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Direct Algebraic Reconstruction and Optimal 
Sampling in Vector Field Tomography 

Laurent Desbat and Andreas Wernsdorfer 

Abstract-Vector field tomography has been proven to be a 
very powerful technique for the noninvasive determination of 
vector field distribution such as in the case of a fluid velocity 
field. We show that classical tomographic sampling conditions 
can essentially be applied to vector field tomography. Thus, 
essentially the same sampling schemes are obtained, and the 
interlaced scheme is also shown to be the most efficient scheme 
in vector field tomography. We then propose a Direct Algebraic 
approach for vector field tomography, with an efficient and 
robust algorithm for interlaced schemes. Numerical experiments 
showing the superiority of interlaced schemes are provided. 

I. INTRODUCTION 

Y developing vector field tomography in recent years, a B very powerful device has become available for detennin- 
ing the distribution of a vectorial quantity from noninvasive 
measurement. The tomographic reconstruction of fluid velocity 
fields was proposed in [2], [l5], [20] as an important applica- 
tion. Theses articles describe the reconstruction problem using 
one of two different reconstruction methods. In the first type 
of method the problem of reconstructing the vector field is 
led back to reconstructing a scalar field from which the vector 
field can be calculated. In the second, using algebraic methods, 
the vector components are directly computed. 

In the first type of approach, the decomposition of vector 
fields into two parts is utilized, according to Helmholtz's 
theorem: 

v'= GW + Gq. (1) 

dW denotes the source-free (solenoidal) and Gq the curl-free 
(irrotational) part of the field. In the case of a 2-D field in a 
plane, each part is then described by a scalar field. The source- 
free components v', can be expressed by the vector potential 
w& and the curl-free components Zq by the scalar potential q: 

aw aw 
v', = v x we: = [-,--I ax2 ax, 

aq a 9  Zq = vq = [- -1'. axl ax2 
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Fig. 1. Geometry parameters of the Radon transform. 

Here, e', denotes the unit vector normal to the investigated 
plane. In [2], it is shown that for vector tomography two types 
of interaction between the vector field and the ray used must 
be distinguished. The first, which is called the longitudinal 
interaction, is mathematically expressed by 

' Y d 4 ,  3) = Jz ,@)=s  (v'(~>,+FP dx. (3) 

T = (- sin 4, cos 4)t  denotes the unit vector in the direction 
of the beam propagation. 8 = (cos 4, sin 4)' is the unit vector 
normal to the ray in the investigated plane such that T is 
the unit vector obtained from 8 by a rotation of a/2; see 
Fig. 1. ( f, g) denotes the inner product of the Hilbert space 
H (in (3), the Euclidean product in R2). Only the components 
following the directioz of the beam are determined by y ~ .  We 
reserve the notation f for vectorial functions to underline the 
difference with scalar tomography; other classical vectorial 
quantities, such as O,T ,  are denoted as usual. If this effect 
is used, only the source-free component Zw can be measured, 
and the curl-free part Gq is lost. The second measuring effect, 
which is called the transversal interaction, determines the 
field perpendicular to the beam, and only the curl-free part 
is measured: 

yt(47 = Jz$)=, ( v ' ( ~ ) ,  e), dx. (4) 

In both cases, R, which is the support of 17, is supposed to be 
compact. Reconstruction formulas of v' from (3) and (4) have 
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been proposed [2]. However, in most of the practical applica- 
tions, only yl is measured, and thus, only U, is reconstructed 
from the tomographic data. In the following, we consider only 
this problem. 

One of the most important questions in such inverse prob- 
lems in which a function has to be computed from measure- 
ments is the efficiency of the measurement geometry. The 
Fourier analysis approach introduced in [19], developed in 
[13], and generalized in [8] and [5] leads to sampling condi- 
tions and the optimal interlaced scheme in scalar tomography. 
Let us remark that the interlaced scheme was first proposed by 
Cormack [4] using elegant geometric arguments. The approach 
developed in [13] can be used in vector tomography for 
establishing sampling conditions and the optimality of the 
interlaced scheme. Recent developments on Fourier theory 
[9], on sampling conditions, and on efficient schemes for the 
fan-beam data [14] could also be applied in vector tomography. 

