Short CNF in FinitelyValued Logics

Reiner Hahnle*

Institut fur Logik, Komplexitat und Deduktionssysteme
Universitat Karlsruhe, 7500 Karlsruhe, Germany

haehnle@ira.uka.de

Abstract. Wepresent a transformation of formulaefromarbitrary nitelyvalued
logics into a conjunctive normal form based on signed atomic formulee which
can be used to syntactically characterize manyvalued validity with a simple
resolution rule very much like in classical logic. The transformation is always
linear with relation to the size of the input, and we dene a generalized concept
of polarity in order to remove clauses which are not needed in the proof. The
transformation rules are based on the concept of ’setsassigns’ developed earlier
by the author in the context of tableaubased deduction in manyvalued logics.
We claim that the approach presented here is much more efcient than existing
approaches to manyvalued resolution.

Introduction

With this paper we make a step toward the efcient mechanization of deduction in
manyvalued logics. The need for research of that kind is motivated by the recent
advent of new applications for manyvalued theorem proving in various subelds, for
example, in formal hardware verication [5]. Other applications exist in the theory of
errorcorrecting codes or in nonmonotonic reasoning.

It is widely acknowledged that the existence of clausal normal forms for a logic
can greatly improve efciency and speed of theorem proving procedures for that logic.
Resolutionbased theorem provers usually rely on the input being in conjunctive normal
form (CNTF), but also most other proof procedures that claim high performance, employ
CNF transformation as a preprocessing step. If these successful techniques are to be
used in nonclassical theorem proving, it is likely that some variant of CNF is required
for the respective nonclassical logics.

There are three main obstacles that have to be overcome when clausal normal forms
are to be used in a generalized context:

1. Normal forms can become exponentially long wrt the length of the input when
a naive algorithm is used. This is not so problematic in classical logic where
knowledge bases usually consist of conjunctions of relatively short formulze. In
nonclassical logics, however, even relatively short formule can become quite
large during this process already.

2. The normalized input bears no resemblance to the orginal formula. This makes it
hard to explain the machinegenerated proof to the user.

3. Many nonclassical logics may fail to have normal forms, or at least it is nontrivial
to nd them.

The rst two problems can principally be solved by using a structure preserving
clause form translation (dened in the following section) which has the double advan-
tage of (i) producing normal forms in linear time and space wrt to the input and (ii)

* Researchsupported by Deutsche Forschungsgemeinschaft (DFG).

establishing a relationship between the clauses of the normal form and the subformulae
of the input formula.

As to the third problem, it is not likely that there is a uniform solution to it due to the
diversity of nonclassical logics. It has been shown, however, that for certain classes of
nonclassical logics structure preserving CNF transformations (and corresponding re-
solution rules) can be devised to give the desired results [7]. These include intuitionistic
logic and various modal logics.

The purpose of this note is to dene structure preserving clause form translations
(together with a suitable denition of clauses and a resolution rule) for arbitrary nitely
valued logics, a domain where, to our best knowledge, no general results exist so far.
The normal form computation will be linear wrt to the length of the input and quadratic
wrt to the number of truth values in the worst case. The short CNF translation for many
valued logics proposed in the following is centered around a technique that has been
developed earlier by the author [3, 4] in connection with nonclausal theorem proving
with semantic tableaux. The main advantage is a relatively simple resolution procedure
for nitelyvalued logics which avoids the drawbacks of a nonclausal approach [11],
while retaining the main advantages of resolution, notably, strategies for pruning the
search space. We treat the propositional case thoroughly and give some hints how to
handle the rst order case. Due to space restrictions we omit proofs. These may be found
in the long version of this paper which is avilable from the author on request.

1 Short Normal Forms in Classical Logic

In the following we denote with # (M) the cardinality of a set M and with |s| we denote
the length of a string s. We use "2 to denote the ceiling function on the rationals. We
assume the reader is familiar with the basic notions of computational logic. Throughout
the paper we will use a standard syntax for propositional and rstorder logic, here
and there enriched with some new unary and binary operator symbols. Clauses are
considered as nite multisets of literals.

