
Tableaux and witnesses for the �-calculus

October 7, 1995

Alexander Kick�

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler,

Universit�at Karlsruhe, Am Fasanengarten 5,D-76128 Karlsruhe, Germany

Email: kick@ira.uka.de

Abstract

Symbolic temporal logic model checking is an automatic veri�cation

method. One of its main features is that a counterexample can be con-

structed when a temporal formula does not hold for the model. Most model

checkers so far have restricted the type of formulae that can be checked and

for which counterexamples can be constructed to fair CTL formulae. This

paper shows how counterexamples and witnesses for the whole �-calculus

can be constructed. The witness construction presented in this paper is

polynomial in the model and the formula.

1 Introduction

Complex state-transition systems occur frequently in the design of sequential
circuits and protocols. Symbolic temporal logic model checking [CGL93] has

shown in practice to be an extremely useful automatic veri�cation method. In this
approach, the state-transition systems are checked with respect to a propositional
temporal logic speci�cation.

If the model satis�es the speci�cation the model checker returns true. Oth-

erwise, a counterexample can be constructed, which helps �nding the error in
the design. The latter facility is one of the most important advantages of model

checking over other veri�cation approaches.
The symbolic model checker SMV developed at Carnegie Mellon University

([McM93]) based on OBDDs [Bry92] can check fair CTL (FCTL) ([CGL93]) for-

mulae and construct counterexamples for these formulae. Model checkers which

�Supported by DFG Vo 287/5-2

1

can check �-calculus formulae [Koz83] have greater expressive power, since arbi-

trary �-calculus formulae can be checked in contrast to the small subclass FCTL

of the �-calculus, and are more general since many problems can be translated

into the �-calculus.

In [CGMZ94], it is described how to construct counterexamples for FCTL

formulae. To our knowledge, noone has yet investigated how to construct coun-

terexamples for arbitrary �-calculus formulae. To be able to construct counterex-

amples for �-calculus formulae, however, is necessary to make a �-calculus model

checker as useful as a CTL model checker. In this paper, we therefore investigate

how counterexamples for �-calculus formulae can be computed.

The rest of the paper is structured as follows. Section 2 consists of prelim-

inaries where the �-calculus is repeated, some terminology is introduced and a

modi�ed model checking algorithm is given. In Section 3 we repeat tableau based

model checking. The notion of tableau motivates the de�nition of witness in Sec-

tion 4 where we also present an algorithm to construct witnesses. Note that we
will not care about counterexamples for a formula f in the rest of the paper since
counterexamples are simply witnesses for the negation of formula f . In Section

5 we compare our witness construction for the whole �-calculus to the special
witness construction for FCTL formulae in [CGMZ94]. In Section 6 we draw
some conclusions.

2 The modal �-calculus

In this section we remind the reader of the syntax and semantics of the modal �-
calculus, we introduce some notation and give a slightly modi�ed model checking
algorithm which suits our purposes of witness construction. We mainly follow

[EL86]

2.1 Syntax and semantics

There are the following syntactic classes:

� PropCon, the class of propositional constants P;Q;R; : : :

� PropVar, the class of propositional variables X;Y;Z; : : :

� ProgAt, the class of program atoms or basic actions A;B;C; : : :

� Form, the class of formulae L� of the propositional �-calculus p; q : : : , de-
�ned by

p ::= P jXjp ^ qj:pj�X:pjhAip

2

where in �X:p, p is any formula syntactically monotone in the proposi-

tional variable X, i.e., all free occurrences of X in p fall under an even

number of negations.

The other connectives are introduced as abbreviations in the usual way: p_ q
abbreviates :(:p ^ :q), [A] p abbreviates :hAi:p and �X:p(X) abbreviates

:�X::p(:X).

The semantics of the �-calculus is de�ned with respect to a model. A model

is a triple M = (S;R;L) where S is a set of states, R : ProgAt ! P(S � S) is

a mapping from program atoms A to a set of state transitions involving A, and

L : S ! P(PropCon) labels each state with a set of atomic propositions true in

that state.