Using (3) ,  only the solenoidal component can be recon- 
structed from the data, and the problem of reconstructing the 
vector field leads to the problem of calculating the scalar field 
w. This field can be computed by the filtered-backprojection 
or the direct-fourier method, which have been previousiy 
extended and changed for processing the data measured over 
the vector fields. The solenoidal part is then calculated from 
the derivatives (2). If yt(q5,s) is measurable, then the same 
operation can be applied to (4), and the irrational component 
can also be estimated. Unfortunately, in many practical appli- 
cations, only yl(q5,s) is measured. In this case, if the field v' 
is divergenceless, the value of its normal component on the 
boundary 80 allows us to compute q (see [16]), and thus, 
by using the tomographic data yl, the vector field v' can be 
completely determined. 

In [20] and [21], an algebraic approach is proposed, which 
directly yields the vector components. Here, the investigated 
plane is discretized by a grid of pixels, and the line integral 
(3) or (4) is approximated by a weighted sum over the vector 
components inside those pixels intersected by the ray. The 
measurement leads to a set of linear equations. Hence, the 
problem of reconstruction is converted to the problem of 
solving this set. The system matrix is, in general, not square 
and is ill conditioned. The solution is computed iteratively [21] 
or by a singular value decomposition [20], in order to obtain 
a normal solution. 

The filtered-backprojection algorithm is the most popular 
and probably the most efficient reconstruction method for 
a large amount of data. It has been adapted to interlaced 
sampling. This algorithm works perfectly if sufficient care is 
taken for the backprojection algorithm in the interpolation step 
(see [8] and references therein). However, this algorithm is 
based on Radon transform inversion formulas since the first 
one was originally given by Radon [18]. When reconstructing 
from very few data (say, loo), these methods cannot be easily 
justified. Is Radon transform still usable $en in this case? In 
fact, algebraic methods can be more easily justified and seem 
to provide better reconstructions. 

In contrast, for the algebraic methods, not only the measured 
data are assumed to be discrete, but the object is as well. 
The discrete pixel model used in ART is natural in order to 

visualize the solution but quite arbitrary from a mathematical 
point of view. 

Both Buonocore [3] and Natterer [12] proposed a direct 
algebraic (DA) method for scalar field reconstructions. This 
method takes into account the discrete nature of the measured 
data and simply supposes that the investigated object lies in a 
Sobolev space (the square integrable function space L2(s2) 
is generally considered). Regularization methods have also 
been proposed for this approach in [lo]. In our work, this 
model is extended for vector tomography. It is shown that the 
numerically pleasant features are preserved so that an equally 
efficient algorithm can be used just as in the scalar case. 

In Section 11, we present an adaptation of the well-known 
efficient sampling scheme in vector tomography. The vector 
field tomography sampling requirements are shown to be 
essentially the same as those in scalar tomography. In Section 
111, we present the DA approach for vector tomography. An 
algorithm for efficient geometry is proposed. An efficient 
implementation of this algorithm is proposed in Section IV. In 
Section V, we present numerical experiments. They show that 
the interlaced scheme provides almost as good a reconstruction 
as the standard scheme from half as many samples as the 
standard scheme. 

11. EFFICIENT SAMPLING 

A. Introduction 
To save both time and money, it is of great interest to reduce 

the number of data to a minimum. The Radon transform of the 
investigated object is sampled by measurement and, hence, as 
for any other sampling problem, this minimum is given by a 
sampling theorem. For scalar tomography, this was originally 
formulated by Rattey and Lindgren [ 191. They have also shown 
that for the scalar case, the band region of a Radon transform 
(which is decisive for the necessary amount of sampling 
points) has a very specific shape, which is called the bowtie 
shape, which is denoted by S in the following. The Natterer's 
mathematical approach [13] gives a precise definition of 
S = {(m,  a ) ;  la1 < b, Iml < max(la)/S, (l/S - l)b}, where 
m,a are the respective variables of the suitable Fourier 
transform of Rf(q5,s) (see [8], [9], and [13] for precise 
definitions and generalizations), b is essentially the bandwidth 
of the measured function f, and 0 < 6 < 1 (real arbitrary 
close to 1 introduced for mathematical reasons). The Petersen 
and Middleton sampling theorem [17] allows sampling of a 
function on lattices, i.e., sets of the form {Wk, k E Z2}, where 
W is a nonsingular matrix, and the sampling points are the 
whole linear combinations of the column vectors of matrix W .  
The generalized nonoverlapping condition (Nyquist-Shannon) 
means simply that the sets S + 2 ~ W - ~ k ,  with k E Z2 are 
disjoint (where S is the support of the Fourier transform of 
the function to be sampled). If a rectangular sampling grid of 
the Radon transform is assumed, with respect to the sampling 
theorem, the repetitions of the bowties are placed side by 
side. As is shown in Fig. 2 (left), the frequency plane is not 
efficiently utilized in this case. Due to the specific shape of S, 
there is a lot of free space between adjacent spectra. If other 
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Fig. 2. Sets S (bold line) and translations (dashed line) on the reciprocal 
lattice of the sampling scheme, i.e., S + '2~W;'lc (left, Ws is the standard 
sampling matrix) and S + 27rWFtk (right, WI is the interlaced sampling 
matrix). Sampling the Radon transform with a rectangular scheme leads to 
a lattice in the Fourier space generated by GI, i i2 (see left) for satisfying 
the nonoverlapping condition (generalized Nyqui$-Sh_annon condition). The 
lattice generated by the nonorthogonal vectors U' 1 ,  u'2 (right) satisfies the 
nonoverlapping condition more efficiently. It corresponds to the interlaced 
scheme. 