The central idea behind structure preserving clause form translations is to introduce
additional atoms which serve as abbreviations for subformulée of the input. Assume we
have a propositional formula ¢ and we need a nite set of clauses Xy such that F ¢ iff
X, F0O.

’ Let SF(¢) denote the set of subformulas of ¢ (note that #(SF(¢)) = |¢|) and let
m = #(SF(¢)). We denote with L the complement of a literal. Now we introduce a new
variable p; for each ¢; € SF(¢) which is not a literal and consider for each 1 <i <m
and ¢; = (¢; op ¢x) the formula

pi ¢ (pj op px) (1)
where op is the topmost connective of ¢; and p;, py either correspond to ¢;, ¢s
or ¢; = py if ¢; is a literal. This process is called abbreviation, denition or renaming
by various authors. Let X ; be a CNF representation of (1). The number of clauses in
Xy, is bound by a constant depending on the type of connectives present and is at most
4; each clause contains at most 3 literals. Now we can dene

Xy = (U X¢>,z’) U {p1} (2)

K3

where p1is the denition of ¢. It is fairly easy to see that X4 has indeed the desired
properties, in particular, X contains at most 12m + 1 literals.

In the rstorder case the p; are atomic formula with an appropriate arity.

Example 1. Consider the propositional tautology p D (¢ D p). We introduce the fol-
lowing renamings: p] <> p D p2, p2 < ¢ D p. So the formula is a tautology iff the
following set of clauses is unsatisable:

L. ~p1
2. ~plV p2V ~p o VR
6. p2 Vv q
5 pLoV P 7 p2V ~p
4. p1 VvV ~p2 '
A refutation of this clause set is as follows:
8. [1,3] p 10. [7,8] p2
9. [1,4] ~p2 11. [9,10] O

Note that 2., 5. (each corresponding to one half of an equivalence) and 6. were not
needed. Obviously, our CNF contains redundant clauses.

There is a rather obvious improvement of the procedure, if one observes that instead
of logical equivalence in (1), depending on the polarity (cf. [10]) of p; in the original for-
mula (iein ~ ¢), only one direction of the implication is needed in order to characterize
satisability. Therefore, instead of (1) we write

pi O (p; op px) if p; occurs positively in ~ ¢

(pj op pi) D pi if p; occurs negatively in ~ ¢ (3)

pi <> (p; op pr) if p; occurs positively and negatively in ~ ¢
If we apply this optimization to the previous example, clauses 2. and 5. are not generated.

Further improvements are possible if not all subformulas are being renamed, for

instance, conjunctions need not to be renamed. An optimal result (the clause set {p, ~
p,q}) would have been obtained using a topdown renaming algorithm [2] which takes
this into account. In [2] one may also nd additional references regarding structure
preserving clause form for classical logic.

2 ManyValued Logic

Denition 1 Syntax, Truth Values. Let L be a propositional language with propositio-
nal variables L) and connectives F. Let N = {0, n_lb ceny Z—:%, 1} be the set of truth
values and let n = #(N).

Denition 2 Semantics, ManyValued Logic. Connectives F' € F are interpreted as
functions with nite range and domain, in other words, if & is the arity of F we associate
a function f : N¥ — N with F which we call the interpretation of F'. Let f be the

family of functions over N associated with connectives in F. Then we call f nvalued
matrix for L and the triple (L, £, N} nvalued propositional logic.

Denition 3 Valuation. Let £ = (L,f, N} be a nvalued propositional logic. A va-
luation for £ is a function v : Lg— N. As usual, v can be uniquely extended to a
homomorphism from L to N via

V(F(01, -5 0k)) = f(v(01); .- -5 v(Pk))

where [is the interpretation of F'.

Denition 4 SSatisable, STautology. For S C N and a nvalued propositional
logic £ call a formula ¢ € L Ssatisable iff there is a valuation such that v(¢) € S.
Call ¢ a Stautology iff v(¢) € S for all valuations.

For some examples we refer the reader to the following section. Our task is now to
nd
1. alanguage of clauses C;
2. astructure preserving hnear translation trfrom L x 2V mto 2¢,
3. aresolution rule on C| i.e. a decidable relation R C C*+1lfor some k.
such that tr(¢, 9) - O iff ¢ is a Stautology (where I is the reexive and transitive
closure of R).