In the rest of the paper, we rarely need the program atoms. Therefore, we

introduce the abbreviation R :=
S
f(s; t)j(s; t) 2 R(A) ^ A 2 ProgAtg. A path

in M is a sequence of states: � = s0s1 : : : such that 8i � 0 : (si; si+1) 2 R.
We assume that the models we deal with in the following are �nite (i.e., S and
ProgAt are �nite). The semantics for the modal �-calculus is given via least and
greatest �xpoints. For the details, the reader is referred to [EL86].

The meanings of formulae is de�ned relative to valuations � : PropV ar !
P(S). The variant valution �[X=T] is de�ned by

�[X=T](Y) =

8<
:
T Y � X

�(Y) otherwise

The set of states satisfying a formula f in a model M with valuation � is induc-
tively de�ned as

[[P]]� = fsjP 2 L(s)g

[[X]]� = �(X)

[[p ^ q]]� = [[p]]\ [[q]]

[[:p]]� = S n [[p]]�

[[hAip]]� = fsj9t 2 S : (s; t) 2 R(A) ^ t 2 [[p]]�g

[[�X:p]]� =
\
fS0 � Sj[[p]]�[X=S0] � S0g

We de�ne
s; � j= p, s 2 [[p]]�

2.2 Some terminology

hi shall stand for any hAi, [] for any [A]. The terms subformula, closed formula,

bound and free variables are used as usual. We write p � q if p is a subformula

of q. A �-, �-subformula is a subformula whose main connective is � and �,

3

respectively. A variable X is called a �-variable or �-variable if X occurs as �X:p

or �X:p in a formula, respectively. Alternation depth A(f) of a formula f is

de�ned in [EL86]. L�i shall denote the sublanguage of L� with alternation depth

i.

�X:p(X) shall stand for either �X:p(X) or �X:p(X), � shall stand for either

[] or hi. Let b(X) = �X:p(X) if the latter formula appears as a subformula of

an original formula f . We say that X is in the scope of [], hi in formula f if X

is a subformula of a subformula of f of the form []q and hiq, respectively.
A formula is said to be in propositional normal form (PNF) provided that no

variable is quanti�ed twice and all the negations are applied to atomic propo-

sitions only. Note that every formula can be put in PNF. It can be shown by

induction on the number of �xpoint iterations that each �X:p(X) can be trans-

formed into a formula without � or into �X:p(X), where X occurs in p(X) and

all occurrences of X in p(X) are in the scope of hi or []. In the rest of the paper

we suppose (without loss of generality) that all �-calculus formulae are in PNF

and closed and all subformulae �X:p(X) ful�ll the above constraint.

2.3 Model checking the modal �-calculus

The model checking problem is: given a model M , a formula f and a state s in
M , is s 2 [[f]]�? We do not need to care about �, since it can be arbitrary in the
case of closed formulae which we consider only. For this reason, we also write

s j= f instead of s; � j= f . We give here a modi�ed model checking algorithm
where information needed for the later witness construction is saved.

~x = (x1; : : : ; xm) 2 N
m
0

shall denote a vector of integers. The ordering on
these vectors is de�ned by: (x) < (y) , x < y, (x1; : : : ; xm) < (y1; : : : ; ym) ,
x1 < y1 _ x1 = y1 ^ (x2; : : : ; xm) < (y2; : : : ; ym). This vector shall denote the

values of the iterations of the �-variables in the model checking algorithm below.

