong” answers, it sometimes does not
eliminate access script sequences that produce answers that are technically correct, but nevertheless unintuitive.
To see this, assume that there is one more access script type Ss: C' — D with extension {{c,d)}. Then u is given
through the following relation:

AlB|C|D
al| b
a | b
V| e
v | e
c | d
a|b | c
V| e | d
V'l e | d
alb|c|d
al|b |c|d

A sound sequence for the query given above is 51 ,, ., (a, %), 53,y 5, (¢,y), Wwhere y # z is a fresh variable,
leading to the valuations {& = b,y = d} and {& = V', y = d}, which are both answers to q. However, intuitively
the “right” access script sequence is S1,,, ., (@, %), 52,y (5, (¢, %), which produces the valuation z = ¥'.

The reason for the problems arising in this example is that the user supplied values for attributes A and C,
even though supplying a value for A (or ') is enough to compute values for attribute B. Hence, the query is
over-specified in the sense that the user supplied more information than necessary. Condition (3) says that such
extraneous information may not simply be ignored.



The following lemma shows that the designation “sound” is justified, in the sense that valuations produced
by a sound access script sequence are always answers to the corresponding query.

Lemma 2.1 Let ¢ be a query, s be an access script sequence that is sound for q, I be an instance of AS, and
u = FD(I) be the universal relation instance corresponding to I. Then [s](I) C [q](u).

Proof: Let ¢ be an answer to s w.r.t. I and Pa,, . a,(€},...,€l,) be a predicate in ¢g. We need to show that

bl n
o makes this predicate true, i.e., that (o(e}),...,0(e,)) € Wlga, 4 3(u). Let (a;;) be the tableau corre-
sponding to ¢, with blanks replaced by distinct fresh variables, let & be the row of (a;;) corresponding to
Pa, a4, (e, ... e), and let Siz, 00 (1), ..., Sk, 0, (€r) be the subsequence of s that remains after deleting all
predicates whose argument lists are not projections of &’ in the sense of property (2) above. Since o € [s](I), we
have o(&;) € I(S;) for 1 < i < k. Moreover, since each tuple &; is a projection of &, the tuples o(€}), ..., 5(é;) are
join-consistent and therefore their join, after padding with nulls, occurs as some tuple ¢ in u. Note that because
of property (3) above, {A1,..., An} C U<, <, (Z; UO;) and hence ¢ has non-null values in attributes Ay,..., A,.

It follows that (o(e}),...,o(ep)) = ya,, a3 @) €1 |fa, . a,y (u). a

3 Generating Access Script Sequences

Given a query, the system has to produce one or more sound access script sequences for the query and execute
them. It is unlikely that it will be feasible to produce all possible sound access script sequences. We expect that
in practice, the system will, guided by heuristics and cost estimates, suggest some candidate sequences, which
may then be refined in an interactive process, if desired. We have not studied such heuristics and cost models
vet, but we believe that these will be an important part of any implementation.

There are several possible ways of generating sound access script sequences. In the following, we present a
simple forward chaining algorithm.?

Given a query ¢ in tableau form, say ¢ = (a5 )1<i<m,1<j<n, Where each a;; is either a constant, a variable, or
blank, the algorithm works as follows. First, every blank entry in (a;;) is replaced by a fresh variable that occurs
nowhere else. We call these newly introduced variables anonymous variables. Then, Boolean matrices (k;;) and
(t;;) are initialized as follows:

ko 1 if a;; is a constant
2 .
/ 0 otherwise
0 if a;; is an anonymous variable
ti]' — .
1 otherwise

The (k;;) matrix (k for “known”) flags those entries in the query tableau that may be used as inputs to subsequent
access script predicates. The (¢;;) matrix (¢ for “to cover”) flags entries that must still be used in some access
script predicate in order to satisfy property (3) of sound access script sequences.