3 A Structure Preserving Normal Form Translation for

ManyValued Logics

In [3, 4] the author introduced semantic tableau systems that can be used to implement a
generic theorem prover which performs efciently in a variety of nitelyvalued logics.

The key idea was to enhance the formula language in such a way that the still to be
considered valuations at each step of the proof can efciently be kept track of. The
technical device was the use of truth value sets as signs or prexes in front of the
formulze. We dene the set of signed formulee L* = {S: ¢|S C N, ¢ € L} with the
intended meaning

St ¢ is satisable iff v(¢) € S for somev.

Example 2. A sound and complete rule with premise {%} : ¢ V 1), where V is three
valued strong Kleene disjunction (which is dened v(¢ V ¢) = max(v(¢), v(¢))) is

1{%}:¢>v1¢
0,37 6] (31 ¢
(3} ¢ {0, 4} s

One way to visualize rules with a premise S : (¢ op ¢) uses coverings of those
entries in the truth table of op that are members of the set S. Each of the rule extensions
corresponds to a partial covering of these entries. The union of all coverings corresponds
to the collection of extensions that make up the conclusion of arule. In Example 2 above,
the left extension covers the area indicated in the following diagram on the left, while
the right extension covers the area shown in the diagram on right.

VoM VI[o[1]

0[O 0[O
DB e
11111 11111

Now, tableau rules and tableaux correspond to DNF formulae, while we are interested
in CNF formulee. What we need, therefore, are inverse tableau rules where the extensions
are conjunctively connected and the extensions themselves are clauses over signed
atoms. Consequently, we dene the language of clauses C' to be the clauses over L.
The V in C will be interpreted classically, i.e. twovalued (like the implicit disjunctions
of tableau branches in manyvalued tableaux which are also interpreted classically):

Denition b Satisability on . An atomic signed formula S : p is satised by v iff
v(p) € S.Let D € Cand D = 51: p1V---V Sy : pi. Dissatised by v iff v satises at

least one S; : p; in D. A clause set X C C'is satised by v iff v satises simultaneously
each member of X. We write v E X for this fact. X is satisable iff v E X for some v.

How can we compute inverse tableau rules? We can still use the technique with
coverings, however, we must turn things around. Each extension (or clause) corresponds
to a covering that contains at least the entries occurring in S. The intersection of all
coverings must contain exactly the entries occurring in S.

Example 3. The inverse tableau rule with the premise of Example 2 is:

{:ove
0.

{0, 4} : ¢>‘

(4

The extensions correspond to the following coverings:

VI[O[] VI[o[1] VI[o[1]
UE 041

0[Pt 071 010
BIEER P E I 2
L[LT T[T

The conclusion of the rule corresponds to the following set of C'clauses:

(10,8 : 6, {0,800, (& :0v{d:v}

We draw inverse tableau rules with double vertical bars to distinguish them from the

ordinary rules.
The next step is to express logical equivalence within this framework. Consider the

following denition of (strong) manyvalued equivalence:

o6 e = {olid il

Let us give a formulation with C'clauses of <. It will be convenient to use the
following abbreviations for signs:

Denition 6 Signs. Let j € N be arbitrary.

Si|=0nN Sil=00nN
<i|:=10.41nN <i|=104)nN

Now consider the (2n — 2) C'clauses of the following form:

:pV:q]
:pv:qwherej<1 (4)

Let us denote this clause set with X, ; it is easy to prove that p <> ¢is {1}satisable
iff X, is satisable and p < ¢ is {0}satisable iff X, is unsatisable.

We have now all prerequisites for mimicking the structure preserving clause form
translation described in (1) and (2) in the manyvalued case. We can apply the very
same procedure for computing a CNF over C'clauses for some formula ¢ as in the
classical case. For each formula of the form (1) we simply expand the signed formula

{1} (pi < (pj op px)) (5)

using the inverse tableau rules for > and op (recall that the conclusion corresponds
to aset of C'clauses, namely to X,). This process yields aset X ; for each nonatomic
subformula ¢; of ¢. To establish Ssatisability of ¢ for some S C N it is sufcient to

show that
X¢ = (U X¢7i) U {Sc :pl} (6)

is unsatisable (where p1 is the renaming of ¢). Since the branching factor of each
inverse tableau rule is at most n we have:

Corollary 7. In every nvalued logic f for every S : ¢ € L* there is a C'CNF
representation Xy of ¢ of length O(n?|¢|) such that S : ¢ is valid iff X4 - O.