Algorithm 1

For a given modelM and a given formula f which contains propositional variables

X1; : : : ;Xn
, whereX1; : : :Xm

denote the �-variables andXm+1 : : :Xn
denote the

�-variables in f , mc(f; ~x) determines the set of states of the model which ful�ll

f .

function mc(f :Predicate, ~x:Nm
0
): Predicate

begin

case f of the form

Xj
: S0 := Sj

;

P : S0 := fsjP 2 L(s)g;
p ^ q : S0 := mc(p; ~x) \mc(q; ~x);

p _ q : S0 := mc(p; ~x) [mc(q; ~x);
:p : S0 := S nmc(p; ~x);

4

hip : S0 := fs 2 Sj9t 2 mc(p; ~x) : (s; t) 2 Rg;
[]p : S� = mc(p; ~x); S0 := fs 2 Sj8t 2 S : (s; t) 2 R! t 2 S�g;
�Xj :pj(X) :

begin

Sj := ;;
i := 0;

repeat

S0 := Sj
;

Sj := mc(pj ; (x1; : : : ; xj�1; i; : : : ; xm));

i := i+ 1;

until S0 = Sj
;

end

�Xj :pj(X) :

begin

Sj := S;

repeat

for all g � �Xj :pj(X) for all ~x : g~x := ;
S0 := Sj

;

Sj := mc(pj ; ~x);
until S0 = Sj

;

end

esac

f~x := S0
;

return S0

end

for all p � f for all ~x : p~x := ;;
mc(f; (0; : : : ; 0));

De�nition 1

In the following, let p � f , p~x obtained by mc(f; (0; : : : ; 0)) where the model is

M = (S;R;L), s 2 S and ~x 2 Nm
0
.

� 8p � f : p 6= �X:q! 8~x:
(p(x1;::: ;xj+1;:::) = p(x1;::: ;xj+1;:::)np(x1;::: ;xj;:::))^(p

(x1;::: ;xj�1;0;:::) = p(x1;::: ;xj�1;0;:::))

8�Xj:pj � f8~x : (�Xj :pj)~x = (pj)~x

� min : S � L� ! L� � N
m
0
[f?g

min(s; p) =

8<
:
pminf~yjs2p~yg s j= p

? otherwise

v : L� �N
m
0
[f?g ! N

m
0
[f1g

v(g) =

8<
:
~x g = p~x

1 g = ?

5

In the following, let 8~x 2 Nm
0
: ~x <1.

� 8p � f : l(s; p) = (s 2
W
~x

p~x)

Lemma 1 Let p^ q; p_ q; hip; []p be subformulae of formula f model checked by

the above algorithm and s 2 S arbitrary with s j= p ^ q; p_ q; : : : , respectively, in
the items below. Then

� v(min(s; p)) � v(min(s; p ^ q)) ^ v(min(s; q)) � v(min(s; p ^ q))

� v(min(s; p)) � v(min(s; p _ q)) _ v(min(s; q)) � v(min(s; p _ q))

� 9s0 2 S : (s; s0) 2 R ^ v(min(s0; p)) � v(min(s; hip))

� 8s0 2 S : (s; s0) 2 R! v(min(s0; p)) � v(min(s; []p))

Proof: The model checking algorithm decides upon the truth of a formula in a
state s only after the truth of the subformulae in state s has been decided.

Fact 1 From Algorithm 1 it is clear that for �Xj :p(X):

(8i 2 N : (Xj)(x1;::: ;xj�1;i;::: ;xm) = p(X)(x1;::: ;xj�1;i�1;::: ;xm)) ^X0 = false

and in particular

p(X)(x1;::: ;xj�1;0;::: ;xm) = (Xj)(x1;::: ;xj�1;1;::: ;xm) = p(false)

During model checking, states s are marked with subformulae p of f which
are true in s together with the iteration depths during which s is added to the
set of states ful�lling p: p~x. s 2 p~x means that s is added to the states ful�lling
p in iteration ~x. This labeling is �rmly recorded only in the last iteration of
�-variables X for p � �X:q. Only the iterations of the �-variables are important

in the following, so the iteration depths of the �-variables are not recorded.
Note that the saving of information does not change the space complexity of

the algorithm which is still O(jf j � jM j) (and also not the time complexity). Since
only min(s; p) for p � f is needed later for witness construction a state s with

s j= p needs to be labeled only with min(s; p) and with no other p~x.

In [EL86] an improved algorithm for model checking is presented on which
the following theorem is based.