sampling schemes are chosen, the bowties can be packed in 
a more efficient way. In Fig. 2 (right), such an alternative 
scheme with the corresponding distribution of the bowties 
in the frequency plane is shown. Although only half of the 
necessary sampling points in direction of the radial coordinate 
s are used and, therefore, half of the amount of measured data 
is saved, the bowties do not overlap, and no aliasing occurs. 

As a precondition of such efficient 2-D sampling grids, 
an exact knowledge is needed of the support of the Fourier 
transform of the sampled function. In order to also use such 
schemes for vector field tomography, the support of the Fourier 
transform of the vector field projection is investigated below. 
A very intuitive approach shows that interlaced sampling is 
efficient in vector field tomography and allows sparing of 
half of the measurements compared to the standard approach. 
Moreover, the sampling conditions are essentially the same 
as in scalar tomography. A approach based on Natterer's 
mathematical proof [ 131 will be given elsewhere. 

First, however, we want to be precise about extensions of 
classical definitions (see [13]) used in the next section. We 
will use the following definitions of the 1-D and 2-D Fourier 
transforms: 

e-"""f(s)ds, and f(() 

For a vector field v' = ( V I ,  VZ), we will denote 3 = (&,GZ).  
Let y e ( s )  = ~ ( 4 , s )  be a function defined by (3) or (4). We 
will use the 1 -D Fourier transform of ye ( 8 )  (1 Y,g(b) (8)): 

We will also make use of the Fourier transform of periodic 
functions: 

$"(a> = &l e-i"4$(4, a)d4,  where m E Z. 

Note that for simplicity, $"(a) will sometimes be written 
$(ml a), particularly in Section 11-B. 

27r 

B. Interlaced Sampling for Vector Field Tomography 

can be rewritten as 
Usually, only the longitudinal effect is measured, and (3) 

y1 = T u 2  cos4 - sin4 d r  ( 5 )  
4 s )  

b ( a )  b ( s )  

= cos4 1 vz dr  - sin4 1 V I  dr  

4.) 4.) 
= cos4 yz - sin+ y1 

where a(s) and b(s )  describe the aperture function of the 
domain Cl. For the present, the projection of a vector field can 
be interpreted as a superposition of the amplitude-modulated 
Radon transform of two scalar fields v1 and VZ. In the fre- 
quency domain, the amplitude-modulation causes a widening 
of the support of f2(m,a) and $1(m,o) by Am = 1 and, 
therefore, a widening of the support of yl(m, a): 

$z(m, a) = 112 [$2(m + I,.) + 92(m - 1 , ~ ) ] -  (6) 
(i/2)[$1(m + 170) - $1(m - 1, a)]. 

For the definition of the bandwidth of &(m, a) in the direction 
of a, the largest of the two bandwidths of the scalar functions 
bl or b2 is chosen (b  = max(b1, bz)). Equation (6) already 
clearly shows that efficient interlaced sampling exists with 
apparently only a few more points than in the scalar case (the 
Fourier support is apparently just a bit larger). 

C. Sampling Schemes 

It can be stated that the support of the Fourier transform of a 
vector field profection has the same bowtie-shape support as in 
the scalar case. Thus, the application of efficient 2-D sampling 
schemes is also possible for vector field tomography. 

In scalar tomography (see [13]), we use the well-known 
standard (points Ws(kl, I ~ z ) ~ ,  (Icl, Ic2) E E') and interlaced 
(points Wr(Ic1, I C Z ) ~ )  schemes with 

ws = ("/," 27p) 
where K and P satisfy the sampling conditions b 5 Kd, b 5 
7rP/2 (see Fig. 2 left). The optimal choice, i.e., the minimal 
value for K and P is n P / 2  = b ; 2 K  = 7rPJ.9. 

where 2K = 7rP/d', b 5 n P / 2  (see Fig. 2 right). We remark 
that detWI x 2detWs (it is in fact a bit less than 2detWs 
because 8' < d-see Fig. 2). Thus, the interlaced lattice 
elementary mesh area is almost twice as large as that of the 
standard one. This means that the same goal can be obtained 
with two times less data. The sets S + 2 ~ ( W r ) - ~ k ,  k E E 2  
almost tile the Fourier plane: This shows that the interlaced 
scheme is an optimal scheme for S. 

