
Reducing WIP in Gear Parts Manufacturing Using Queueing Networks

Volker D�orrsam, Kai Furmans and Markus Greiling�

Institut f�ur F�ordertechnik (IFK)
Universit�at Karlsruhe

Hertzstr. 16, D-76187 Karlsruhe
e-mail: [volker.doerrsamjkai.furmansjmarkus.greiling]@mach.uni-karlsruhe.de

fax: ++49/721 75 83 87

May 2, 1996

Abstract

A gear part manufacturing is modelled as a queueing
network to analyze and optimize overall production
performance. First a brief description of the problem
is given. The second section deals with the modelling
of the manufacturing system as queueing system and
especially with the connection of the lotsize and the
utilization respectively the coe�cient of variation of
the modelled system. Using a optimization approach
for the variation of the lotsizes it is shown that the
WIP and the sojourn time can be reduced signi�cant-
ly.

1 Problem Description

A major issue in the production of gears boxes for
trucks is the manufacturing of the parts required for
the assembly. Besides the subassembly for gear shif-
ting and the casing the majority of parts is needed
for the transmission itself, consisting of gear wheels
and shafts. The manufacturing process requires se-
veral steps, which could be grouped in three sections
relative to the hardening process: processing of un-
hardened parts, hardening and �nishing of hardened
parts. In the study presented we concentrated on the
�rst section, which involves the manufacturing steps
lathing, drilling, milling and gear slotting as well as
washing and inspection steps.

Due to the heavy loads and torque transmitted by
these parts a high quality has to be achieved which
in turn requires expensive equipment for manufactu-
ring. In combination with limited demand for truck
gear boxes as well as a higher variety of available ty-
pes which result in smaller annual production quan-
tities, the manufacturing of gear parts is very often
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organized as a job shop with sometimes complex part
routings.

The usage of one machine (or one group of machi-
nes) to produce several parts leads very often to con-
siderable setup times, therefore the necessity arises
to determine appropriate manufacturing lot-sizes for
each part. The time and cost required for setups are
most important with those machines, which are used
to perform the very �rst and the last manufacturing
steps. Therefore it is desirable to keep the parts that
have been started in one lot together and move and
process them with one setup on each machine where
the lot is processed.

The previously applied lot sizing rules tended to
generate some lots with very long processing times.
Very often these lots would block other jobs from
being processed on a particular machine, if no in-
terruption was allowed. Due to long sojourn times
it happened frequently that these other parts were
needed urgently, thus forcing the interruption of the
currently processed job. This happened more fre-
quently on the machines which are typically perfor-
ming the last production steps, thus leading to higher
setup frequencies than planned. Unfortunately con-
siderable setup times are needed on almost all ma-
chines, the unplanned splitting of lots into individual
production lots therefore leads to a much higher loss
of capacity than predicted.

After conducting a simulation study in the �rst
step, it was concluded, that one reason for long so-
journ times which in turn lead to a high probability of
unplanned setups lies in the currently used lot sizing
algorithm.

2 A Queueing Network Model

of the Manufacturing System

Queueing network models have successfully been
used to study manufacturing systems, especially the
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e�ects of various products competing for the same
resources (see [1]).
The manufacturing system was at �rst analyzed

with the simulation tool DELPHI [2], which is espe-
cially suited to support queueing network models of
manufacturing systems. A few simpli�cations had to
be made in order to provide a model that could be
simulated by using DELPHI. For details about the
modelling process see [3].
The simulation results showed that the sojourn ti-

mes of the products covered a wide range between
one or two days and several weeks. To gain an under-
standing of the system, a simpli�ed queueing network
model of the manufacturing unit was made, which
allowed an analysis of the main factors inuencing
sojourn times and WIP.
The machines were grouped in disjunct sets, each

set representing machines which are capable of per-
forming the same tasks. Each group of machines is
modelled as a queueing system i, where the number
of machines in the group is equal to the number of
servers mi in queueing system i.
The lots of a speci�c part of type j are represented

by a jobtype j, which requires a processing time tj;i
on machine group i. The number of parts of type j
in a lot is denoted by lj and assumed to be constant
over all process steps.
The number of operations that is performed on

parttype j by a group of machines i shall be denoted
by fj;i. Typically without having scrap or alternative
routings fj;i equals 1. For each product a demandDj

has to be covered. When product j is produced in
lots of size lj , the average starting rate for the lots of
type j is �startj = Dj=lj . Due to practical constraints
both lj and Dj are de�ned:

lj � 1; Dj � 1 (1)

Combining with fj;i the actual arrival rate of jobs
of type j at machine i is computed by:

�j;i = fj;i � �
start
j (2)

The total arrival rate of jobs at queueing system i

is computed as sum over all jobtypes.