Theorem 1 (Emerson,Lei) Model checking can be done in time O((jM j�jf j)A(f)+1)
where jM j = jSj+ jRj and jf j is the length of formula f.

6

3 Model checking by tableaux

Local model checking ([SW91], [Cle90]) was devised as a procedure to determine

the truth of a formula for a state in a model for the case that the property can be

determined in a small circumference of a state (locality condition). In this case,

local model checking should have advantages over model checking algorithms

which explore the whole state space to determine the truth of the formula.

A constructed successful tableau can at the same time be viewed as a witness

for the truth of a formula in a model. However, there are two problems which

prevent us from directly taking a tableau as a witness if the locality condition

does not hold. One problem with local model checking is that OBDDs can not

be used and thus it is slower than symbolic model checking. Another problem is

that the size of a successful tableau can be exponential in the model. This would

make error �nding even worse.

3.1 Tableau construction

We present here the tableau construction described in [SW91].
A de�nition list is a sequence � of declarations U1 = A1; : : : ; Un = An such

that Ui 6= Uj whenever i 6= j and such that each constant occurring in Ai is one
of U1; : : : ; Ui�1. �:(U = A) means appending U = A to the de�nition list �.
De�nition lists are used to keep track of the \dynamically changing" subformulae

as �xpoints are unrolled.

De�nition 2 (Tableau system MC)

s `� ::p

s `� p

s `� p ^ q

s `� p s `� q

s `� p _ q

s `� p

s `� p _ q

s `� q

s `� hip

s0 `� p
(s; s0) 2 R

s `� []p

s1 `� p : : : sn `� p
fs1; : : : ; sng = fs0j(s; s0) 2 Rg

7

s `� �Z:p

s `�0 U
�0 = �:U = �Z:p

s `� U

s `� p[Z := U]
C and �(U) = �Z:p

A tableau for s ` f is a maximal proof tree whose root is labelled with the

sequent s ` f . The sequents labelling the immediate successors of a node are

determined by application of one of the rules. Maximality means that no rule

applies to a sequent labelling a leaf of a tableau. The condition C is that no node

above the current premise, s `� U , in the proof tree is labelled s `�0 U for some

�0.
A successful tableau for s ` f is a �nite tableau in which every leaf is labelled

by a sequent t `� p ful�lling one of the following requirements:

1. p = P and P 2 L(t)

2. p = :P and P 62 L(t)

3. p = []q

4. p = U and �(U) = �Z:r

An unsuccessful tableau has at least one false leaf. An interesting failure is

when a leaf is labelled t `� U where �(U) = �Z:p and above it is a node labelled
t `�0 U .

Theorem 2 (Stirling, Walker) s ` f has a successful tableau if and only if

s j= f .

The tableau rules work according to the semantic de�nition of the operators.

The only interesting cases are �X:p(X). A variable is created which is di�erent

from all other variables created so far. This variable keeps track of the path
described by �X:p(X). In the case of �X:p(X), the tracking of the path can

successfully terminate when a state marked with s ` X is reached again. In the
case of �X:p(X) exactly this must not happen. Instead, the path must dissolve

by reaching p(false) when running along that path.

8

s1 s2 s3

P

Figure 1: A model

3.2 An example

For the model in Figure 1 a tableau for s1 ` �X:P _�Y:P _hi(X^Y) is developed
in Figure 2. In this tableau the follwing abbreviations are used:

�1 = (U = �X:P _ �Y:P _ hi(X ^ Y))

�2 = �1:(V = �Y:P _ hi(U ^ Y))

�3 = �2:(W = �Y:P _ hi(U ^ Y))

The above example shows that tableaux constructed by the method described

in [SW91] can be exponentially large. In the example, the subtree below s2 `�2
V

is identical to the subtree below s2 `�3
W if we replace V byW . We can save the

user who wants to use a witness to �nd an error a great deal of work if identical
subtrees are not demonstrated in the witness. In this case, we also do not need
any declarations and de�nition lists. This reasoning leads to the de�nition of

witness in the following section.