The previous sampling schemes are also valid in vec- 
tor tomography with a small adaptation. The results of 
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Section 11-B yield a widening of S becoming S’ = 
{ ( m , ~ ) ;  1 ~ 1  < b, Iml < 1 + max(la1/6, (1/6 - l ) b } ,  and 
thus, the vectys u’l and-21 in Fig. 2 only have to be 
replaced by u ” 1  and u”’1 with respective components 
( 2 ( 1  + b/29),0)t and ( 2  + b / 6 / , b ) t .  Choosing 6” and 6”’ 
such that b / 6 “  = 1 + b / 8 ,  b / P ’  = 2 + b / 6 ’ ,  i.e., 6“ = b 6  
and 8”‘ = &6‘, we obtain the same sampling conditions 
replacing 6 by 6” in the standard case and 6’ by 6”’ in the 
interlaced case. The number of projections only has to be 
slightly greater (one more) in each case. 

We remark that K must be even in the interlaced scheme 
for using the symmetry of the Radon transform: Rf(0, s) = 
Rf(0+7r, -s). If not, the same data are used as in the standard 
scheme. 

For generalizations on efficient sampling schemes, see [5], 
[SI, and [9]. For efficient fan-beam sampling schemes, see [14]. 

b+@ 

111. DIRECT ALGEBRAIC APPROACH 

A. Introduction 

tomography: For k = 0, . . . , K - 1, p = 1 ,  . . . , P,  
Let us take the following model for the data in vector field 

Fig. 3. 
over strips. 

Measurement geometry. In the DA approach, (C, T )  is integrated 

Indeed 

(R’Y, f i ( L 2 ) 2  = (Y, ~ f i I R K P  

where U is the field vector in the cross section called the 52 
domain, which will be the unit disk. 8 k  = (cos $ k ,  sin &.) and 
‘rk = (- sin $ k ,  cos f&) are orthogonal unitary vectors, and 
Lek , s p  is a strip centered on sp of constant width e orthogonal 
to the direction e k  (See Fig. 3) .  We will denote L k , p % f L g k , s ,  

and 

z k , p ( x )  = n L , , p ( x C )  

1 if x E L k , p ,  i.e., 1 ( ~ , 0 k ) ~ 2  - spl < e / 2  = {  0 otherwise 

In addition, we will call K x P geometries covering the 
unit disk R “standard” when they verify $k = h / K ,  k = 
O,. . . ,K - 1 ,  s p  = ( 2 p -  1 - P ) / P ,  p =  1,. . . ,P,  e = 2/P.  

Let us denote 72 the continuous linear operator between the 
two following Hilbert spaces: 

R :  (L“R) )2  - RKP 

I(= (fly f 2 ) t )  - SL,,, ( r k ,  f i ~ 2  ’ 

The associated least square problem 

has the following minimal norm solution: 

fi = R*ft, where f t  = (RR*) ty  (7) 

where (RR* ) designates the generalized inverse (or 
Moore-Penrose inverse; see [l]). In this case 

R*: RKP --t (L2(R))2 
Y - c k , p  Y k , p z k , p ( x ) r k .  

Thus, RR* has the following entries: 

(RR* k ’ , p ’ , k , p  

= c o s ( $ k  - $ k f )  l k , p ( x ) l k f , p f ( x )  d x .  (8) 

Thus, the matrix RR* has the same entries as the scalar 
tomography matrix in the same DA approach (f E L2),  except 
for the new term COS($hk - $ k , ) .  Thus, with a small change, 
a scalar tomography code can be used for computing ft. The 
vector backprojection operator R* is essentially the same as 
the scalar operator except for the new vector term T k .  

s, 

B. RR* Kernel for Standard Geometries 
Let us denote the canonical basis e%,, E E t K P ,  i.e., 

( e z , 3 ) k , p  = 6&6,,,a = 0 . - . ,  K - 1 ; j  = l , . . . ,  P. We denote 
e,  = We have def p 

P 

R * e k  = lk,p‘Tk = I n T k ,  k!k = 0, ’ ‘ ‘ ,  K - 1 .  (9) 
p = l  

We thus have the following proposition. 
Proposition 1: For standard geometries and K > 2 ,  

ker R* (= ker RR*) 
= L ( ( 2 c O S $ l e k  - e k - 1  - e k + l ) ) k = l ,  , K - 2 ) .  