For each new access script predicate that it generates, the algorithm must choose an applicable access script
type and a row of the query tableau where the arguments to the predicate should come from (cf. property (2) of
soundness). To avoid generating the same predicate twice, we maintain a list cand of possible choices and delete
choices from this list once they have been picked. Initially, the list contains all possible combinations of access
script types and rows:

cand — {(S:7 = 0,i) | S:T -0 € AS,1 <i<m}
The algorithm then executes the following loop (the double slash delimits comments):

seq — 0

while nonzero ¢;;’s exist do
// determine applicable choices
choices — {(S:Z — O,1) € cand | k;; = 1 for all columns j corresponding to attributes in 7'}
if choices = () then fail end

5However, depending on the structure of the available access script types, backward chaining or other, more sophisticated search
techniques may be more efficient.



choose (S:7 — O,i) € choices // heuristics or cost functions may be applied here

cand — cand \ {(S:7 — 0,9} // eliminate choice from further consideration
€ —Mzuo(ai, ..., an) // determine arguments of access script predicate
seq «— append(seq, S1.0(€)) // append predicate to sequence

// update (k;;) and (¢;;) matrices

k;; — 1  for all j corresponding to attributes in O

t;; — 0  for all j corresponding to attributes in Z U O

kyy — 1 for all u, v such that for some 1 < j < n, ay, = a;; and k;; =1

end while

The final value of seq is the desired access script sequence.

Lemma 3.1 Given a query q, the algorithm above will produce an access script sequence that is sound for q if
one exists.

Proof: The algorithm always terminates because one pair (.5, ¢) is removed from cand during each iteration. Tt
is easy to see that if it terminates successfully, the resulting access script sequence seq is sound for ¢: property (1)
is ensured by means of the (k;;) matrix, property (2) because the argument list € of an access script predicate is
constructed as a projection of a tableau row, and property (3) by means of the (¢;;) matrix.

On the other hand, suppose an access script sequence s sound for ¢ exists. Produce a sequence s’ that contains
for each predicate p of s, in turn, a pair containing the access script type corresponding to p and the index of
the row of ¢ from which the arguments to p came (such a row exists because of property (2) of soundness). An
induction then shows that on any run of the algorithm, the set choices will always contain one of the pairs in s’:
initially the first pair from s’ will be in choices, and after the algorithm has made a sequence of choices that
includes, possibly among others, the first ¢ pairs from s, then pair 7+ 1 from s will be in choices. Therefore, the
algorithm will not run out of choices unless it produces an access script sequence that contains s as a subsequence.
But at that point the matrix (¢;;) is guaranteed to be empty, because s must cover all non-blank entries in ¢
according to property (3) of soundness, so the algorithm will terminate normally. a

As specified above, the algorithm will generate a single access script sequence. Multiple sequences can be
generated by backiracking through the choices made at each iteration. We envision an interface where a proposed
sequence, possibly annotated with information about the involved sources and execution costs, is presented to
the user in response to his query. The user may execute the sequence and, if not satisfied with the results, try
another one, or ask for an alternative right away.

4 Evaluating Access Script Sequences

Optimizations. An access script sequence produced by the algorithm above can in general be optimized
(cf. [1, 2] for general optimization techniques for conjunctive queries). First, “useless” access script predicates
can be recursively deleted. An access script predicate is useless in an access script sequence if: (1) all its outputs
are variables, (2) none of these variables occur in a query predicate or some other access script predicate, and
(3) the removal of the predicate does not violate soundness, which in this case requires that every variable or
constant mentioned in the query still occurs somewhere else in the access script sequence.® Second, there is
usually considerable potential for concurrent execution of access scripts. Since access scripts may have to wait
for a significant amount of time for the underlying service providers to answer, concurrent execution of several
access scripts may result in a substantial speedup. For this, it is necessary to establish the data dependencies
between access script predicates. A data dependency between two access script predicates exists whenever the
first predicate produces an output used as an input of the second predicate. By regarding the data dependencies
as edges in a graph with the access script predicates as vertices, the access script sequence may be viewed as a
directed acyclic graph. Nodes that are not connected by a directed path may be executed concurrently.

6Deleting useless predicates may alter the semantics of the access script sequence because the shorter sequence may have more
answers. Nevertheless, we feel that this is a change for the better, because the deleted predicates represent connections that were
not specified by the user.



