Possibilities, Limitations and Problems in
Retiming — a View from a Logical Perspective

Dirk Eisenbiegler
Institut for Circuit Design and Fault Tolerance
(Prof. Dr.-Ing. D. Schmid)
University of Karlsruhe
e—mail: Dirk.Eisenbiegler@informatik.uni-karlsruhe.de

December 6, 1996

Abstract

This paper gives a formal description of retiming and analyzes its
possibilities. The paper is based on a theory for automata in HOL, which
is dedicated towards formal hardware representation and transformations.
In this approach hardware is represented by automata descriptions and
formal synthesis is performed by applying formally proven theorems.

1 Introduction

Performing the synthesis of circuits correctly is essential due to the costs arising
from error prone implementations. In the beginning of circuit design, circuits
have beeen designed by hand. Nowadays, the synthesis process has been more
and more automated. This increases the reliability of circuit design, especially
for large sized circuits (socalled correctness by design). However, nowadays the
correctness of synthesis essentially depends on the correctness of the synthesis
programs involved.

This paper is dedicated towards one specific synthesis step: the retiming of
synchronous circuits [LeRS83, SSLM92]. Retiming can be performed on the gate
level as well as on the RT level. Simple synthesis programs for logic minimiza-
tion (two-level optimization, multi-level optimization) and technology mapping
only transform the combinatorial part of the circuit whereas the memory part
is not affected. Such transformations are primitive in a sense that they only
substitute the ncombinatorial part by an equivalent one. On the gate level such
transformations can easily be described by simple rule applications within some
boolean calculus.

Retiming goes beyond this. Retiming also affects the state representation.
Therefore retiming cannot be verified by means of simple boolean argumenta-
tion. This makes retiming a magnitude more complex. Applying automated

general purpose verification techniques is not suitable due to the extreme time
and memory consumption [BCLM94, Melh93]. Also specialized general-purpose
verification techniques [EiJe96] and even retiming specific verification techniques
[HuCC96], that are only designed for verifying pure retiming steps, are not ap-
plicable for medium or large sized circuits.

2 What this Paper is not about

This paper is restricted to retiming where the synchronous is not affected. In
some publications, the term retiming is also used in a different manner.

In [Shee88], for example, only acyclic data flow graphs with intermediate
registers are considered. The operations performed definitely change the syn-
chronous behaviour. Registers are not only shifted but the operations performed
also affect the number of intermediate register layers thus leading to different
execution times in terms of clock cycles.

In such approaches, the relation between the original and the transformed
circuit is not that trivial any more. It is sort of an equivalence from an algo-
rithmic level point of view: the algorithm remains unchanged but there is a
different interface behaviour. Such techniques go beyond the limits of RT-level
descriptions. Due to the fact that such transformations cannot be considered
from the RT-level only but are equivalent only in terms of a common algorithmic
description, they are pretty close to scheduling as it is performed in high-level
synthesis [CaWo91].

3 Automata Descriptions

The definition of the automaton constant is to be performed in a conservative
manner. It has to be prevented to add some extra axioms to the HOL theory that
violate consistency. Therefore HOL provides a set of four basic mechanisms for
extending the theory in a consistent manner, and there are also some compound
mechanisms based on them.

At first glance, the definition of automaton may seem a little awkward and
involved: first a primitive recursion is performed for defining some auxiliary
function automaton’ and then automaton itself is defined via a constant defini-
tion. However, the primitive recursion and constant definition are consistency
preserving mechanisms.

automaton’ is similar to automaton except that the state is also visible (see
figure 1). Other than with automaton, the pair (f,q) is mapped to a function
that maps the input to a compound output/state-signal. automaton’ has the
following type:

(txo—=>wxo)xo) = (num—) = (num — (w X 0))

automaton’ is defined by means of primitive recursion over natural numbers,
which represent time. For a given input, the expression (automaton’(f, ¢) input)

automaton(f, ¢)(num—.)—(num—w)

num — ¢ T num =S w X o

Figure 1: Automaton’

denotes the output and the present state and (automaton' (f, ¢) input t) denotes
the output and the present state at some time ¢t. The definition to follow is
performed by using primitive recursion over ¢.