Notice the difference with the usual tomography optimal 
algorithm matrices: dim(kerR*) = K - 2 (instead of K - 
1 ;  see [12]). One of the practical uses of this proposition 
is the possibility of testing the correctness of the matrix 
entries computation algorithm. The first part of the proof is 
Proposition 2. 
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'2COSq51 -1 0 . . .  0 1 -  
-1 2 c o s 4 1  -1 0 0 

. .  . .  0 . .  
0 

. .  . .  . .  M =  #. 

0 . . .  0 -1 2 C O S 4 1  -1 
0 -1 2 c o s 4 1  0 ... 1 

kernel is reduced to the plane generated by the two orthogonal 
vectors (COS+k)k=O ,..., K - 1 ,  ( s in+k)k=O ,..., K - 1 .  We have 

K-1 

cosq !Jkek  + p s i n + k e k  
k=O 

\ k=O k=O 

*A = /.L = 0. 

As L ( e k ) k , o  ,..., K-l = ker M @ rangeM, we can conclude 
from Proposition 2 using R*M = 0 in L ( e k ) k = o  ,..., K-l and 
x E kerM, R*x = O+x = 0 that 

Fig. 4. In each direction I C ,  for each hntier Fk,p between two strips p and 
p +  1, there are two nonempty regions (e.g., two half disks) separated by Fk,p 

ker R* = rangeM 
such that both regions are covered by the same strips in al l  other directions. = L ( ( 2 c o s d l e k  - e k - 1  - e k + l ) k = l ,  ...&--a). 

IV. EFFICIENT ALGORITHMS 

A. Standard Geometries 

of the measurement geometry. From (8), we have 
Efficient DA algorithms are based on rotational invariance 

RR;,p,k',p' = RR;-k',p,O,p'- 

Thus, we can reorganize measurement in order to obtain a 
block circulant matrix for RR*: V p  = 1, . +  . , rP/2], 

qpTk = { I k ,  LPPJ +pTk k = O , * * - , K  - 1 
k = K,  * * * ,2K - 1 - I ~ - K ,  rpp1 -p+l'&-K 

where 1.1 is the greatest integer smaller than or equal to T ,  

and r.1 is the smallest integer greater or equal to T .  Note 
that the main difference with the well-known natural pixels 
in scalar tomography is the antisymmetry ?k+K = -7k .  

Note that if P is odd, the center strip is used twice to 
get the rotational invariance. Thus, for solving the original 
least squares problem, we have to weigh the corresponding 
measurement with a factor I/&. In this case, the number of 
null eigenvalues of the matrix R"R"* is 2K - 2. 

R1 Ro 

where Ri,q = c o s $ k ( E ; , p , l ~ , q ) ~ ~ ( ~ ) ,  p = b e . . ,  4, q = 
1, - - .  , 4. As for the usual direct algorithm in scalar to- 
mography, we have Rk = R2K-k,Vk = 1, . - - ,  K because 
cos ((2K - k ) ? r / K )  = c o s ( k ~ / K )  and the obvious geomet- 
rical symmetry according to the 2 1  axis of the functions 
1; and l;K-.k,p. Consequently, Rk = (R')', and thus, 

= C o s d k ( l ~ , , , 1 Z K - k , , ) L . ( ~ ~ .  RK = o if P is even. 
Otherwise, since the central stnp is repeated when P is odd, 
R t l  # 0. In vector tomography, if K is even, we also 
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have RK12 = R3K/2  = 0 (cos(7r/2) = cos(37r/2) = 0 ) .  The 
minimal norm solution (7) can be efficiently computed using 
Fourier transforms (see [12], [3], [lo]). For v E IR2KrP/21,  we 
denote vk E Rrp/21 for the 2K vectors such that vi = V k , p  

and let M j  be 2K matrix [ P / 2 ]  x [P/21; then, we consider 
the following Fourier transformation: 

2 K - 1  2 K - 1  
2mjk/2Kv; andMk p , q  gf e - 2 n t 3 k / 2 K M 3  

P , q '  
j=0 

+kef c e- 
j=0 

We have 

R"R'*f" = ~ " # h ~ ( f " ) ~  = ( y ^ e ) k ,  V k  = 0 , . . . , 2 K  - 1 .  