Let us illustrate the method with an example.

Example 4. Consider threevalued strong Kleene logic with an extra negation ’~’ (cal-
led SKAJL) For convenience we repeat the semantic denitions (which are valid for any
number of truth values): v(=¢) = 1 — v(¢), v(~ ¢) = 1—v(¢)", v(p AV) =
min(v(¢), v(¢)), v(¢V) = max(v(¢), v(¥)), v(¢ D) = max(l —v(¢), v(¢)).

To establish that —=p D (~ pA-p)isatautology (in SKL both % and 1 are designated
truth values, i.e. support validity) we need to show that it is a {2, 1}tautology which

is the case iff the CCNF of {0} : =p D (~ p A —p) is unsatisable. To simplify things
a bit we introduce no new variables for negated atoms. Thus we have

{0} :q
{1}: (g (-pD 7)) (7)
U (r e (~pA-p)

We begin to expand the second formula (cf. (4)):
1 {1} (g & (=p D7)
{21}:¢ {0} :¢ {0,2}: ¢ {1}:q
{0} :=por[{4 1} :=p D r|[{1}:=p D r|[{0, 9 : -p Dy

The formula containing an implication have to be expanded further in order to yield
the clause set X,. Similarly, we compute the set X,.. Together with the rst clause in
(7) we arrive at the following set of signed clauses which characterizes the original
problem:

1 : . .
2 {41):q v oy f %;Z H%ii%?;
3. {31 :q VvV {0}:p 9. {0,%:pv {0}:r
g. {8}%@ v{%,l‘} PV{év}}f’“ 10. {0}:p v {0,4:r
P

4 Signed Resolution
We still have to provide a resolution rule for C'clauses. The following rule is one of
several possibilities and very close to standard binary resolution:

St:pvD1 -+ Sn:ipVD, . _
DIV--vVD, ifS1n---NS, =0 (8)

For completeness we need a factoring rule due to similar reasons as in the classical
case.

S1:pV---VS8,:pVvVD 9
(51U~ US%,) :pV D (9)

Soundness of rules (8) and (9) is straightforward to show. Completeness, too, is not
hard to prove with a semantic tree argument that is readily generalized to more than two
truth values by allowing nary semantic trees. In [1] a similar result is proved with that
method and can readily be adapted to the present case.

Exampleb. We continue Example 4 and show that the set of C'clauses generated there
is unsatisable:

12, [1,2] {0}:» 14. [8,12] {1}:p

13. [1,3] {0}:p 15. [13,14] a

Note that only the input clauses 1., 2., 3. and 8. have actually been used in the
derivation. We will come back to this issue in the next section.

5 Improvements

We present a simplication which parallels (3). We have already seen in Example 5
that most of the clauses were not redundant. We have to dene a generalized notion of
polarity in the presence of more than two truth values.

Denition 8 ManyValued Polarity. Let S : ¢ € L* and let T be a fully expanded
inverted tableau for S : ¢. For each subformula ¢ of ¢, if the occurrences of ¢ in T
are S1:4,..., 8y ¢ ¢, we say that ¢ occurs with polarity R = (S1,..., Sn) in ¢. We
abbreviate this fact with B: ¢ < 5 : ¢.

Note that by denition of inverted tableau rules §# ¢ S; € N holds for each S, in
R. For each polarity R we dene a binary connective =g by
o(¢ = r W) = {0 if v(v) & Si v(¢) € S;, S;occursinR

1 otherwise

We observe that in twovalued logic =1y is the same connective as D and =0
is the same connective as C. Moreover, = (0} {13) is the same connective as «. Now
we replace () by

{1}: (pi =r (pj op p)), if R: (pj op px) < 5 ¢ (10)

In twovalued logic we can get rid of the signs simply by writing everywhere p for
{1} : pand ~ pfor {0} : p. Together with the observation above (10) collapses into
(3) for twovalued logic, if we associate positive polarity with {({1}}, negative polarity
with ({0}) and both polarities with ({0}, {1}).

