
Possibilities� Limitations and Problems in

Retiming � a View from a Logical Perspective

Dirk Eisenbiegler
Institut for Circuit Design and Fault Tolerance

�Prof� Dr��Ing� D� Schmid�
University of Karlsruhe

e�mail� Dirk�Eisenbiegler�informatik�uni�karlsruhe�de

December 	
 ���	

Abstract

This paper gives a formal description of retiming and analyzes its

possibilities� The paper is based on a theory for automata in HOL� which

is dedicated towards formal hardware representation and transformations�

In this approach hardware is represented by automata descriptions and

formal synthesis is performed by applying formally proven theorems�

� Introduction

Performing the synthesis of circuits correctly is essential due to the costs arising
from error prone implementations� In the beginning of circuit design� circuits
have beeen designed by hand� Nowadays� the synthesis process has been more
and more automated� This increases the reliability of circuit design� especially
for large sized circuits �socalled correctness by design�� However� nowadays the
correctness of synthesis essentially depends on the correctness of the synthesis
programs involved�

This paper is dedicated towards one speci�c synthesis step� the retiming of
synchronous circuits �LeRS	
� SSLM��� Retiming can be performed on the gate
level as well as on the RT level� Simple synthesis programs for logic minimiza�
tion �two�level optimization� multi�level optimization� and technology mapping
only transform the combinatorial part of the circuit whereas the memory part
is not a�ected� Such transformations are primitive in a sense that they only
substitute the ncombinatorial part by an equivalent one� On the gate level such
transformations can easily be described by simple rule applications within some
boolean calculus�

Retiming goes beyond this� Retiming also a�ects the state representation�
Therefore retiming cannot be veri�ed by means of simple boolean argumenta�
tion� This makes retiming a magnitude more complex� Applying automated

�



general purpose veri�cation techniques is not suitable due to the extreme time
and memory consumption �BCLM��� Melh�
� Also specialized general�purpose
veri�cation techniques �EiJe�� and even retiming speci�c veri�cation techniques
�HuCC��� that are only designed for verifying pure retiming steps� are not ap�
plicable for medium or large sized circuits�

� What this Paper is not about

This paper is restricted to retiming where the synchronous is not a�ected� In
some publications� the term retiming is also used in a di�erent manner�

In �Shee		� for example� only acyclic data �ow graphs with intermediate
registers are considered� The operations performed de�nitely change the syn�
chronous behaviour� Registers are not only shifted but the operations performed
also a�ect the number of intermediate register layers thus leading to di�erent
execution times in terms of clock cycles�

In such approaches� the relation between the original and the transformed
circuit is not that trivial any more� It is sort of an equivalence from an algo�
rithmic level point of view� the algorithm remains unchanged but there is a
di�erent interface behaviour� Such techniques go beyond the limits of RT�level
descriptions� Due to the fact that such transformations cannot be considered
from the RT�level only but are equivalent only in terms of a common algorithmic
description� they are pretty close to scheduling as it is performed in high�level
synthesis �CaWo���

� Automata Descriptions

The de�nition of the automaton constant is to be performed in a conservative
manner� It has to be prevented to add some extra axioms to the HOL theory that
violate consistency� Therefore HOL provides a set of four basic mechanisms for
extending the theory in a consistent manner� and there are also some compound
mechanisms based on them�

At �rst glance� the de�nition of automaton may seem a little awkward and
involved� �rst a primitive recursion is performed for de�ning some auxiliary
function automaton� and then automaton itself is de�ned via a constant de�ni�
tion� However� the primitive recursion and constant de�nition are consistency
preserving mechanisms�

automaton� is similar to automaton except that the state is also visible �see
�gure ��� Other than with automaton� the pair �f� q� is mapped to a function
that maps the input to a compound output�state�signal� automaton� has the
following type�

��� � � � � � �� � �� � �num� ��� �num� �� � ���

automaton� is de�ned by means of primitive recursion over natural numbers�
which represent time� For a given input� the expression �automaton��f� q� input�

�



f�������

��
num� �

automaton�f� q��num�����num���

� �

num� � � �

D�q��

Figure �� Automaton�

denotes the output and the present state and �automaton��f� q� input t� denotes
the output and the present state at some time t� The de�nition to follow is
performed by using primitive recursion over t�

The output and the next state for some time t can be obtained by applying f

to the pair of current input input�t� and current state s� In the beginning t is �
and the automata is in the initial state s � q� For all other times t � �SUCt��� the
next state of the output is de�ned using the current input input�SUC t�� and the
current state s� Since �automaton� �f� q� input t�� produces a pair corresponding
to the output and the state� the function SND is applied in order to extract the
state from this result�

Remark� Throughout this paper� the function FST and SND will be used�
They are prede�ned functions in the HOL theorem prover� FST maps a pair to
its �rst component� SND maps a pair to its second component�

Definition�

�
�
automaton� �f� q� i � � f�i���� q�

�
�

�
automaton� �f� q� i �SUC t�� �

let

s� SND�automaton� �f� q� i t��
in

f�i�SUC t��� s�
�

���

Now automaton can be de�ned by as�

Definition�

� automaton �f� q� i t � FST�automaton� �f� q� i t�

���

Relation between Input� State and Output

The following theorem describes the bevaviour of automaton in a more natural
way� Other than ��� and ���� it has not been invented via de�nition but has
been formally derived�






automaton�f� q� is a function mapping some time dependent input signal
inputnum��

to some time dependent signal outputnum��
� Let statenum��

be a signal� where the initial state state��� equals q and where f is used to
iteratively produce the succeeding states� Then state�t� represents the state of
the automaton at time t and one can determine the output at time t by applying
f to input�t� and state�t��

� �output � automaton �f� q� input�
�
�state�

�state��� � q��
��t� state�SUC�t�� � SND�f�input�t�� state�t����
� output�t� � FST�f�input�t�� state�t���

�

�
�

Figure � sketches the relation between the signals involved� For some speci�c
automaton� the initial state at time � as well as the output and transition
function f are pregiven� For a given input signal� the states for t � � and the
outputs are computed by applying f according to �gure ��

0 time

output

f f f fstate

input

1 2 3 4

...

Figure �� Input� State and Output of an Automaton

� On the Equality of Automata

Two automata represented by �f�� q�� and �f�� q�� are equal whenever they
represent the same input�to�output�function� i�e�

automaton�f�� q�� � automaton�f�� q��

This report is concerned with an equivalence transformation on automata� The
constant automaton can be considered as a characteristic function for the equiv�
alence relation on pairs �f� q��

The following theorem describes the the relation between the signals of two
equal automata automaton�f�� q�� and automaton�f�� q�� �see also Figure 
��
The �rst starts with state q�� the latter starts with q�� Given that they are
both wired to the same input signal� they both produce the same output by

�



iteratively applying f� and f� respectively�

� �automaton �f�� q�� � automaton �f�� q���
�
�state�� state��

�state���� � q���
��t� state��SUC�t�� � SND�f��input�t�� state��t����
�state���� � q���
��t� state��SUC�t�� � SND�f��input�t�� state��t����
� FST�f��input�t�� state��t��� � FST�f��input�t�� state��t���

���

0

f�

f�

f�

f�

f�

f�

time

output

state
�

state
�

input

...

1 2 3

Figure 
� Input� State and Output of two equal Automata

There are two cases for equality of automata� In the trivial case� f� equals
f� and q� equals q�� Being equal implies having the same type� Therefore� in
this case� �� and �� must be equal� When performing bisimulation ��gure 
��
the states are always equal� i�e� state��t� � state��t��

In the nontrivial case� the two automata are equal although f� does not
equal f� and q� does not equal q�� There may even be di�erent data types for
the internal states� So the �expressions� q� � q� and f� � f� are not even
well�formed� due to a type mismatch�

In circuit design� combinatorial optimizations or simple functional optimiza�
tions on the RT�level correspond to the trivial case� It is pretty easy to de�
scribe such transformations in logic� For combinatorial optimizations� opera�
tions within a boolean calculus will do the job�

More sophisticated synthesis procedures such as state encoding� state mini�
mization and retiming correspond to the nontrivial case� This paper is dedicated
towards retiming which requires a nontrivial transformation�

� Retiming

In simpli�ed terms� retiming �more precisely� forward retiming� moves the mem�
ory part over g� In order to guarantee correctness� the initial state q has to be
transformed from q to g�g� �see �gure ��� Retiming can signi�cantly change the
delay of the combinatorial part of the circuit and therefore increase the clock
frequence� One also has to consider� in general retiming also has an impact on