These 2K linear systems of order [P/21 are generally solved 
using singular value decompositions producing an algorithm 
in O ( K P 3 ) .  Spectrum truncation (see [ 1 11 for an efficient and 
elegant choice of the parameter) or regularization methods are 
generally used (see [lo]) to copmpute a stable solution of these 
normal equations. If the geometry is fixed and the stabilized 
pseudo-inverse (hk) stored, the computation of a solution is 
in O(KP2) .  

t 

B. Interlaced Geometries 

1 )  Introduction: In the algebraic approach, the interlaced 
scheme corresponds to the following choice of half of the 
standard measurement functions. For k = 0, . . . , 2 K  - 1 

1z,2p 

if IC even, for p = 1, ... , 
if k odd, for p = 1,. . . , L$l - [$1 ' 

(10) 
The second possible interlaced scheme is simply the comple- 
mentary scheme of 10 for the corresponding standard scheme: 

1;; = 

if k odd, for p = 1,. - e ,  

if even, for p = 1,. e .  , [SI - [$1 ' 

(1 1) 
Remark that when P is odd, the points ( $ k ,  s ~ ) ~  of the 

interlaced geometry can be written W ~ ( k ' , p ' ) ~  for some 
integers k' and p'. Thus, as can be seen in Section 11-C, K 
has to be even to result in an efficient interlaced scheme, i.e., 
in order to make use of the Radon transform symmetry and to 
avoid dealing with the standard data when goes from 0 to 
27r. When P is even, the points ( $ 1 2 ,  s ~ ) ~  of the interlaced 
geometry can be written (O,l/P)t  + W ~ ( k ' , p ' ) ~  for some 
integers k' and p'. K must then be odd to obtain an interlaced 
sampling, i.e., to use the Radon transform symmetry. Thus, K 
and P must have a different parity in the case of interlaced 
schemes. This plays an important role in the decomposition of 
the DA matrix presented in the next section in Proposition 4. 

2 )  An Eficient Robust Algorithm: The first ideas for pro- 
cessing interlaced data with the direct algebraic approach came 
from Klaverkamp [ l  11. In the following, we adapted a different 
algorithm proposed in [7] to vector tomography. A complete 
proof of the least-squares matrix decomposition into a real 
block-rectangular matrix is given. 

Interlaced data give the same reconstruction as that obtained 
with twice as much data in the corresponding standard scheme. 
Thus, a natural way to formulate the reconstruction problem 
is to seek the best approximation of f in range(R*) from the 

interlaced data. As in Section IV-A, we first reorganize the 
measurement in order to get an invariant rotational scheme. 
From (lo), we denote for k = 0, . . , K - 1: 

Note that now, r+qp) depends on p :  

We also derive from (1 1) 

1 i . D  = 

Since we seek the solution f E range(R*), we write 

Thus, we want to solve 

K - 1  re i  

(14) 

We can reorganize the strip functions l z , p  of R* according 
to both the interlaced schemes underlying the standard one. 
From (12) and (13), we have 

2K-1 r$ i  

k ' = O p ' = l  

Equation (14) is equivalent to the first equation at the bottom 
of the next page. 

The K [ P / 2 1  x 2K[P/21  matrix of the last least squares 
problem is denoted (R+ ,  R-) and has the regular structure 
that is shown as the second equation at the bottom of the 
next page, where RE>k is a x matrix such that 

that (r&p+cp),r:(p,))lRz takes the value cosd2k for the blocks 
and 

cos$zk+l for the block REiktlo, cf. (15). Both circulant parts 
can be block diagonalized by discrete Fourier transforms of 

RE9k + 
p,p' = ( T k ( p ) , r : ( p ' ) ) ~ z ( l ~ p l ' ~ , p ' ) L z ( ~ ) ( '  E { + i  -1). Note 

and R'>klll, cos$2k-1 for the block 
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order K yielding the following K independent least squares 
problems: 

min 
#+,k ,f- ,k 

I I f i + , k i + ~ k + f i - ~ k i - ~ k -  Y + v k  II 2 ,  v k  = 0,. . . ,K-  1 

where yP+'k is simply ytP and f p ' j k  = fi,p. 
can 

be simply transformed into a real matrix. The matrices Re>& 
and & i k  are written as 

In the following, we show that the complex matrix 

Re,k,OO RE,k,Ol A &,k,OO &,k,Ol 

RE,k , lO R r , k , l l ) ,  = (&,k,lO & , k , l l  . ( 2 5 )  

R % k  = 

k+~k*oo and R + r k ? "  are real symmetric square matrices of 
dimension [ f l  and [p1 - I$], respectively, produced by 
circulant schemes for which 41 = 27r/K. k,k-OO and R-ik*ll 
are real matrices of dimension I$] x ( 141 - [$1) and 
( - [:I) x I f ] ,  respectively, for the same reason. Note 
that the R-ikgrX matrices are not symmetric and are not even 
square when [P/21 is odd. 