4 Witness generation

De�nition 3 (Abstract witness)

An abstract witness Ws;f for s j=M f , where M = (S;R;L), s 2 S; f 2 L�, is a

triple (V;E;m) where V � S, E � R and m : V ! P(L�). For given s; f and

M the components V;E and m of the abstract witness are inductively de�ned as

follows:

1. s 2 V , f 2 m(s)

2. (a) p ^ q 2 m(s) implies p 2 m(s) and q 2 m(s)

(b) p _ q 2 m(s) implies:

if s j= p and s j= q then p 2 m(s) or q 2 m(s)
if s j= p and s 6j= q then p 2 m(s)

if s 6j= p and s j= q then q 2 m(s)

(c) hip implies: for an arbitrary s0 2 fs00j(s; s00) 2 R ^ s00 j= pg : s0 2 V ,

p 2 m(s0), (s; s0) 2 E

(d) []p implies: for all s0 2 fs00j(s; s00) 2 Rg : s0 2 V , p 2 m(s0), (s; s0) 2 E

(e) �X:p(X) 2 m(s) implies p(X) 2 m(s)

(f) X 2 m(s) implies b(X) 2 m(s)

9

s
1

`
�
X
:P
_
�
Y
:P
_
hi(X
^
Y
)

s
1

`
�

1

U

s
1

`
�

1

P
_
�
Y
:P
_
hi(U
^
Y
)

s
1

`
�

1

�
Y
:P
_
hi(U
^
Y
)

s
1

`
�

2

V

s
1

`
�

2

P
_
hi(U
^
V
)

s
1

`
�

2

hi(U
^
V
)

s
2

`
�

2

U
^
V

s
2

`
�

2

U

s
2

`
�

2

V

s
2

`
�

2

P
_
�
Y
:P
_
hi(U
^
Y
)

s
2

`
�

2

P
_
hi(U
^
V
)

s
2

`
�

2

�
Y
:P
_
hi(U
^
Y
)

s
2

`
�

2

hi(U
^
V
)

s
2

`
�

3

W

s
3

`
�

2

U
^
V

s
2

`
�

3

P
_
hi(U
^
W
)

s
3

`
�

2

U

s
3

`
�

2

V

s
2

`
�

3

hi(U
^
W
)

s
3

`
�

2

P
_
�
Y
:P
_
hi(U
^
Y
)

s
3

`
�

2

P
_
hi(U
^
V
)

s
3

`
�

3

U
^
W

s
3

`
�

2

P

s
3

`
�

2

P

s
3

`
�

3

U

s
3

`
�

3

W

s
3

`
�

3

P
_
�
Y
:P
_
hi(U
^
Y
)

s
3

`
�

3

P
_
hi(U
^
W
)

s
3

`
�

3

P

s
3

`
�

3

P

F
ig
u
re
2:
A
tab
leau
for
s
1

`
�
X
:P
_
�
Y
:P
_
hi(X
^
Y
)

10

3. No other states, edges and formulae belong to V , E and m(s), s arbitrary,

respectively.

De�nition 3 is motivated by the premise that we need to demonstrate s j= p

for a formula p and a �xed state s just once.

De�nition 3 does not ensure that the �-paths - paths produced by subsequent

unwinding of �X:p (De�nition 5) - are dealt with properly. For this reason, we

de�ne `concrete witnesses' in De�nition 6.

In the following de�nition, we de�ne the intermediate paths between subse-

quent states which model �X:p on a �-path.

De�nition 4 (Xpath)

For a witness W = (V;E;m) and model M , � is an Xpath for a subformula g of

a formula f and a propositional variable X if Xp(�; g;X) where

Xp : S� � L� � PropV ar ! ftrue; falseg

Xp(s�; p ^ q;X), (p ^ q) 2 m(s) ^ (Xp(s�; p;X) _Xp(s�; q;X))

Xp(s�; p_q;X), (p_q) 2 m(s)^(p 2 m(s)^Xp(s�; p;X)_q 2 m(s)^Xp(s�; q;X))

Xp(ss0�;�p;X), �p 2 m(s) ^ (s; s0) 2 R ^Xp(s0�; p;X)

Xp(s�; �Y:p;X), �Y:p 2 m(s) ^Xp(s�; p;X)

(Y 6� X) ^ (b(Y) � �X:p) ! [Xp(s�; Y;X), Y 2 m(s) ^Xp(s�; b(Y);X)]

(Y 6� X) ^ (b(Y) 6� �X:p) ! [Xp(s�; Y;X) = false]

Xp(s;X;X) , X 2 m(s)

De�nition 5 (�-path in a witness)

A �-path � in a witnessW = (V;E;m) for a formula �X:p(X) is a �nite sequence

of states s0s1 : : : sm with (80 � i � m : si 2 V) ^ �X:p(X) 2 m(s0) ^ (80 � i <

m : 9� = �0 : : : �n : Xp(�; �X:p(X);X) ^ �0 = si ^ �n = si+1). �i shall denote

the ith state in the �-path. The set of all �-paths in a witness W for a formula

�X:p(X) is denoted by Mp(�X:p(X)).

De�nition 6 (Concrete witness)

A concrete witness for s j=M f , M = (S;R;L), s 2 S, f 2 L� is an abstract

witness W = (V;E;m) for s j=M f with the additional constraint

8�X:p(X) � f8s 2 V : �X:p(X) 2 m(s)!

9� = �0 : : : �n 2Mp(�X:p(X)) : �0 = s ^ p(false) 2 m(�n) (1)

11

Algorithm 2 (Concrete witness generation)

procedure c(s : S; f~x : L�)

begin

if f~x 2 m(s) then return

else

begin

m(s) := m(s) [ff~xg
case f~x of the form

P;:P : return;

p ^ q : c(s;min(s; p)); c(s;min(s; q));

p _ q : if p 2 m(s) or q 2 m(s) then return;

if s j= p then c(s;min(s; p)) else c(s;min(s; q));

hip : let ~y = minf~zj9s0 : (s; s0) 2 R ^ s0 2 p~zg;
let s0 be such that s0 2 p~y ^ (s; s0) 2 R;

V := V [fs0g;E := E [f(s; s0)g; c(s0; p~y);
[]p : for all s0 with (s; s0) 2 R do

begin

V := V [fs0g;E := E [f(s; s0)g;c(s0;min(s; p));
end

�X:p(X) : c(s,min(s,p(X)));

X : c(s,min(s,b(X)));

esac

end

end

V := fsg;E := ;; for all s 2 S do m(s) := ;; c(s;min(s; f));
for all s 2 V for all p~x 2 m(s) : strip o� ~x from p~x;

Theorem 3 Algorithm 2 constructs a concrete witness for s j=M f and termi-

nates.

Proof: Algorithm 2 terminates:
At each call of c(s,p) the procedure c either stops if p 2 m(s) or p is added to

m(s). Since the number of calls of c in the body of c is limited the algorithm
terminates latest when 8s 2 S8p � f : p 2 m(s) and all outstanding calls of c

have been performed.

Algorithm 2 ful�lls Condition 1 of De�nition 3 since after the call of c(s,f) f

will have been added to m(s). For arbitrary s; p, a call of c(s,p) also ensures

Conditions 2 and 3 of De�nition 3. In the case of p 2 m(s), p could only have

been added to m(s) by a call c(s,p), the latter already ensuring Conditions 2 and

3. In the case of p 62 m(s), p will be added to m(s) and the cases in the body of
Algorithm 2 ensure Conditions 2 and 3.

If p is of the form q ^ r then the calls of c(s,q) and c(s,r) will add p, q to m(s)

12

if they do not already belong to m(s) and ensure that for s; p and s; q Conditions

2 and 3 are ful�lled. The argumentation for the other cases is similar.

Condition 3 holds since no other states, edges and formulae are added by the

calls c(s,p) to V , E, and m(s), s arbitrary, than according to De�nition 3.

In Algorithm 2 we use the knowledge from prior model checking of a formula

to construct a concrete witness for it. When the algorithm is at a state s with

�X:p newly added to m(s) the algorithm walks along an Xpath until a variable

X is reached at a state t. Since the algorithm always proceeds along min(s; p)

going down the subformulae we can conclude from Lemma 1 that for X at state

t, v(X) is smaller than or equal to v(�X:p) = v(p) at state s. At state t, X is

unrolled to �X:p and then to p. From Fact 1 it then follows that the measure v(p)

decreases at such subsequent states s and t. It follows directly from the de�nition

of min that not only such subsequent states s and t are therefore di�erent but

the whole chain of such states at the beginning and end of such Xpaths. I.e., this
process will not lead to a loop.

The process of unrolling can therefore only stop when p(false) is �nally

reached or when already q~x 2 m(s) with q � �X:p at a state s. In the latter
case, we can use the induction hypothesis which ensures that further unrolling
leads to a state ful�lling p(false). Therefore, Condition (1) of De�nition 6 is also
ful�lled.

Theorem 4 Algorithm 2 has time complexity O(jf j � jM j).

Proof: For each subformula of f and each state s 2 S, the body of Algorithm
2 apart from the test f 2 m(s) is executed at most once because of the test
f 2 m(s). As a consequence, there are at most jSj � jf j executions of the body.
Consequently, for each state the outgoing edges are also considered at most once

for each subformula in the cases hip and []p. Therefore, the test p 2 m(s) can
be done only jEj � jf j times. This leads to the total complexity of O(jM j � jf j).

Note that the test s 2 p~x can be done in constant time if there is a hash table

for s; p � f computed during model checking of s j= f , similarly for the test
f 2 m(s).

This theorem shows that it makes sense to use the faster symbolic model
checking (compared to local model checking if the locality condition does not
hold) to guide the construction of a small witness.

13

5 Comparison to witness construction for FCTL

FCTL is a subclass of L�2 . The witness construction for FCTL in [CGMZ94] are

for the special type of L�2 formulae of the form �Z:[f^
nV

k=1

hi[�X:Z^hk_(f^hiX)]].

We repeat their witness construction in a more formal way in Algortihm 3. The

algorithm in [CGMZ94] would construct a single path with a cycle in which all

fairness constraints hk are contained in contrast to Algorithm 2 which would

construct a path for each separate conjunct hi[�X:Z ^ hk _ (f ^ hiX)]] whenever

a state s for which s j= �Z: : : : has to be demonstrated is reached.

Algorithm 3 (Witness generation for FCTL formulae [CGMZ94])

We use the abbreviations Gk = �X:Z ^ hk _ (f ^ hiX) and 8i 2 N0 : G
i
k =

G
(p1;::: ;pk;::: ;pn)

k where pk = i and 80 � j � n : j 6= k ! pj = 0

input: start state s and FCTL formula F = �Z:[f ^
nV

k=1

hi[�X:Z ^hk _ (f ^hiX)]]

output: witness for s j= F

V := fsg;E := ;; t := s;

repeat

C := f1; : : : ; ng;
while C 6= ; do
begin

let s0 2 G
minfijs002Gi

k
^k2C^(t;s00)2Rg

k ^ k 2 C ^ (t; s0) 2 R;

V := V [fs0g;E := E [f(t; s0)g;
C := C n fkg; t := s0;

while :l(t; Z ^ hk) do

begin

let s0 2 G
minfijs002Gi

k
^(t;s00)2Rg

k ^ (t; s0) 2 R;

V := V [fs0g;E := E [f(t; s0)g;
t := s0;

end

end

mc(�X:s _ f ^ hiX; (0));
ct := l(t; �X:s _ f ^ hiX);

if ct = true then

while t 6= s do

begin

let s0 2 (�X:s _ f ^ hiX)minf(i)j(t;s00)2R^s002(�X:s_f^hiX)(i)g ^ (t; s0) 2 R;

V := V [fs0g;E := E [f(t; s0)g;
t := s0

end

else s := t

until ct

14

In [CGMZ94], the last approximations for the Gk are saved in the same way

as in the modi�ed model checking algorithm presented in this paper. In fact,

the witness construction works in the same way as our general algorithm for wit-

ness construction for the �-calculus, however with 2 signi�cant di�erences. First,

when the witness construction is at a state s j=
nV

k=1

hi[�X:Z ^ hk _ (f ^ hiX)]

the witness for exactly one conjunct is constructed in contrast to the general �-

calculus witness construction where each conjunct would be developed. Second,

when a concatenated sequence of witnesses for each conjunct was developed a

path back to the starting point is built if possible. If not possible the procedure

restarts. To check whether there is a path back to the beginning requires addi-

tional model checking. This is not necessary in the general witness construction

for the �-calculus.

In the witness construction in [CGMZ94] for this special type of FCTL for-
mulae the particular intended meaning of the FCTL formula is exploited: the
fairness constraints hk occur in�nitely often on a path. Therefore, their coun-

terexample construction does not extend to the whole �-calculus. However, their
special purpose witness construction will in general be preferable for FCTL since,
probably in most cases, their construction will be smaller than the general witness
construction for the �-calculus.

6 Conclusions

We have shown how to construct counterexamples and witnesses for the whole
�-calculus. This eliminates the most important disadvantage of �-calculus model
checkers and allows a much more general approach to model checking than usual

CTL model checkers.
In summary, a tableau for s ` f can be regarded as a witness for s j= f .

However, tableau construction is expensive and a tableau can be exponential in

the model. We motivated our de�nition of witness as a kind of tableau where
redundant information in the tableau is hidden from the user.

In order to construct a concrete witness information obtained during symbolic
model checking can be used. The construction of a concrete witness can be

performed in time polynomial in the model and the formula. The construction
of concrete witnesses for �-calculus expressions is polynomial in jf j and jM j
in contrast to model checking f which is exponential in the alternation depth

of f . As a consequence, the construction of witnesses is only a minor factor

in the veri�cation of reactive systems. If the locality condition does not hold

then compared to tableau model checking, the witness can be constructed faster
because of the faster symbolic model checking and only additional polynomial

15

expense. At the same time, the witness will be much smaller and more easily to

understand.

As is clear from the special witness construction for FCTL formulae in [CGMZ94]

special witness generation algorithms for subclasses of the �-calculus which ex-

ploit the intended meaning of the formulae in the particular subclass can be ad-

vantageous compared to the general witness construction algorithm (Algorithm

2) presented in this paper.

We advocate an even more general and more exible approach to the genera-

tion of witnesses for the �-calculus than the one presented in this paper. The user

of a model checker should decide on which paths of the witness to be constructed.

Interactive generation of witnesses would allow the user of the veri�cation tool

to pursue the paths of the witness in which he/she is mainly interested.

References

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered binary de-
cision diagrams. ACM Computing Surveys, 24(3):293 { 318, Septem-

ber 1992.

[CGL93] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-
state concurrent systems. In de Bakker, editor, A Decade of Con-

currency, REX School/Symposium, volume 803 of LNCS, pages 124
{ 175. Springer, 1993.

[CGMZ94] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. E�cient gen-
eration of counterexamples and witnesses in symbolic model check-
ing. Technical Report CMU-CS-94-204, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, October 1994.

[Cle90] Rance Cleaveland. Tableau-based model checking in the propositional

mu-calculus. Acta Inf., 27:725{747, 1990.

[EL86] E. A. Emerson and C.-L. Lei. E�cient model checking in fragments

of the propositional mu-calculus. In IEEE Symposium on Logic in

Computer Science, pages 267{278, 1986.

[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical Com-

puter Science, 27:333{354, 1983.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-

lishers, Boston,USA, 1993.

[SW91] Stirling and Walker. Local model checking in the modal mu-calculus.

Theoretical Computer Science, 89, 1991.

16