�i =
X
j

�j;i (3)

The proportion of arriving jobs at queueing system i

that is of type j, pj;i is de�ned as:

pj;i =
�j;i

�i
(4)

It is known, that the two most important factors on
the beforementioned performance measures are the
utilization �i and the squared coe�cient of variati-
on of the service times c2i at queueing system i. By
assuming exponentially distributed interarrival times

of the jobs at the machines, we could use an M jGj1-
queueing system, to study the e�ects of lotsizing de-
cisions on sojourn time and average number of jobs
and parts waiting to be processed.
To compute these performance measures, in a �rst

step the average service time at queueing system i

has to be calculated.

�ti =
X
j

pj;itj;i (5)

Next is the variance V ar(ti) of the service times at
queueing system i,

V ar(ti) =
X
j

pj;i(tj;i � �ti)
2 (6)

which combined with the average service time �ti
yields the squared coe�cient of variation (scv):

c2i =
V ar(tj;i)

�ti
2

(7)

Ji indicates the number of di�erent jobs at queu-
eing system i. It is assumed, that lotsizes for jobtypes
j = 1; : : : ; J � 1 are �xed, resulting in a preliminary
average service time �t�i and Variance V ar(tj;i)�. The
sum of the arrival rates of jobtypes j = 1; : : : ; J�1 is
��i the combined demand D� and the average num-
ber of operations on i, f�i . We now discuss the e�ects
which result from determining lJ . The expressions 5
through 6 are converted to reect the inuence of
choosing the lotsize for product J .

�ti = pJ;i � tJ;i + (1� pJ;i) �t�i (8)

V ar(ti) = pJ;i(tJ;i � �ti)
2 + (1 � pJ;i)( �t�i � �ti) (9)

The utilization ��i of queueing system i by jobtypes
j = 1; : : : ; J � 1 is calculated from:

��i = ��i �
�t�i (10)

When t
part
J;i denotes the processing time for one

part of type J on a machine of group i and t
setup
J;i

is the average setup time required for product J on a
machine of group i and the the utilization as a func-
tion of lJ can be expressed as:

�i =
t
setup
J;i �DJ i � fJ;i

lJ
+DJ � fJ;i � t

part
J;i + ��i (11)

The e�ects of lotsize variations of product J on the
utilization are simple to investigate, because the �rst
derivative is always smaller than zero.

��i

�lJ
= �

t
setup

J;i �DJ

l2J
< 0 for t

setup

J ; DJ > 0(12)

The second derivative

��i

�2lJ
= 2

t
setup
J;i �DJ

l3J
(13)
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Figure 1: E�ects of lotsize variations of product J on
utilization �i(lJ ) and scv ci(lJ )

is always greater zero, demonstrating that �i(lJ ) is a
convex function.
The utilization decreases with increased lotsizes,

because fewer setups are necessary, when fewer jobs
have to be processed. The e�ects which can be achie-
ved by increasing the lotsize are limited by the lower
bound of the utilization of queueing system i (see 1):

lim
lJ!1

�i = t
part
J;i �DJ � fJ;i + ��i (14)

When the lotsize of product J is decreased, the
utilization � increases, approaching:

�i(1) = (tsetupJ;i + t
part
J;i ) �DJ � fJ;i + ��i (15)

The squared coe�cient of variation c2i can also be
expressed as a function of lJ .

c2i =
(tsetupJ;i + lJ � t

part
J;i � t�i )

2DJfJ;i +D�
i � f

�
i

DJ �t
setup

J;i
i�fJ;i

lJ
+DJ � t

part
J;i � fJ;i + ��i t

�
i

(16)