Be aware that identical strings can be different subformulas, such as p inp D p. Ontheother
hand, the same subformula can occur multiply in the tableau, since they are copied in some
rules, such as ¢ in Example 2.

Example 6. Let us apply Denition 8 to (7) from Example 4. Obviously, -p D (~
p A —p) occurs with polarity ({0}) in {0} : =p D (~ p A —=p). To see the polarity of
~ p A —p we begin to compute the inverse tableau for {0} : —=p D (~ p A —p).

{0} :=p D (~pA-p)
{1}« =p[{0} :~pA—p

We see that the polarity of ~ p A =p is ({0}), too. Therefore, we substitute both
occurrences of <+ in (7) by =10}y

{0} :q
1} (g =qoy (=p D7) (11)
{1}: (r =0y (~pA-p))

As an easy exercise the reader should verify that the clause set corresponding to
{1} 2 (¢ =0y (~p > 1) is ({31} : gV {0} : r {41} : ¢V {0} : p} and the
clause set corresponding to (r =0y (~pA-p))is {{41}: »v {1} : p}. But these
are exactly clauses 2., 3 and 8. from the old clause set (cf. Example 5) and they were
exactly the ones used in the refutation. Hence we succeeded in eliminating all clauses
that were redundant in Example 5.

Theorem 9. Let X1 be a set of Cclauses corresponding to some ¢ € L computed
according to (5) and let X2 be a set of C'clauses computed according to (10). Then
X} oiff X3 F 0.

Unfortunately, in the worst case the number of generated clauses can still be quadratic
wrt the number of truth values (use the same example as before). If, however, the maximal
number of occurrences of either ¢ or ¢ with different signs in the conclusion of each
rule with premise S : ¢ op # for all signs S and connectives op in a logicis k < n we
can replace O(n=|¢|) by < k<¢|+1 for some ! in the corollary above. In classical logic
we have k = 1 if no equivalences are present and k = n = 2 otherwise. See [4] for a
class of manyvalued logics where k = 1.

We suspect that much of the work in [2] can be generalized to the manyvalued
case, in particular, it should be possible to prove the optimality of certain manyvalued
CNF translations under suitable restrictions on the connectives.

Other possible improvements regard the resolution rule. We state some well-known
strategies from classical resolution in our manyvalued setting. This strengthens our
claim that signed resolution is a natural extension of twovalued resolution.

Denition 10 Subsumption. Let D, FE be two Cclauses. We say that D is subsumed
by F iff for each literal S71: pin F there is a literal S2: pin D such that 51 C 59.

Having this denition at hand, we can formulate subsumption strategies as in the
classical case.

Our nal point in this section is that among other strategies the setofsupport
strategy, as well as a pure rule and deletion of tautologies (clauses containing a literal
of the form N : p) may be formulated and proved as complete based on our notion of
satisability just as in the twovalued case.

6 Related Work

We have seen that it is possible to compute short (C')CNF for nitelyvalued logicsin a
quite efcient way using truth value sets as signs and inverse tableau rules. The resulting
set of signed clauses is attened out and provides no prooftheoretic insight. In [7]

(for modal and intuitionistic logic) and [8] (for ukasiewicz logic) a different view is
taken: there, a logic is characterized by clause sets whose syntax does not involve signs,
instead, certain additional logical connectives like necessity O [7] or truncated sum V
[8] are used. The problem with this approach is that it cannot be done schematically
each new logic requires new ideas. Also a new completeness proof of the associated
resolution rule has to be carried out each time.

In [1] a similar translation method and resolution rule as developed in Sections 3 and
4 can be found. It is stated in somewhat different terms and, what is more important, uses
only single truth values as signs. Also the translation is not linear and does not employ
polarity. Thus we conjecture that our own approach is more amenable to implementation.
In [9] another variant of signed resolution is investigated.

In [11] a kind of manyvalued polarity is introduced for the purpose of pruning
the enormous search space in nonclausal resolution. O’Hearn & Stachniak’s polarity
notion is dened on unsigned formulae and close to the original denition of Murray
[10]. We do not see any resemblance to the polarity notion developed in this paper.