The output and the next state for some time ¢t can be obtained by applying f
to the pair of current input input(t) and current state s. In the beginning ¢ is 0
and the automata is in the initial state s = ¢. For all other times ¢ = (SUCt'), the
next state of the output is defined using the current input input(SUCt') and the
current state s. Since (automaton’ (f, q) inputt') produces a pair corresponding
to the output and the state, the function SND is applied in order to extract the
state from this result.

Remark: Throughout this paper, the function FST and SND will be used.
They are predefined functions in the HOL theorem prover. FST maps a pair to
its first component, SND maps a pair to its second component.

Definition: (1)
F (automaton’ (f,q) i 0 = f(i(0),q)) A
(automaton’ (f,q) @ (SUCH') =
let
s = SND(automaton' (f,q) i t')
in

fasuce),s))
Now automaton can be defined by as:

Definition: (2)
F automaton (f,q) it = FST(automaton’ (f,q) i t)

Relation between Input, State and Output

The following theorem describes the bevaviour of automaton in a more natural
way. Other than (1) and (2), it has not been invented via definition but has
been formally derived.

automaton(f,q) is a function mapping some time dependent input signal
inputpym-,, to some time dependent signal outputaym_..- Let statenum—o
be a signal, where the initial state state(0) equals ¢ and where f is used to
iteratively produce the succeeding states. Then state(t) represents the state of
the automaton at time ¢ and one can determine the output at time ¢ by applying
f to input(t) and state(t).

F (output = automaton (f, q) input) (3)
‘;state.
(state(0) = ¢)A
(Vt. state(SUC(t)) = SND(f(input(t), state(t)))))
= output(t) = FST(f(input(t), state(t)))

Figure 2 sketches the relation between the signals involved. For some specific
automaton, the initial state at time 0 as well as the output and transition
function f are pregiven. For a given input signal, the states for ¢ > 0 and the
outputs are computed by applying f according to figure 2.

input 0\‘ 0\‘ o\ o\‘ °
state ®—~f—-0—+f-0—~f+-o0—~f-o0

output OJ OJ OJ OJ o

0 1 2 3 4 time

Figure 2: Input, State and Output of an Automaton

4 On the Equality of Automata

Two automata represented by (f!,¢') and (fZ%,¢?) are equal whenever they
represent the same input-to-output-function, i.e.

automaton(f!,¢') = automaton(f?, ¢?)

This report is concerned with an equivalence transformation on automata. The
constant automaton can be considered as a characteristic function for the equiv-
alence relation on pairs (f,q)-

The following theorem describes the the relation between the signals of two
equal automata automaton(f!,q') and automaton(f?,q?) (see also Figure 3).
The first starts with state ¢', the latter starts with ¢®>. Given that they are
both wired to the same input signal, they both produce the same output by

iteratively applying f' and f2 respectively.

F (automaton (f!,q') = automaton (f2,4?)) (4)

‘;statel ,state?.
(state' (0) A
(Vt. state! (SUC(t)) = SND(f! (input(t), state' (t))))
(state? (0) = ¢®)A
(Vt. stateZ(SUC(t

) = SND(2(input(t), state*(t))))
= FST(f! (input(t

), statet (t))) = FST(f2(input(t), state?(t)))

input 0 o o °

state! f1+0 f1+0 f1+0

output © o
0 1 2 3 time

Figure 3: Input, State and Output of two equal Automata

There are two cases for equality of automata. In the trivial case, f! equals
f? and ¢! equals ¢?. Being equal implies having the same type. Therefore, in
this case, o' and ¢ must be equal. When performing bisimulation (figure 3),
the states are always equal, i.e. state!(t) = state?(t).

In the nontrivial case, the two automata are equal although f! does not
equal f2 and ¢' does not equal ¢?>. There may even be different data types for
the internal states. So the ”expressions” ¢ = ¢' and f' = f? are not even
well-formed, due to a type mismatch.

In circuit design, combinatorial optimizations or simple functional optimiza-
tions on the RT-level correspond to the trivial case. It is pretty easy to de-
scribe such transformations in logic. For combinatorial optimizations, opera-
tions within a boolean calculus will do the job.

More sophisticated synthesis procedures such as state encoding, state mini-
mization and retiming correspond to the nontrivial case. This paper is dedicated
towards retiming which requires a nontrivial transformation.