Proposition 3: 

(16) &,k,lO - - ,*se,k,lO and &,k,Ol = e T s c , k , O l  

where SE,k,lo and S c ~ k ~ o l  are real matrices, SE,K-k,lo = 
- S e , k , l O ,  S c , K - k , O l  -SEtk ,Ol .  Moreover, s + > k , 1 0  = 
(S+*kiol)t. Below S+>k*lo is denoted Sk .  

We will make use of the obvious lemma. 
Lemma I: Let aj E R, j = 0, a - .  , K - 1 such that 

aj = a K - l - , ;  then 
r k a  

&k = e y S k  where s k  E and 8 K - k  = -S&. 

From Lemma 1, we also have a3,  j = 0, , K-1 such that 
a0 = a l ,  az+j = aK-1- , ;  then, &k = e T s k  where si E 

Proof of Proposition 3: In order to apply Lemma 1, we 

First: 

--.Ea 

R and 4 k - k  = - 8 k .  

now simply verify (17) and (18): 

~ ~ $ 1 0  = ~ € , K - l - j , l O  PP? (17) 

Indeed, let us introduce p ( ~ )  = 1 if E = +, or 0 otherwise. 
We have 

and thus 
~ e , K - l - j , l O  - (2K - ' j  - '1" 

K - cos P 4  

( z i K - 2 j -  1,2p, '%,Zq-p( E )  ) P(0) .  

As cos (2K-2j-1)n K - - cos- and (Z5j+1,2p, 
' ; , Z q - p ( ~ ) ~ ~ ( ' )  = ( ' z K - Z j - l , Z p ,  '&&.,-p E  ) L 2 ( 0 )  for 
obvious geometrical reasons (s,ee Fig. 5),  (13) is shown. 
S+>k*lo = (S+*kyol)t because R+7k is Hermitian. Indeed, 
R+ is the Gramm matrix corresponding to the Ztp 
functions and is thus symmetric. 
Second:, 

* (18) R€,O,O1 = R € , 1 , 0 1  R € , j + 2 , 0 1  = R € , K - l - j , o l  
P A  P A  P A  P& 

Indeed . 

for obvious geometrical reasons (see Fig. 6), and thus, 
(1 8) is shown. 
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We summarize the results obtained in the next proposition 
Proposition 4: We have the following decomposition of the 

matrix: 

where 

O ' I  e - i k ~ / 2 K ~  

u k = [  rp'41 e i k ~ / 2 K ~  
r w i  - rw41 

and the equation at the bottom of the page hold. I, is the 
identity matrix in dimension n. Thus, from (19) we see that 
the least squares problem (14) is reduced through discrete 
Fourier transforms of order K and multiplications by roots 
of unity e-ikiT/2K to the computation of the SVD of K real 
rectangular blocks of dimension [P/2l x 2 rP/21. Note that 
the computational cost is of the same order as for the standard 
scheme. Once the SVD is computed, the reconstruction cost 
is of the same order as for filtered backprojection. Thus, the 
DA is not only very interesting in the case of data scarcity, 
but also competitive in the case of fixed geometries with large 
K (and P). 

. 

V. NUMERICAL EXPERIMENTS 
In this section, we will show the efficiency of the proposed 

direct algebraic method. The new approach is compared to 
another algebraic method, the algebraic reconstruction tech- 
nique (ART), which is extended to vector field tomography 
[21]. We show also that interlaced sampling schemes yield 
reconstructions almost as good as standard schemes when 
using the DA method. We propose to use a solenoidal testfield. 

OPTIMAL SAMPLING 1805 

0.5 

0 

-0.5 

-1 

5 
0 

Rg. 8. Original vl-component. 