It is intuitively clear and shown in Figure (1), that
the scv reaches a minimum, when t

setup
J;i + lJ � t

part
J;i

equals t�i . This can be shown by setting the �rst
derivative �ci=�lJ equal to zero and solving for lJ .
ci approaches in�nity for increasing values of lJ and
approaches

lim
lJ!1

c2i =
(t�i � (tsetupJ;i + t

part
J;i ))2 �D�DJ

DJ � t
part
J;i Dj + ��i � t

�
i

(17)

Therefore c2i is also a convex function.
To show the e�ect of lotsizing variations on the

average number of jobs in the queueing system, we
use as already indicated a M jGj1-queueing system.
The average number of jobs Ni in queueing system i

is computed from

Ni =
�i

1� �i
�
1 + c2i
2

for �i < 1: (18)

The sum of the two convex functions �i=(1� �i) and
(1 + c2i )=2 is also a convex function.

By using Little's Law, and subtracting the avera-
ge number of jobs in the service station the average
waiting time twi is obtained.
For multiple-server queueing systems, the well

known approximation

tMjGjc
w = tMjMjc

w

(1 + c2)

2
(19)

is used. Plotting twi (lJ ) yields �gure (2).

lJ

tw,i

Figure 2: Expected waiting time as function of lotsize
of product J

The queueing system model that has been used so
far assumes that the interarrival times are exponen-
tially distributed. This assumption is in practice not
met, especially with those queueing systems which
model those groups of machines which are used for
the �rst operations on a part. Shop oor control sy-
stems usually control the starting process of the jobs
in a way, that leads to a more uniform arrival process.
Though each individual part has a deterministic

routing along the process ow the aggregated rou-
ting found in the manufacturing is characterized by
several split and merging operations between the dif-
ferent production steps. Therefore the coe�cients
of variations of the arrival processes at the queueing
systems tend to be close to 1 (see [1] ). So the arri-
val processes at the queueing systems were modelled
as Markov-Processes, which can be seen as an upper
bound of the real arrival process. In addition this
methodology results in a good performance of the
optimization steps (see next section).
Modelling and optimizing not only single queueing

systems but networks of queueing systems there are
trade-o� e�ects to be expected in form of a reduced
overall variance:
Since we have to assume that the modelled system

is stable and has �nite capacities, the production
planning has to take into account that lots with large
variances of service time are to be compensated with
lots with lesser variances. This means that service ti-
mes of lots are not independent and results typically
in negative covariances between these service times.
Since the overall variance is de�ned as

V ar(
X
i

ti) =
X
i

V ar(ti)+2 �
X
i<j

Cov(ti; tj)(20)



we have to expect, that the overall variance is less
than the sum of variances. Regarding that the pro-
posed optimization scheme is iterative, and interim
results are the basis of the next iteration, one can see,
that it is necessary to calculate the network of queu-
eing systems, and not only optimize a single queueing
system (e.g. a bottleneck system).

3 De�ning the optimization

Problem

Using the above described simple model, the simula-
tion results could be analyzed. As a reason for the
relatively high sojourn times, squared coe�cients of
variations of the service which were greater than 1.0
were identi�ed as a possible cause.
The reason for these high scvs lies in the currently

used method for the lot size determination. A varia-
tion of the economic order quantity model (EOQ) of
Harris, Wilson, Andler was previously used to balan-
ce expected setup costs with the cost of inventory of
�nished gears.
Due to the complex manufacturing processes the

work-in-process (WIP) is approximately three times
as large as the �nished parts inventory. This part of
the inventory is not part of the optimization which
the EOQ performs. Therefore the usage of the sim-
ple EOQ led to lot sizes disregarding important costs
induced by excess work-in-process.
Thus a a new optimization function of the form

min:
X

Setup Costs CS

+
X

Inventory Cost CI

+
X

WIP CostCW (21)

was created, which enriches the currently used model
by taking into account the e�ects of lotsizing on the
WIP. Modelling the job shop as a network instead
of a single queue enables to regard interdependant
e�ects between di�erent machines and parttypes.
There is no closed form solution which could be

used to compute the WIP, depending on the actu-
al lot sizing decision. Thus an approximation based
on the above described queueing network model was
used to evaluate the inuence of lotsizing decisions on
the WIP. It is known, that overall system performan-
ce measures, like total number of jobs or average so-
journ times, could be reasonably well approximated
by computing the performance measures for queu-
eing network models, even when not all underlying
assumptions for the queueing network model are met
(see [5]).
The cost function elements for �nished goods in-

ventory and setup costs are calculated as in the EOQ
model.