5 Retiming

In simplified terms, retiming (more precisely: forward retiming) moves the mem-
ory part over g. In order to guarantee correctness, the initial state ¢ has to be
transformed from ¢ to g(g) (see figure 4). Retiming can significantly change the
delay of the combinatorial part of the circuit and therefore increase the clock
frequence. One also has to consider, in general retiming also has an impact on

the number of memory units needed. Combining Retiming with combinatorial
optimizations may even change the consumption of combinatorial units.

A RO
Dlq] j (D[g(q)]j

Figure 4: Retiming

The Retiming Theorem

The following theorem describes retiming in a very general manner. It states
that the two automata descriptions in figure 4 are equal. Both automata consist
of two combinatorial subparts f and g. The theorem is a mighty higher order
logic expression stating that this equality holds for all f and all g. Therefore the
theorem 5 is not dedicated to a specific retiming step but describes a general
pattern for retiming. As described later on, it can be adapted to different
situations.

F automaton((A(i, s). h(i,g(s))) , q) (5)
= automaton((A(4, s).let (x,y) = h(i,s) in (x,9(s))) , 9(q))

Applying the Retiming Theorem

Retiming can be performed in both directions. The synthesis step from left to
right (figure 4) is called forward retiming whereas the reverse direction is called
backward retiming. In both directions it is possible to apply the theorem in
various ways.

Using an automaton as a formal representation, the overall forward retiming
procedure consists of four steps:

1. First the combinatorial part is split into f and g. Assigning combinatorial
components to f or g can either be performed by hand or some arbitrary
external program may be invoked.

2. Then the general retiming theorem is applied: The current circuit descrip-
tion is matched with the left hand side of the equation and one proceeds
with the right hand side.

3. Then f and g are joined to a single combinatorial part.

4. Finally the new initial values of the shifted registers f(q) are determined
via evaluation.

Figure 5 describes, how a circuit is adapted to the retiming theorem. In our
example, there are three combinatorial parts: >, +1 and MUX. When applying
our synthesis procedure, f consists of the >-component only and g consists of
+1 and MUX.

Clock i g

—
Retiming

Figure 5: Example for Applying the Retiming Scheme

Forward Retiming and Backward Retiming

At first glance, backward retiming is just the other way round. The current
automaton has to be matched with the right hand side and the theorem has to
be applied in reverse direction. However, determining the new initial state is
not that easy any more since one has to apply the ”inverse” of g. In general,
there is no such ”inverse” or it is not unambiguous. There may be several initial
states fulfilling this property and it may even be, that there is none.

Up to now, only unambiguous circuit descriptions have been considered, i.e.
each circuit represents exactly one concrete circuit. However, when performing
a backward retiming step with several possible initial states, this is a synthesis
step where the result should be a set of circuits rather than a single circuit.
There are several formalism where circuits need not necessarily be specified in
an unambiguous manner but can loosely be specified (don’t cares etc.). Such
formalisms do not describe single circuits but sets of circuits. Just picking out
one of the circuits and omit the rest may lead to a loss of optimization since
further optimizations steps may produce good results only for the omited ones.

Dealing with circuit descriptions that do not ensure unambiguity makes
things a magnitude more difficult. One has to be aware of the fact that in
general such circuit descriptions do not ensure consistency. Deriving inconsis-
tent circuit descriptions is fine as far as logic is concerned. Inconsistent circuit
descriptions fulfill any specification. So without looking at consistency, con-
structing correct circuit descriptions for arbitrary specifications is pretty easy.
From the practical point of view, however, such circuit descriptions are both
worthless and misleading. There is just no circuit in the real world that such
circuit descriptions stand for.

Possibilities and Limitations

In forward retiming, the combinatorial part has to be cut according to the left
hand side of figure 4. During retiming, the components of the combinatorial part
have to be assigned to either f or g. However, not all assignments are possible.
Components can only be assigned to g if they only depend on the states or on
the results of other components that are assigned to g. Components in g must
not — neither directly nor indirectly — depend on the overall inputs of the
combinatorial part.

To perform backward retiming, the components assigned to g must not —
neither directly nor indirectly — depend on the overall outputs of the combina-
torial part. In order to avoid inconsistency, backward retiming should also be
restricted to functions g such that there exists an inverse for the current initial
state with respect to g.