In [6] the notion of presolution is dened in the context of automated reasoning in
paraconsistent logics. These are truth value latticebased logics and resolving between
literals involves not only mere set intersection and union as in rules (8,9), but meet and
join operations on the truth value lattice. On the other hand, in the case of linear orders

of truth values and restriction to signs , presolution essentially coincides with
rules (8,9). This fact suggests that our method can be expanded to the treatment of
nonclausal paraconsistent logics ([6] assume to have the input in signed CNTF).

7 FirstOrder Logic

We consider manyvalued Versions30fV, Jwhich have the simplied Skolem conditions

given in Table 1. Other signs than , are handled by splitting:

o1 {i}: 0
Sk::¢ :QSH:QS

where S = S1U---US.

Adding these expansion rules extends the translation method given in Section 3 to
rstorder formulee.

Soundness and completeness proofs can easily be obtained by combining the usual
results on Skolemization with the results of [4].

3 Dened as va((Yy)o) = mifvse (d)|lu € U}, vp((y)¢) = maxvsy(o)|lu € U}, where

min maxare interpreted naturallyon N and U is the underlying universe.

Table 1. Simplied Skolemrules for quantied formulee.

: (V) () : (Va)(a)
LAl)
: (32)6(x) : (3r)d(x)
FO(F(L)

(fisanewfunctionsymbolandz], ..., z,, arethevariables which occurfreely
in the premise of therule.)

8 Conclusion and Future Work

We presented the rst steps towards an efcient resolution system for manyvalued
logics by specifying a way to produce sets of clauses of feasible size which characterize
the original problem. The use of short normal form algorithmsis not very widespread in
classical logic, since they are not really necessary there for most problems. For many
valued logics, however, their use becomes essential, in particular when applications like
hardware verication is aimed at, where large formulza are to be expected.

In our CNF algorithm we dened a generalized notion of polarity which allows to
remove redundant clauses. This is, however, only the rst part. The next step would be
to translate the topdown renamings of [2] in a manyvalued setting. For the resolution
procedure we sketched some familiar improvements like subsumption in the many
valued version. Further work could include the investigation of successful strategies
such as hyperresolution and ordered resolution; see [1] for rst steps in that direction.

References

1. M. Baaz and C. G. Fermuiller. Resolution for manyvalued logics. In Proc. LPAR’92,
pp- 107 118. Springer, LNAT 624, 1992.

2. T. Boy de la Tour. Minimizing the number of clauses by renaming. In Proc. 10* CADE,
Kaiserslautern, pp. 558 572. Springer, Heidelberg, July 1990.

3. R. Héahnle. Towards an efcient tableau proof procedure for multiplevalued logics. In
Proc. Workshop Computer Science Logic, Heidelberg, pp. 248 260. Springer, LINCS 533,
1990.

4. R. Hahnle. Uniform notation of tableaux rules for multiplevalued logics. In Proc. 20
ISMVL, Victoria, pp. 238 245. IEEE Press, 1991.

5. R. Hahnle and W. Kernig. Verication of switchlevel circuits with multiplevalued logics.
Toappear, 1993.

6. J. J.Lu, L. J. Henschen, V.S. Subrahmanian, and N. C. A.da Costa. Reasoningin paracon-
sistent logics. In Automated Reasoning: Essaysin Honor of Woody Bledsoe, pp. 181 210.
Kluwer, 1991.

7. G. Mints. Gentzentype systems and resolution rules, part 1: Propositional logic. In
Proc. COLOGSS, Tallin, pp. 198 231. Springer, LNCS 417, 1990.

8. D. Mundici. Normal forms in innitevalued logic: The case of one variable. In
Proc. Workshop Computer Science Logic 91, Berne. Springer, LNCS, 1991.

9. N. Murray and E. Rosenthal. Resolution and pathdissolution in multiplevalued logics. In
Proc. ISMIS, Charlotte, 1991.

10. N. V. Murray. Completely non-clausal theoremproving. Al, 18:67 85, 1982.
11. P. O’Hearn and Z. Stachniak. A resolution framework for nitelyvalued rstorder logics.
Journal of Symbolic Computing, 13:235 254, 1992.