CS =
P

iDj=lj � setup cost at machine i (22)

CI = lj � inventory cost per part (23)

CW =
P

iNi

�P
j pj;i �WIP cost of part type j

�
.(24)

The optimization problem being nonlinear, a gra-
dient search method was implemented that varied the
lot sizes by following a steepest descent heuristic in
order to �nd a lot-size vector resulting in minimal
total cost. Furthermore it can be shown that the
underlying objective functions are convex for lotsizes
equal or larger than one, which results in a de�nite,
valid solution.

4 Application

The optimization scheme described above was im-
plemented as a tool designed to support a group of
planners for analyzing and optimizing various pro-
duction areas of the large production plant. There-
fore it needed to be embedded into a data-retrieving
and simulation framework. To simplify �le-interfaces
all the input data, being a subset of the simulators
data, were read directly from the simulation model
description �le (in ASCII format). In addition to this

the optimized lotsize vector ~l was used to update the
simulation description �le.
The initial problem being analyzed, simulated and

optimized was a job shop characterized by the follo-
wing items:

� total number of products being manufactured:
152

� number of individual machines: 66

� avg. number of routing steps: 4.8

� max. number of routing steps: 10

� rate of products, visiting only one spezialized
tool in the job shop: 35%

Some characteristics could not be regarded in the
optimization model. Due to this fact a simulation
tool was needed to support the modelling of the job
shop. These elements are e.g.:

overlapping manufacturing The lots are produ-
ced in an overlapping manner, which results in
the situation that some parts of a lot being pro-
duced on machine A, while others are already
processed on the subsequently following machi-
ne B.

queueing disciplines Scheduling is done by human
operators. The disciplines at di�erent stages



of the production vary heavily. Some typi-
cal strategies are FIFO, Closest-To-Completion,
Least-Slack, Dynamical-Priorization, Avoiding-
Setups.

product families Some products form a \product
family". Within theses families no or almost no
extra setup is needed, on the other hand the
switch from one family to another leads to si-
gni�cant setup times.

tool replacement With some machines idle time
has to be taken into account caused by the time
needed for replacing tools in order to produce
quality on a high level.

The six steps needed { data-collection, analysis,
modelling, simulation, optimization and validation {
were done within approximately two days, so this op-
timization of a complex system could be achieved in
reasonable time.
Performing the optimization for the above men-

tioned problem took approximately 20 minutes on a
workstation and resulted in a vector ~l of proposed
lotsizes.
The input data for the optimization were derived

from the simulation model which had been used to
perform the initial analysis. As the optimization mo-
del is a very much simpli�ed model of the manufac-
turing system, it is not guaranteed that the solution
which has been found is really an improvement over
the current situation. Therefore a �nal simulation
run was performed to ensure that the resulting lot
sizes are leading to an improved situation.
The model has been further validated by compa-

ring it with manufacturing data as well as with the
experiences of the people running the job shop. This
comparison was so promising that the next job shop
area was also analyzed and optimized. Here the ac-
tual demand estimations were the input for the opti-
mization. The results of the optimization were used
to determine the lotsizes for that area. Figure (3)
shows the e�ect for the WIP.
Besides the reduction of WIP by roughly 40% se-

veral more bene�cial e�ects arose:

� Production disturbance was reduced thus imp-
lying better production scheduling;

� Lowered variance of the sojourn time helped ma-
nagement to predict real sojourn time better.
This leads to a reduction of WIP in the following
process-steps;

� Overall setup-rate levelled o� at the same level
as before. This e�ect is surprising, because it
was expected that the setup rate would increa-
se slightly. One possible reason is that having
smaller sojourn times the splitting of lots are

100 %

50 %

WIP

t
Q.-2 Q.-1 Q.0 Q.1 Q.2

time of
introduction

Figure 3: Work in Process before and after lotsize
optimization

no longe required. While setups on �rst stage
machines increase, later machines achieve better
setup-rates than before;

� Reduced production space helped streamlining
parts ow. No search operations for lost (sic!)
products were needed any more.
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