Execution model. The actual execution of an access script sequence involves calling the various access scripts
listed in the sequence with the proper arguments, while keeping track of the variable bindings generated during
the process. Note that, given a set of tuples over the input attributes of the access script, each access script
produces a set of tuples over the input and output attributes. The set of tuples produced is the natural join of
the extension of the access script with the input set of tuples.

Variable bindings generated by access script invocations are kept in a blackboard relation B that is maintained
throughout the evaluation process. This relation has one attribute for every variable mentioned in the access
script predicates that have been processed so far. Initially, the schema of B is empty and B contains the single
tuple (). Whenever an access script predicate S¢r, . 7,.3{01,..,0,1(€1,. -, €mqn) is scheduled for execution, an
input relation over Iy, ..., I, is built by projecting B onto the variables appearing in (eq, ..., ey) and extending
the resulting tuples with the constants appearing in (eq, ..., e ) to obtain tuples over Iy, ..., I, (cf. the VTOA
operator in [16], page 750). This input relation is then passed to the appropriate access script. The resulting
output relation over {Iy,..., I,,01,...,0,} is converted back to a relation b over the variables occuring in
(e1,. .. emin) (cf. the ATOV operator in [16], page 747). This conversion may entail a selection if constants
appear among €my1, ..., Em4n. Lhe relation b is then joined with B (possibly extending the schema of B) to
obtain an updated variable binding relation. After all access script predicates have been processed, the schema
of B contains an attribute for every variable mentioned in the sequence, and the tuples in B represent valuations
that make every access script predicate in the sequence true, i.e. answers to the sequence.

In order to reuse results produced by access scripts during the evaluation process, the result generated by an
invocation of an access script may be cached (recall that the result is just some part of the extension of that
access script). Whenever the access script is invoked again, the cache can be checked to see whether the relevant
part of the extension is there. If so, the cached result may be reused.

5 Summary and Discussion

We have addressed the problem of providing a simple user interface for accessing a network of distributed,
heterogeneous, and autonomous information sources. Our proposed solution is twofold: (1) encapsulate knowledge
about the network in access scripts that are capable of handling basic queries and that present a directed relational
interface to the outside, and (2) use combinations of these access scripts to answer more complex queries phrased
in terms of a universal relation model. The main difficulty with this approach lies in determining how access
scripts should be combined to implement a given query. This problem is related to the problem of implementing
a universal relation interface to a set of ordinary relations, but due to the absence of dependencies in the schema
and the restrictions on how access scripts may be combined, traditional solutions do not immediately apply in
our setting. It does not seem possible in our case to give a simple denotational semantics for queries that can also
be implemented operationally. Instead, we give a notion of “correct” answers to queries that serves as an upper
bound for the set of acceptable answers and then show how to obtain those correct answers that can actually be
retrieved given the restrictions on how access scripts may be accessed.
In future work, we plan to address the following issues:

1. Heuristics. It is usually not feasible to execute or even generate all sound access script sequences for a
given query. It is therefore important that the system employ heuristics to quickly generate a sequence
that matches the user’s intuition about what a particular query means.

2. Cost models and optimization. So far, we have ignored the cost of invoking a particular access script.
However, many information providers charge for their services, and therefore some ways of obtaining a
piece of information may be more expensive than others. In addition, the quality (such as completeness
or accuracy) of information providers may vary. The system should be capable of choosing optimal access
script sequences based on cost/quality tradeoffs specified by the user.

3. User interfaces. Clearly, the user should have more intuitive means of expressing a query than conjunctions
of predicates. We envision a user interface that uses menu trees to guide the user to the appropriate service
category. Once the set of relevant attributes has been narrowed down sufficiently, a QBE-style interface
may be used to obtain the actual query tableau.

4. Dynamic re-planning. If during the execution of an access script sequence an access script fails, the system
should attempt to execute the query using an alternative sequence. This is easy to achieve if access script
invocations have no side effects, but harder if an access script causes lasting changes in the environment
(e.g., reserving a flight).
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