A plot of this field is given in Fig. 7. In this plot, all vectors 
have the same length to illustrate the orientation of the field. In 
Fig. 8, the component w1 of the field is depicted as a 3d-plot. 
Since both fields are solenoidal, the longitudinal effect of (3) 
is used. As an error criterion we give the relative error 

It is assumed that the field is sampled with K = 35 views 
and P = 22 rays per view. At first the field is reconstructed 
on a grid of 32 x 32 pixels with standard geometry. As it 
can be seen in Table I showing the results of the different 
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TABLE I 
PERCENTAGE OF RELATIVE ERRORS OF THE SIMULATIONS 

t---rY- 32 x 32 32 x 32 64 x 64 

I I noisy data I 
Standard I 9.85 1 16.3 I 10.3 

Interlaced 10.3 20.7 10.6 

ll- 

32 x 3 2  64 x 64 

\ I  

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 8. AUGUST 

30 

Fig. 11 .  Reconstruction with DA and interlaced scheme (I< = 35, P = 
i.e., 35 x 2212 = 385 ‘data). 

i .e ,  35 x 22 = 770 data). 

0 . 5  

0 

- 0 . 5  

-1 

5 
0 

1 

1995 

: 22, 

Fig. 12. Noisy data (SNR=20): Reconstruction with DA and standard 
scheme (I< = 35, P = 22). 

1 

0 . 5  
30 

0 

Fig. 10. Reconstruction with DA and standard scheme (770 data). - 0 . 5  

-1 
simulations, reconstructions with DA show fewer errors than 
reconstructions with ART. 

Comparison of the plots of the reconstructed w1 -components 
in Figs. 9 and 10 elucidates that the reconstruction with ART is 
far more distorted by noise. Fig. 11 presents the wl-component 
reconstructed with DA and interlaced data (K = 35, P = 22 : 
35 X 22/2 data). Although only half of the data is used, almost 
no difference in the results obtained with the standard scheme 
can been seen. Indeed the relative error for the interlaced 
geometry is only slightly higher than for the standard type (see 
Table I). Reconstructions from interlaced data are, of course, 
more sensitive to noise; see Figs. 12 and 13. The advantage 

0 
5 

30 

Fig. 13. Noisy data (SNR=20): Reconstruction with DA and interlaced 
scheme (A- = 3 5 3  

of the new method becomes obvious if the image resolution 
is increased and the field is reconstructed on a grid of 64 x 64 
pixels. In contrast with ART, which yields faulty results, 

= 22). 
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0.5 

0 

- 0 . 5  

-1 
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5 

Fig. 14. Reconstruction with DA and standard scheme (IC = 14, P = 8). 

with the DA approach, the same quality is realized for the 
reconstructions even if the data are reduced for the interlaced 
scheme. The DA solution does not depend on the number 
of pixels. The ART approach needs to be regularized when 
the number of pixels is too large. Enforcing the solution to 
be numerically b-bandlimited allows us to obtain good results 
even with interlaced data (see [6]). 

If we have to make an estimate with only around 100 
data, then interlaced data yield a more accurate reconstruction. 
In Fig. 14, we present the reconstruction of w1 from the 
standard scheme K = 14, P = 8, or 112 data. In Fig. 16, we 
present the reconstruction of w1 from the interlaced scheme 
K = 19, P = 12, or 114 data. In this case, the interlaced 
scheme yields a much better estimation of w1 than a standard 
scheme having almost the same number of data. The interlaced 
reconstruction is in fact very close to the corresponding 19 x 12 
standard reconstruction given in Fig. 15. These results are 
confirmed by the relative error values: E = 22.2 for the 
K = 19, P = 12 standard scheme (with 228 data), E = 22.6 
for the K = 19, P = 12 interlaced scheme (with 114 data), 
whereas E = 36.9 for the K = 14, P = 8 standard scheme 
(with 112 data). 

VI. CONCLUSION 
We have proposed a new reconstruction method for vec- 

tor field tomography. The approach is an adaptation of the 
DA method for scalar fields. It is shown that in the case 
of vector field tomography, the pleasant features of scalar 
tomography are preserved and a very efficient implementation 
of the algorithm is possible. We have also shown that the 
support of the Fourier transform of the projection of a vector 
field has the same specific bowtie-shaped form as in scalar 
tomography. This enables the use of an efficient interlaced 
sampling scheme which requires only half of the data needed 
for the standard sampling geometry to obtain the same quality 
of reconstruction. The proposed method is an adaptation of the 
DA algorithm used in the scalar case. We have proposed an 
efficient implementation of this method for interlaced data in 
vector field tomography that can be also used in the scalar case. 

Fig. 15. Reconstruction with DA and interlaced scheme ( K  = 19, P = 12). 
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-0.5 

-1 
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0 

Fig. 16. Reconstruction with DA and standard scheme (IC = 19, P = 12). 

These theoretical results were confirmed by a final simulation. 
With the proposed approach, a reconstruction method for 
vector fields is now available that yields reconstructions of 
high quality with half of the data needed for standard geometry 
and a minimum of computational cost. 
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