Figure 6 describes a typical situation before retiming. One can statically
analyze which retiming steps can be performed. As to forward retiming, C2
and C3 cannot be assigned to g due to the dependencies from the input signals.
Furthermore data dependencies within C1, C4, C5 and C6 have to be respected.
Assigning C4 to g and assigning the other components to f would lead to a
proper split of the combinatorial part. The new initial state would become
(0,1,0). Assigning C1 and C6 to ¢ and the rest to f, however, would fail since
C6 (a component within g) depends on the result of C4 (a component within
9

As to backward retiming, the components C1 and C2 cannot be assigned to
g due to their impact on the output signal. Similar to forward retiming, data
dependencies again have to be considered. For example, it is not possible to
assign C4 to g and to assign C6 to f.

In general, backward retiming does not lead to unambiguous initial states.
Let C3 be assigned to g and the other components be assigned to f. In the
retimed circuit, four 1-Bit D-flipflops are required: two at the outputs of C5
and C6 and two at the inputs of C3. The D-flipflops at the inputs of C3 can be
initialized with (1,0), (0,1) or (1,1).

Besides data dependencies on the output, there is also a second restriction
for backward retiming: for some cuts, there is no proper initial state. Let C5
and C6 be assigned to g and the other components be assigned to f. For the
output signal of C4 — an input for both C5 and C6 — the requirements are

c1 ‘ch c3
>

:
LA,

c4 &
>1m
DI(0,0,0)]

,,

Figure 6: Example for Retiming

contradictory. According to C5 the its initial state should be 1 and according
to C6 its initial state should be 0. So for this cut there is no proper initial state.

6 Conclusions

In this paper, retiming of circuits has been described in a formal manner. Based
on these exact formal representations, variations and possibilities but also pos-
sible problems have been discussed.

It shows that it is worthwhile having a closer look at synthesis from a logical
point of view. Finding adequate formal representation is a first step towards
this goal. Consistency of formal circuit representations is a preliminary. Formal
circuit correctness only makes sense if the chosen circuit representations really
do represent real circuits.

In higher order logic it is possible to describe and prove general patterns for
synthesis steps in general (quantification over functions). This leads to formal
synthesis tools, where synthesis is performed by applying such theorems within
a theorem prover [EiKB97, BIEK96]. On the other hand, arguing with such
theorems also leads to a better understanding of correctness of synthesis and
bugs within implementations.

References

[BCLM94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill.

[BIEK96]

[CaWo091]

[EiJe96]

[EiKB97]

[HuCC96]

[LeRS83]

[Melh93]

[Shee88]

[SSLM92]

Symbolic model checking for sequential circuit verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(4):401-424, April 1994.

C.Blumenrohr, D. Eisenbiegler, and R.Kumar. Applicability of for-
mal synthesis illustrated via scheduling. In Workshop on Logic and
Architecture Synthesis, Grenoble, France, December 1996. Institut
National Polytechnique de Grenoble.

R. Camposano and W. Wolf. High-Level VLSI Synthesis. Kluwer,
Boston, 1991.

C.A.J. van Eijk and J.A.G. Jess. Exploiting functional dependencies
in finite state machine verification. In The European Design € Test
Conference, pages 9-14, Paris, France, March 1996. IEEE Computer
Society and ACM/SIGDA, IEEE Computer Society Press.

Dirk Eisenbiegler, R.Kumar, and C.Blumenrdéhr. A constructive ap-
proach towards correctness of synthesis application within retiming.
In The European Design & Test Conference, Paris, France, March
1997. IEEE Computer Society and ACM/SIGDA, IEEE Computer

Society Press.

Huang, Cheng, and Chen. On verifying the correctness of retimed
circuits. In Great Lakes Symposium on VLSI, Ames, USA, March
1996.

C. Leisersohn, F. Rose, and J. Saxe. Optimizing synchronous circuits
by retiming. In Caltech Conference on VLSI, pages 87-116, 1983.

T. Melham. Higher Order Logic and Hardware Verification. Cam-
bridge University Press, 1993.

M. Sheeran. Retiming and slowdown in ruby. In George J. Milne,
editor, The Fusion of Hardware Design and Verification, pages 289—
308, Glasgow, Scotland, July 1988. IFIP WG10.2 Working Confer-
ence, North-Holland.

E. M. Sentovich, K. J. Singh, L. Lavagno, and C. Moon et al. SIS: A
system for sequential circuit synthesis. Technical Report UCB/ERL
M92/41, University of California, Berkeley, 1992.

10