�



the number of memory units needed� Combining Retiming with combinatorial
optimizations may even change the consumption of combinatorial units�

g
h

D�q�

g
h

D�g�q��

Figure �� Retiming

The Retiming Theorem

The following theorem describes retiming in a very general manner� It states
that the two automata descriptions in �gure � are equal� Both automata consist
of two combinatorial subparts f and g� The theorem is a mighty higher order
logic expression stating that this equality holds for all f and all g� Therefore the
theorem � is not dedicated to a speci�c retiming step but describes a general
pattern for retiming� As described later on� it can be adapted to di�erent
situations�

� automaton� ���i� s�� h�i� g�s��� � q �
� automaton� ���i� s�� let �x� y� � h�i� s� in �x� g�s��� � g�q� �

���

Applying the Retiming Theorem

Retiming can be performed in both directions� The synthesis step from left to
right ��gure �� is called forward retiming whereas the reverse direction is called
backward retiming� In both directions it is possible to apply the theorem in
various ways�

Using an automaton as a formal representation� the overall forward retiming
procedure consists of four steps�

�� First the combinatorial part is split into f and g� Assigning combinatorial
components to f or g can either be performed by hand or some arbitrary
external program may be invoked�

�� Then the general retiming theorem is applied� The current circuit descrip�
tion is matched with the left hand side of the equation and one proceeds
with the right hand side�


� Then f and g are joined to a single combinatorial part�

�



�� Finally the new initial values of the shifted registers f�q� are determined
via evaluation�

Figure � describes� how a circuit is adapted to the retiming theorem� In our
example� there are three combinatorial parts� �� �� and MUX� When applying
our synthesis procedure� f consists of the ��component only and g consists of
�� and MUX�

 g

D

D

D

+1

 f MUX
0

1

0

0

0

 D

b
a y

Clock

D

D

0

Clock
1

a
b

+1

MUX
0

1

y

 g

f

D

�

Retiming

Figure �� Example for Applying the Retiming Scheme

Forward Retiming and Backward Retiming

At �rst glance� backward retiming is just the other way round� The current
automaton has to be matched with the right hand side and the theorem has to
be applied in reverse direction� However� determining the new initial state is
not that easy any more since one has to apply the �inverse� of g� In general�
there is no such �inverse� or it is not unambiguous� There may be several initial
states ful�lling this property and it may even be� that there is none�

Up to now� only unambiguous circuit descriptions have been considered� i�e�
each circuit represents exactly one concrete circuit� However� when performing
a backward retiming step with several possible initial states� this is a synthesis
step where the result should be a set of circuits rather than a single circuit�
There are several formalism where circuits need not necessarily be speci�ed in
an unambiguous manner but can loosely be speci�ed �don�t cares etc��� Such
formalisms do not describe single circuits but sets of circuits� Just picking out
one of the circuits and omit the rest may lead to a loss of optimization since
further optimizations steps may produce good results only for the omited ones�

�



Dealing with circuit descriptions that do not ensure unambiguity makes
things a magnitude more di�cult� One has to be aware of the fact that in
general such circuit descriptions do not ensure consistency� Deriving inconsis�
tent circuit descriptions is �ne as far as logic is concerned� Inconsistent circuit
descriptions ful�ll any speci�cation� So without looking at consistency� con�
structing correct circuit descriptions for arbitrary speci�cations is pretty easy�
From the practical point of view� however� such circuit descriptions are both
worthless and misleading� There is just no circuit in the real world that such
circuit descriptions stand for�

Possibilities and Limitations

In forward retiming� the combinatorial part has to be cut according to the left
hand side of �gure �� During retiming� the components of the combinatorial part
have to be assigned to either f or g� However� not all assignments are possible�
Components can only be assigned to g if they only depend on the states or on
the results of other components that are assigned to g� Components in g must
not � neither directly nor indirectly � depend on the overall inputs of the
combinatorial part�

To perform backward retiming� the components assigned to g must not �
neither directly nor indirectly � depend on the overall outputs of the combina�
torial part� In order to avoid inconsistency� backward retiming should also be
restricted to functions g such that there exists an inverse for the current initial
state with respect to g�

Figure � describes a typical situation before retiming� One can statically
analyze which retiming steps can be performed� As to forward retiming� C�
and C
 cannot be assigned to g due to the dependencies from the input signals�
Furthermore data dependencies within C�� C�� C� and C� have to be respected�
Assigning C� to g and assigning the other components to f would lead to a
proper split of the combinatorial part� The new initial state would become
��� �� ��� Assigning C� and C� to g and the rest to f � however� would fail since
C� �a component within g� depends on the result of C� �a component within
f��

As to backward retiming� the components C� and C� cannot be assigned to
g due to their impact on the output signal� Similar to forward retiming� data
dependencies again have to be considered� For example� it is not possible to
assign C� to g and to assign C� to f �

In general� backward retiming does not lead to unambiguous initial states�
Let C
 be assigned to g and the other components be assigned to f � In the
retimed circuit� four ��Bit D��ip�ops are required� two at the outputs of C�
and C� and two at the inputs of C
� The D��ip�ops at the inputs of C
 can be
initialized with ��� ��� ��� �� or ��� ���

Besides data dependencies on the output� there is also a second restriction
for backward retiming� for some cuts� there is no proper initial state� Let C�
and C� be assigned to g and the other components be assigned to f � For the
output signal of C� � an input for both C� and C� � the requirements are

	



D���� �� ���

1
C1

>1

>1

C2

>1
C3

C6

C5

1
C4 &

Figure �� Example for Retiming

contradictory� According to C� the its initial state should be � and according
to C� its initial state should be �� So for this cut there is no proper initial state�

� Conclusions

In this paper� retiming of circuits has been described in a formal manner� Based
on these exact formal representations� variations and possibilities but also pos�
sible problems have been discussed�

It shows that it is worthwhile having a closer look at synthesis from a logical
point of view� Finding adequate formal representation is a �rst step towards
this goal� Consistency of formal circuit representations is a preliminary� Formal
circuit correctness only makes sense if the chosen circuit representations really
do represent real circuits�

In higher order logic it is possible to describe and prove general patterns for
synthesis steps in general �quanti�cation over functions�� This leads to formal
synthesis tools� where synthesis is performed by applying such theorems within
a theorem prover �EiKB��� BlEK��� On the other hand� arguing with such
theorems also leads to a better understanding of correctness of synthesis and
bugs within implementations�

�



References

�BCLM�� J�R� Burch� E�M� Clarke� D�E� Long� K�L� MacMillan� and D�L� Dill�
Symbolic model checking for sequential circuit veri�cation� IEEE

Transactions on Computer�Aided Design of Integrated Circuits and

Systems� �
������������ April �����

�BlEK�� C�Blumenr�ohr� D� Eisenbiegler� and R�Kumar� Applicability of for�
mal synthesis illustrated via scheduling� In Workshop on Logic and

Architecture Synthesis� Grenoble� France� December ����� Institut
National Polytechnique de Grenoble�

�CaWo�� R� Camposano and W� Wolf� High�Level VLSI Synthesis� Kluwer�
Boston� �����

�EiJe�� C�A�J� van Eijk and J�A�G� Jess� Exploiting functional dependencies
in �nite state machine veri�cation� In The European Design � Test

Conference� pages ����� Paris� France� March ����� IEEE Computer
Society and ACM�SIGDA� IEEE Computer Society Press�

�EiKB�� Dirk Eisenbiegler� R�Kumar� and C�Blumenr�ohr� A constructive ap�
proach towards correctness of synthesis application within retiming�
In The European Design � Test Conference� Paris� France� March
����� IEEE Computer Society and ACM�SIGDA� IEEE Computer
Society Press�

�HuCC�� Huang� Cheng� and Chen� On verifying the correctness of retimed
circuits� In Great Lakes Symposium on VLSI� Ames� USA� March
�����

�LeRS	
 C� Leisersohn� F� Rose� and J� Saxe� Optimizing synchronous circuits
by retiming� In Caltech Conference on VLSI� pages 	������ ��	
�

�Melh�
 T� Melham� Higher Order Logic and Hardware Veri�cation� Cam�
bridge University Press� ���
�

�Shee		 M� Sheeran� Retiming and slowdown in ruby� In George J� Milne�
editor� The Fusion of Hardware Design and Veri�cation� pages �	��

�	� Glasgow� Scotland� July ��		� IFIP WG���� Working Confer�
ence� North�Holland�

�SSLM�� E� M� Sentovich� K� J� Singh� L� Lavagno� and C� Moon et al� SIS� A
system for sequential circuit synthesis� Technical Report UCB�ERL
M������ University of California� Berkeley� �����

��


