
-

From rameshag Sun Apr 17 13:23:28 1994 Received: from karp.cs.albany.edu (karp.cs.albany.edu
[128.204.2.32]) by cs.albany.edu (8.6.8/HUB01) with ESMTP id NAA18148 for <nvm@cook>; Sun, 17
Apr 1994 13:23:23 -0400 From: Anavai G Ramesh <rameshag> Received: (rameshag@localhost) by
karp.cs.albany.edu (8.6.8/CLI) id NAA07565 for nvm; Sun, 17 Apr 1994 13:23:17 -0400 Message-Id:
<199404171723.NAA07565@karp.cs.albany.edu> Subject: LPAR camera To: nvm (Neil Murray) Date:
Sun, 17 Apr 1994 13:23:15 -0400 (EDT) X-Mailer: ELM [version 2.4 PL17] Content-Type: text
Content-Length: 59824 Status: RO

On Anti-Links †

Bernhard Beckert‡ , Reiner H
..
ahnle‡ , Anavai Ramesh∗ , and Neil V. Murray∗

‡ Institute for Logic, Complexity and Deduction Systems, Universit
..
at

Karlsruhe, Karlsruhe, Germany. (email: beckert / haehnle@ira.uka.de)
∗ Institute for Programming & Logics, Department of Computer Science,
University at Albany, Albany, NY 12222. (email:
rameshag / nvm @cs.albany.edu)

Abstract.

The concept of anti-link is defined, and useful equivalence-preserving operations on
propositional formulas based on anti-links are introduced. These operations eliminate a
potentially large number of subsumed paths in a negation normal form formula. The
operations have linear time complexity in the size of that part of the formula contain-
ing the anti-link.

These operations are useful for prime implicant/implicate algorithms because most of
the computational effort in such algorithms is spent on subsumption checks.

1. Introduction
Many algorithms have been proposed to compute the prime implicates of proposi-
tional boolean formula. Most algorithms [1,2,3,4,14] assume that the input is either
in conjunctive normal form (CNF) or in disjunctive normal form (DNF). Other
algorithms [10] require the input to be a conjunction of DNF formulas. In [12], a set
of techniques for finding the prime implicates of formulas in negation normal form
(NNF) is proposed. Those techniques are based on dissolution, an inference rule
introduced in [8], and on an algorithm called PI. Classes of formulas have been
discovered for which these techniques are polynomial but for which any CNF/DNF-
based technique must be exponential in the size of the input. Ngair has also intro-
duced similar examples; however, our method is more general than Ngair’s which is
based on order theory [10].

In [12] the PI algorithm is described; there, PI is used to enumerate all the
prime implicates of a full dissolvent, an NNF formula that has no conjunctive links
(defined later). PI repeatedly does subsumption checks to keep intermediate results
as small as possible. However these checks are expensive. Most result in failure,
and they have to be done on sets which can be exponentially large. The time
required for these operations can be reduced by using a more compact representation
of the intermediate results [1], but avoiding as many such checks as possible is the
focus of this paper.

We show that the full dissolvent can be restructured before applying PI such
that many non-prime implicates are removed without doing subsumption checks at
������������������
† This research was supported in part by National Science Foundation Grant CCR-9101208



-

all. We define disjunctive and conjunctive anti-links1 in NNF formulas, and we
identify operations to remove such anti-links and their associated subsumed paths.
This leaves fewer subsumption checks for the PI algorithm.

In the next section we describe our path semantics viewpoint and our graphical
representation of formulas in classical logic. In Section 3 we introduce anti-links
and develop useful equivalence-preserving operations based on them.

2. Foundations: Facts on Formulas in Negation Normal Form
We assume the reader to be familiar with the notions of atom, literal, and formula
from classical logic. We consider only formulas in negation normal form (NNF):
The only connectives used are conjunction and disjunction, and all negations are at
the atomic level. This restriction is reasonable, since formulas that contain implica-
tions, equivalences, and negations at any level can be converted to NNF in polyno-
mial time. We deal only with propositional logic in this paper, although some of the
following results like the Path Dissolution Rule are completely general.

In this section, we introduce a number of technical terms and definitions that
are treated in detail in [9]. They are required for the development of the anti-link
operations defined in Section 3, and they make the paper self-contained even for
readers not familiar with dissolution.

2.1. Semantic Graphs
A semantic graph G is a triple (N,C,D) of nodes, c-arcs, and d-arcs, respec-

tively, where a node is a literal occurrence, a c-arc is a conjunction of two semantic
graphs, and a d-arc is a disjunction of two semantic graphs. Any of N,C,D may be
empty. If N is empty, G is either true (empty conjunction) or false (empty disjunc-
tion). Each semantic graph used in the construction of a semantic graph is called an
explicit subgraph, and each proper explicit subgraph is contained in exactly one arc.
Note that when a graph contains occurrences of true and false, the obvious truth-
functional reductions apply. Unless otherwise stated, we will assume that semantic
graphs are automatically so reduced and that empty graphs are false. We will typi-
cally use G to refer to both the graph and to the corresponding node set when the
meaning is evident from context.

We use the notation (X,Y)c for the c-arc from X to Y and similarly use (X,Y)d
for a d-arc; the subscript may be omitted when no confusion is possible. Arbitrary
subformulas are denoted by upper case italic letters; plain upper case letters are used
for single nodes.

In Figure 1, the formula on the left is displayed graphically on the right. Note
that c-arcs and d-arcs are indicated by the usual symbols for conjunction and dis-
junction. Essentially, the only difference between a semantic graph and a formula in
NNF is the point of view, and we will use either term depending upon the desired
emphasis. For a more detailed exposition, see [9].

������������������
(Ramesh and Murray) and by Deutsche Forschungsgemeinschaft within the Schwerpunktpro-
gramm Deduktion (H

..
ahnle and Beckert).

1 Anti-links and some associated operators were first proposed by Beckert and H
..
ahnle – personal com-

munication. The first motivation for studying anti-links arose in connection with regular clausal tableau
calculi (Letz, p. 114 [6]). The anti-link rule as it will be defined later can be viewed as an implementation
of the regularity condition in [6] for the propositional non-clausal case (Letz considered the first-order
clausal case). There, refinements of general inference rules are considered, whereas the anti-link rule al-
lows implementation as a preprocessing step.



-

C
��
∧ ∨ D ∨ E
A

(( ¬C∧A) ∨ D ∨ E) ∧ (¬A ∨ (B∧C)) ≡ ∧
B

A
��

∨ ∧
C

Figure 1.

If A and B are nodes in a graph, and if a = (X,Y)α is an arc (α = c or α = d)
with A in X and B in Y, we say that a is the arc connecting A and B, and that A and
B are α-connected. In Figure 1, C is c-connected to each of B, A, C

��
, D, and E and

is d-connected to A
��

.
Let G be a semantic graph. A partial c-path through G is a set of nodes such

that any two are c-connected, and a c-path through G is a partial c-path that is not
properly contained in any partial c-path. The c-paths of the graph in Figure 1 above
are: {C

��
, A, A

��
}, {C

��
, A, B, C}, {D, A

��
}, {D, B, C}, {E, A

��
}, {E, B, C}. We similarly

define d-path using d-arcs instead of c-arcs. The following lemma is obvious.
Lemma 1. Let G be a semantic graph. Then an interpretation I satisfies

(falsifies) G iff I satisfies (falsifies) every literal on some c-path (d-path) through G.

2.1.1. Subgraphs
We will frequently find it useful to consider subgraphs that are not explicit;

that is, given any set of nodes, we would like to examine that part of the graph con-
sisting of exactly that set of nodes. The previous example is shown below on the
left; the subgraph relative to the set {A, D, A

��
,} is the graph on the right.

C
��

∧ ∨ D ∨ E
A A ∨ D

∧ ∧
B A

��

A
��

∨ ∧
C

For a precise definition of subgraph, see [9].

2.1.2. Blocks
The most important subgraphs are the blocks. A c-block H is a subgraph of a seman-
tic graph with the property that any c-path p that includes at least one node from H
must pass through H; that is, the subset of p consisting of the nodes that are in H
must be a c-path through H. A d-block is similarly defined with d-paths. In Figure
1, the subgraph relative to the node set {A,D,E,A

��
,C} is a c-block. However, it is not

a d-block since the d-path {A
��

,B} restricted to the subgraph is {A
��

}, which is a proper
sub-path of {A

��
,C} in the subgraph.

A full block is a subgraph that is both a c-block and a d-block. One way to
envision a full block is to consider conjunction and disjunction as n-ary connectives.
Then a full block is a subset of the arguments of one connective, i.e., of one explicit
subformula. For example, in Figure 1, {C

��
,A,E} is a full block. Full blocks may be

treated as essentially explicit subgraphs, and the Isomorphism Theorem from [7]
assures us that they are the only structures that may be so treated. For example,



-

{C
��

, A, E} can be written as
A
∧
C
��

∨ E or as ({C
��

, A}, E)d .

Let H be a full block; H is a conjunction or a disjunction of fundamental sub-
graphs of some explicit subgraph M. If the final arc (main connective) of M is a
conjunction, then we define the c-extension of H to be M and the d-extension of H to
be H itself. The situation is reversed if the final arc (main connective) of M is a d-
arc. We will use the notation CE(H) and DE(H) for the c- and d-extensions, respec-

tively, of H. In Figure 1, CE(A
��

) = A
��

and DE(A
��

) = A
��

∨
C
∧
B

 .

In this paper, we compute c- and d-extensions of single nodes only. Single
nodes are always full blocks and so testing for this property will be unnecessary. If
we assume that formulas are represented as n-ary trees, computing these extensions
can be done in constant time; we merely determine whether the given node’s parent
is a conjunction or a disjunction, and the appropriate extension is then either the
node itself or the parent.

2.2. Path Dissolution
A c-link is defined to be a complementary pair of c-connected nodes; d-connected
complementary nodes form a d-link. Unless stated otherwise, we use the term link
to refer to a c-link. Path dissolution is in general applicable to collections of links;
here we restrict attention to single links. Suppose then that we have literal
occurrences A and A

��
residing in conjoined subgraphs X and Y, respectively. Con-

sider, for example, the link {A, A
��

} in Figure 1. Then the entire graph G = (X ∧ Y) is
the smallest full block containing the link, where

X   =   
A
∧
C
��

∨ D ∨ E      and     Y   =   A
��

∨ 
C
∧
B

   .

The c-path complement of an arbitrary subgraph H with respect to X, written
CC(H, X), is defined to be the subgraph of X consisting of all literals in X that lie on
paths that do not contain nodes from H; the c-path extension of H with respect to X,
written CPE(H, X), is the subgraph containing all literals in X that lie on paths that
pass through H.

In Figure 1, CC(A, X) = (D ∨ E); CPE(A, X) = (C
��

∧ A). (Note that CPE has
two arguments whereas CE has but one; intuitively, CE has an implicit second argu-
ment that is always the entire graph in which the explicit argument occurs. For
instance, CPE(A, G) = (C

��
∧ A ∧ Y) and CE(A) = CPE(A,X) = (C

��
∧ A). )

It is intuitively clear that the paths through (X ∧ Y) that do not contain the
link are those through (CPE(A, X) ∧ CC(A

��
,  Y)) plus those through

(CC(A, X) ∧ CPE(A
��

,Y)) plus those through (CC(A, X) ∧ CC(A
��

,  Y)). The reader is
referred to [9] for the formal definitions of CC and of CPE and for the proofs of the
lemmas below. (The CC and CPE definitions are also presented in Section 3.3).

Lemma 2. Let H be an arbitrary subgraph of G. The c-paths of CPE(H, G)
are precisely the c-paths of G that pass through H.

Corollary. CPE(H, G) is exactly the subgraph of G relative to the set of nodes
that lie on c-paths that pass through H.

Lemma 3. Let H be an arbitrary subgraph of G. The c-paths of CC(H, G) are
precisely the c-paths of G that do not pass through H.

Corollary. CC(H, G) is exactly the subgraph of G relative to the set of nodes
that lie on c-paths that do not pass through H.



-

Lemma 4. If H is a c-block, then CC(H, G) ∪ CPE(H, G) = G.
In the development of anti-link operations, we will require the dual operations

of CC and CPE. We use DC for the d-path complement and DPE for the d-path
extension operators. Their definitions and properties are straightforward by duality,
and the above lemmas and corollaries about CC and CPE all hold in dual form for
DC and DPE. The above informal treatment of these operators is adequate for an
intuitive description of dissolution. However, precise definitions are given in Sec-
tion 3, where they will be required in proving the correctness of the anti-link opera-
tions introduced there.

Let H = {A, A
��

} be a link, and let M = (X,  Y)c be the smallest full block con-
taining H. The only way that H can be a single c-block is if H is a full block (it is
trivially a d-block). In that case, H = M, and A and A

��
must be (up to commutations

and reassociations) arguments of the same conjunction.
In general we define DV(H, M), the dissolvent of H in M, as follows: If H is a

single c-block, then DV(H, M) = CC(A, M) = CC(A
��

, M) = false. Otherwise (i.e., if
H consists of two c-blocks),

DV(H,  M)   =       

CC(A
��

,  Y)

∧
CPE(A, X)

     ∨     
CPE(A

��
,  Y)

∧
CC(A, X)

     ∨     
CC(A

��
,  Y)

∧
CC(A, X)

It follows from the corollaries and Lemma 4 that either of the two graphs
shown below may also be used for DV(H,  M).

X CC(A, X) CC(A, X) CPE(A, X)
∧ ∨ ∧ or ∧ ∨ ∧

CC(A
��

, Y) CPE(A
��

, Y) Y CC(A
��

, Y)

The three versions of DV(H, M) are not identical as graphs, but all three do
have the identical c-paths: all those of the original full block M except those of
CPE(A, X) ∧ CPE(A

��
,  Y), i.e., except those through the link.

Theorem 1. Let H be a link in a semantic graph G, and let M be the smallest
full block containing H. Then M and DV(H,  M) are logically equivalent.

A proof of Theorem 1 (in its full generality, where H is an arbitrary dissolu-
tion chain) can be found in [9].

We may therefore select an arbitrary link H in G and replace the smallest full
block containing H by its dissolvent, producing (in the ground case) an equivalent
graph. We call the resulting graph the dissolvent of G with respect to H and denote
it Diss(G,H). Since the paths of the new graph are all that appeared in G except
those that contained the link, this graph has strictly fewer c-paths than the old one.
As a result, finitely many dissolutions (bounded above by the number of c-paths in
the original graph) will yield a linkless equivalent graph. This proves

Theorem 2. At the ground level, path dissolution is a strongly complete rule
of inference.

2.3. Prime Implicates/Implicants
We briefly summarize basic definitions regarding implicates. The treatment for
implicants is completely dual and is indicated by appropriate dual expressions in
parentheses.



-

A disjunction (conjunction) P of literals is an implicate (implicant) of a for-
mula G, iff G |== P (P |== G).

A disjunction (conjunction) D subsumes another D′ iff D |== D′ (D′ |== D).
If a disjunction (conjunction) D′ is not equivalent to true (false) then D sub-
sumes D′ iff D ⊆ D′. True (false) is subsumed by all disjunctions (conjunc-
tions). A true disjunction (false conjunction) can subsume another true dis-
junction (false conjunction) only.

A disjunction (conjunction) D is a prime implicate (implicant) of a formula G
iff
1) D is not true (false).
2) D is an implicate (implicant) of G.
3) For all literals li in D, G |=/= (D - {li}) ((D - {li}) |=/= G).

2.4. Fully Dissolved Formulas
If we dissolve in a semantic graph G until it is linkless, we call the resulting graph
the full dissolvent of G and denote it by FD(G). Observe that FD(G) is dependent on
the order in which links are activated. However, the set of c-paths in FD(G) is
unique: It is exactly the set of satisfiable c-paths in G. Because FD(G) is link-free,
the consequences, i.e., implicates, of G are represented in the d-paths of FD(G). In a
dual manner, we may define dissolution for disjunctive links; in that case, FD(G) has
no disjunctive links, and the implicants of G are represented in the c-paths of FD(G).
These relationships are made precise by Theorem 3 below.

In the discussion that follows, we will often refer to subsumption of d- and c-
paths rather than of disjuncts and conjuncts. Paths are defined as sets of literal
occurrences, but with regard to subsumption, we consider the literal sets of paths.
We denote by l(p) the literal set of path p. In this way, no change in the standard
definitions is necessary. The theorem below was proved in [12].

Theorem 3. In any non-empty formula in which no c-path (d-path) contains a
link, every implicate (implicant) of the formula is subsumed by some d-path (c-path)
in the formula.

Corollary: Every prime implicate (implicant) of a reduced DNF (CNF) for-
mula, i.e., one with no false conjuncts (true disjuncts), is subsumed by some d-path
(c-path) in the formula.
This follows directly from Theorem 3 because such a DNF (CNF) formula has no
c-paths (d-paths) with links.

In [12], the prime implicates of G are computed by first obtaining FD(G);
then, knowing that all implicates are present in the d-paths of FD(G), the PI algo-
rithm computes the set of prime implicants ψ(FD(G) ), where

ψ(F)   =   {P |  ( P is a d-path through F ) ∧ 
          ( P ≠ true ) ∧ ( ∀ d-paths Q through F,  l(Q) ⊂/  l(P) ) } .

When used in this way, PI extracts all unsubsumed (non-tautological) d-paths from
an NNF formula without c-links. In general, PI computes ψ(F) for an arbitrary NNF
formula F.

3. Subsumed Paths and Anti-Links
Our goal in this section is to first identify as many subsumed paths as possible in an
efficient manner and then eliminate them. The presence of anti-links (both disjunc-
tive and conjunctive) in a graph may indicate that subsumed d-paths are present in
the graph. We now define anti-links and then discuss ways to identify and remove



-

subsumed paths due to anti-links.
Let M=(X,Y)d be a d-arc in a semantic graph G and let AX and AY be

occurrences of the literal A in X and in Y respectively. Then we call {AX ,AY} a
disjunctive anti-link. Note that M is the smallest full block containing the anti-link.
If M=(X,Y)c is a c-arc in a semantic graph G and if AX and AY are nodes in X and
in Y respectively, then we call {AX ,AY} a conjunctive anti-link.

3.1. Redundant Anti-links
We now identify those disjunctive anti-links which do imply the presence of sub-
sumed paths. We say a disjunctive anti-link {AX ,AY} with respect to the graph G is
redundant if either CE(AX) ≠ A or CE(AY) ≠ A.

Let {AX ,AY} be a disjunctive anti-link in graph G, where M = (X,Y)d is the
smallest full block containing the anti-link. We define DPAX ,AY,G to be the set of all
d-paths of M which pass through both CE(AX) − {AX} and AY or through both
CE(AY) − {AY} and AX . Consider the following example:

A   ∨   C A
∧ ∨ ∧
B E  ∨  C

The two occurrences of A form a disjunctive anti-link; M is the entire graph, and X
and Y are the left and right arguments of the main disjunction, respectively. Because
CE(AY) − {A} = Y − {A} = (E ∨ C) and DPE(AX ,  X) = A ∨ C, DPAX ,AY,G contains
the d-path p = {AX , C, E, C}. But since CE(AX) = AX , there are no paths through
CE(AX) − {AX}; p is the only member of DPAX ,AY,G. Nevertheless, the anti-link is
redundant, and p is subsumed by p′ = {AX , C, AY} (with literal set {A,C}). Notice
that had M been embedded in a larger graph G′, every d-path q containing p in G′ is
subsumed by a corresponding d-path q′ that differs from q only in that q′ contains p′
instead of p.

In general, one or both of the literals in a redundant anti-link {LX ,  LY} is an
argument of a conjunction, and DPLX ,LY,G ≠ ∅. In the above example, the two
occurrences of C are both arguments of disjunctions, and thus comprise a non-
redundant anti-link for which DPCX ,CY,G = ∅.

Although only redundant disjunctive anti-links contribute directly to subsumed
d-paths, non-redundant anti-links do not prohibit the existence of subsumed paths.
However, such non-redundant anti-links do not themselves provide any evidence that
such paths are in fact present.

Theorem 5. Let {AX ,AY} be a redundant disjunctive anti-link in semantic
graph G. Then each d-path in DPAX ,AY,G is properly subsumed by a d-path in G that
contains the anti-link.

Proof: Recall that a d-path (c-path) in a graph G is said to pass through a sub-
graph X of G if the path when restricted to the set of nodes in X, forms a d-path (c-
path) in X. Let p ∈ DPAX ,AY,G, and assume without loss of generality that p passes
through both CE(AX) − {AX} and AY . Note that CE(AX) − {AX} is non-empty and
that M = (X ∨ Y) is the largest full block containing the anti-link. We may write
CE(AX) as (AX ∧ C1  ∧  . . .  ∧ Cn), where n ≥ 1.

Let p = pXpYpo where pX and pY are p restricted to X and to Y, respectively,
and po is p restricted to nodes outside of both X and Y. By construction, AX ∉ pX
and thus pX passes through some Ci , 1 ≤ i ≤ n. So pX = pX ′ pCi

, where pCi
is pX res-

tricted to Ci , and hence p = pX ′ pCi
pY po. The d-path pX ′ ∪ {A} clearly passes

through X, and since AY ∈ pY , p′ = pX ′ AX pY po subsumes p.     �



-

3.2. An Anti-Link Operator
The identification of redundant disjunctive anti-links can be done easily by checking
to see if either CE(AX) ≠ AX or CE(AY) ≠ AY . After identifying a redundant anti-
link, it is possible to remove it using the disjunctive anti-link dissolvent (DADV)
operator; in the process, all d-paths in DPAX ,AY,G are eliminated, and the two
occurrences of the anti-link literal are collapsed into one. Let {AX ,AY} be a disjunc-
tive anti-link and let M = (X,  Y)d be the smallest full block containing the anti-link.
Then

DC(AX,X) ∨ DC(AY,Y)
∧

DADV({AX , AY}, M) = DC(CE(AX),X) ∨ DPE(AY,Y)
∧

DPE(AX ,X) ∨ CC(AY,Y) .

Consider again the example from Section 3.1:

A   ∨   C A
∧ ∨ ∧
B E  ∨  C

We have DC(AX ,  X) = B and DC(AY ,  Y) = (E ∨ C), so the upper conjunct in
DADV is (B ∨ E ∨ C). For the middle conjunct, CE(AX) = AX ,
DC(CE(AX), X) = B, and DPE(AY ,  Y) = AY; this conjunct is (B ∨ A). Finally in the
lower conjunct, DPE(AX ,  X) = (A ∨ C) and CC(AY ,  Y) = ∅ (false), so this reduces
to (A ∨ C). The result is:

B ∨ E  ∨  C
∧

DADV({AX , AY}, M)    =         B ∨ A
∧

A ∨ C

We point out that although DADV produces a CNF formula in this simple
example, in general it does not. In particular, the above graph can be simplified as
the consequence of easily recognizable conditions, and the resulting graph is not in
CNF. For the details, see Case 1 of Section 3.5.

3.3. Extension and Path Complement Operators
A number of more primitive operators are used in the definition of DADV;

they are described in [9] and have been presented informally in Section 2. We
present the formal definitions here in order to prove Lemma 5 below, and, in the
next subsection, to verify that DADV has the desired properties.

Let H be an arbitrary subgraph of G. Then

CPE(∅,  G)   =   ∅ (false)      and      CPE(G,G)   =   G    

CPE(H, G) =
i = 1
∨

n

   CPE(HFi
,Fi )

if the final arc of G is a d-arc

CPE(H, G) =
i = 1
∧

k

  CPE(HFi
,Fi )    ∧    

j = k+1
∧

n

  Fj

if the final arc of G is a c-arc



-

 where F1,  . . . ,  Fk are the fundamental subgraphs of G that meet H,
and Fk+1,  . . . ,  Fn are those that do not.

DPE(∅,  G)   =   ∅ (true)      and      DPE(G,  G)   =   G

DPE(H, G) =
i = 1
∧

n

   DPE(HFi
,Fi )

if the final arc of G is a c-arc

DPE(H, G) =
i = 1
∨

k

  DPE(HFi
,Fi )    ∨    

j = k+1
∨

n

  Fj

if the final arc of G is a d-arc

 where F1,  . . . ,  Fk are the fundamental subgraphs of G that meet H,
and Fk+1,  . . . ,  Fn are those that do not.

Using the same notation we define the c- and d-path complements of H in G
as follows:

CC(∅,  G)   =   G      and      CC(G,  G)   =   ∅ (false)

CC(H, G) =
i = 1
∨

n

   CC(HFi
,Fi )

if the final arc of G is a d-arc

CC(H, G) =
i = 1
∧

k

  CC(HFi
,Fi )    ∧    

j = k+1
∧

n

  Fj

if the final arc of G is a c-arc

 where F1,  . . . ,  Fk are the fundamental subgraphs of G that meet H,
and Fk+1,  . . . ,  Fn are those that do not.

DC(∅,  G)   =   G      and      DC(G,  G)   =   ∅ (true)

DC(H, G) =
i = 1
∧

n

   DC(HFi
,Fi )

if the final arc of G is a c-arc

DC(H, G) =
i = 1
∨

k

  DC(HFi
,Fi )    ∨    

j = k+1
∨

n

  Fj

if the final arc of G is a d-arc

 where F1,  . . . ,  Fk are the fundamental subgraphs of G that meet H,
and Fk+1,  . . . ,  Fn are those that do not.

Lemma 5. If G is a graph and A is a literal occurrence in G, then

CC(A, G)      =      ( DPE(A,  G) − {A} )  ∧  DC(CE(A), G)   .

Proof: We prove the lemma by showing that the formula on the left and the
formula on the right possess exactly the same set of d-paths. The proof is done via
induction on the syntactic structure of G.



-

If G is a literal, then G = A and both CC(A, G) and
( ( DPE(A,  G) − {A} )  ∧  DC(CE(A), G) ) are empty. (DC(CE(A), G) =
DC(A, A) = true, but (DPE(A, G) − {A}) = {A} − {A} = false = CC(A, A) .)

If G = (X ∨ Y), then without loss of generality assume A belongs to X. Hence
CC(A, G) = CC(A, X) ∨ Y. By the induction hypothesis, the d-paths of CC(A, X)
are just those of ( DPE(A,  X) − {A} )  ∧  DC(CE(A), X) ). So CC(A, G) =
( DPE(A,  X) − {A} )  ∧  DC(CE(A), X) )  ∨  Y.

Now consider the right hand side of the equation. Since A is in X,
DPE(A, G) = DPE(A, X) ∨ Y. Therefore, DPE(A, G) − {A} =
DPE(A, X) − {A} ∨ Y. Also, CE(A) will be disjoint from Y, and thus
DC(CE(A), G) = DC(CE(A), X) ∨ Y. Therefore we can write the right hand side of
the equation as (DPE(A, X) − {A} ∨ Y) ∧ (DC(CE(A), X) ∨ Y). By factoring out
the subgraph Y we get an equivalent subgraph
((DPE(A, X) − {A}) ∧ DC(CE(A), X)) ∨ Y having the same d-paths. But this is just
the graph to which the left hand side reduced via the induction hypothesis.

Finally suppose G = (X ∧ Y); again assume that A is in X. Now there are two
subcases to consider.
a) If CC(A, G) is the empty graph , then A in X is not d-connected to any other

subgraph in X. Hence X is of the form A ∧ C1  ∧  . . .  ∧ Cn (where n ≥ 0).
But then G = A ∧ C1  ∧  . . .  ∧ Cn  ∧ Y, CE(A) = G, and DPE(A, G) =
DPE(A, X) = A. As a result, DC(CE(A), G) and DPE(A, G) − {A} are both
the empty subgraph.

b) If CC(A, G) is not empty, then CC(A, G) = CC(A, X) ∧ Y, and CC(A, X) can-
not be the empty graph. Therefore, by the induction hypothesis, CC(A, G) =
(DPE(A, X) − {A}) ∧ DC(CE(A), X) ∧ Y. Focusing now on the right hand
side of the equation, DPE(A, G) = DPE(A, X) by definition. The c-extension
of A can only include nodes from X (otherwise, CC(A, G) would be empty,
contrary to the subcase b) condition). Therefore,
DC(CE(A), G) = DC(CE(A), X) ∧ Y. Therefore the right hand side of the
equation is (DPE(A, X) − {A}) ∧ (DC(CE(A), X) ∧ Y). This is just the result
obtained for the left hand side in this subcase.      �

3.4. Correctness of DADV

In Theorem 6 below we show that DADV({AX ,AY},G) is logically equivalent
to G and does not contain those d-paths in DPAX ,AY,G.

Theorem 6. Let M = (X ∨ Y) be the smallest full block containing {AX ,AY},
a disjunctive anti-link in semantic graph G. Then DADV({AX , AY}, M) is
equivalent to M and differs in d-paths from M as follows: Those d-paths in
DPAX ,AY,M are not present, and any d-path of M containing the anti-link is replaced
by a path with the same literal set having only one occurrence of the anti-link literal.

Proof: Note that AX and AY are literal occurrences (and hence d-blocks) in X
and in Y respectively. By the duals of Lemmas 2, 3, and 4, X is equivalent to
DC(AX,X) ∧ DPE(AX,X), and from the distributive law,

DC(AX , X) ∨ Y
M = ∧ .

DPE(AX , X) ∨ Y

Similarly, Y is equivalent to DC(AY,Y) ∧ DPE(AY,Y), and we expand the upper
occurrence of Y and distribute.



-

DC(AX,X) ∨ DC(AY,Y)
∧

M = DC(AX,X) ∨ DPE(AY,Y)
∧

DPE(AX,X) ∨ Y

By the duals of Lemmas 2 and 3, not only have we rewritten M equivalently,
but the d-paths of M have been preserved. We will continue to rewrite M; our goal
is to eventually put it in an equivalent form in which the paths of DPAX ,AY,M have
been omitted.

Consider the d-paths of DC(AX , X) – the d-paths in X that miss AX . They
either miss CE(AX), the c-extension of AX , or pass through CE(AX) − {AX}. Hence
we have DC(AX , X) = DPE( (CE(AX) − {AX} ), X) ∧ DC(CE(AX),X) , and d-paths
are preserved. By replacing the lower occurrence of DC(AX ,X) in the previous
graph, we get the following graph M′ which is equivalent to M and has the same d-
paths as M.

DC(AX,X) ∨ DC(AY,Y)
∧

DPE( (CE(AX) − {AX} ), X)
M ′ = ∧ ∨ DPE(AY,Y)

DC(CE(AX), X)
∧

DPE(AX,X) ∨ Y

Every d-path in the subgraph DPE( (CE(AX) − {AX} ), X) ∨ DPE(AY, Y) is in
DPAX ,AY,M . By Theorem 5, all these paths are subsumed by other d-paths. There-
fore, we can remove the subgraph DPE( (CE(AX) − {AX} ), X) from M ′ while
preserving equivalence to get the graph M′′ shown below.

DC(AX,X) ∨ DC(AY,Y)
∧

M ′ ′ = DC(CE(AX), X) ∨ DPE(AY,Y)
∧

DPE(AX,X) ∨ Y

Again by using arguments dual to the one given earlier for X , we have

DPE(AY ,Y)
∧

Y = DPE( (CE(AY) − {AY} ), Y)
∧

DC(CE(AY), Y)

In particular, the d-paths of the two are identical.

Replacing Y in M′′ we find that every d-path in the subgraph
DPE(AX, X) ∨ DPE( (CE(AY) − {AY} ), Y) is in DPAX ,AY,M . Again by Theorem 5,
these paths are also subsumed by other d-paths. Therefore we can remove the sub-
graph DPE( (CE(AY) − {AY} ), Y) and preserve equivalence; M′′′ results.



-

DC(AX,  X) ∨ DC(AY ,  Y)

∧
DC(CE(AX), X) ∨ DPE(AY ,  Y)

M ′ ′ ′ = ∧
DPE(AY , Y)

DPE(AX ,  X) ∨ ∧
DC(CE(AY), Y)

The d-paths in M ′ ′ ′ are those d-paths of M excluding the d-paths in DPAX ,AY,M .
Consider now the d-paths of DPE(AX , X) ∨ DPE(AY , Y) in M ′ ′ ′. They are exactly
those of M (and of M ′ ′ ′) that contain the anti-link: They each contain two
occurrences of the literal A. Hence we can remove the node AY from DPE(AY ,  Y)
to get M ′ ′ ′ ′.

DC(AX,  X) ∨ DC(AY ,  Y)
∧

DC(CE(AX), X) ∨ DPE(AY ,  Y)
M ′ ′ ′ ′ = ∧

DPE(AY ,  Y) − {AY}
DPE(AX ,  X) ∨ ∧

DC(CE(AY), Y)

Applying Lemma 5 to M ′ ′ ′ ′ we get the following graph which is
DADV({AX , AY}, M).

DC(AX,  X) ∨ DC(AY ,  Y)
∧

DADV({AX , AY}, M)    =         DC(CE(AX), X) ∨ DPE(AY ,  Y)
∧

DPE(AX ,  X) ∨ CC(AY ,  Y)

In constructing DADV({AX ,AY }, M), we have removed only subsumed d-paths and
altered only d-paths that contain the anti-link by collapsing the double occurrence of
the anti-link literal. Hence DADV({AX ,AY }, M) is equivalent to M, does not con-
tain the anti-link, and does not contain any d-path of DPAX ,AY,M .      �

Theorem 6 gives us a method to remove disjunctive anti-links and some sub-
sumed d-paths: Simply identify a redundant anti-link H = {AX ,AY} and the smallest
full block M containing it, and then replace M by DADV(H, M). The cost of this
operation is proportional to the size of the graph replacing M. Also, c-connected
literals in M do not become d-connected in DADV(H, M). Thus truly new disjunc-
tive anti-links are not introduced. However, parts of the graph may be duplicated,
and this may give rise to additional copies of anti-links not yet removed. Neverthe-
less, persistent removal of redundant disjunctive anti-links (in which case
DPAX ,AY,M ≠ ∅) is a terminating process, because the number of d-paths is strictly
reduced at each step. This proves

Theorem 7. Finitely many applications of the DADV operation on redundant
anti-links will result in a graph without redundant disjunctive anti-links, and termina-
tion of this process is independent of the choice of anti-link at each step.      �



-

Although we can remove all the redundant disjunctive anti-links in the graph,
this process can introduce new conjunctive anti-links. Such anti-links may indicate
the presence of subsumed d-paths, but the situation is not as favorable as with dis-
junctive anti-links – see Section 3.7.

3.5. Simplifications

Obviously, DADV({AX ,AY }, M) can be syntactically larger than M. Under
certain conditions we may use simplified alternative definitions for DADV. These
definitions result in formulas which are syntactically smaller than those that result
from the general definition. The following is a list of possible simplifications.

1. If CE(AX) = AX (and CE(AX) ≠ X), then DC(CE(AX), X) = DC(AX , X).
Therefore by (possibly non atomic) factoring on DC(AX , X) and observing that
(DC(AY ,  Y) ∧ DPE(AY ,  Y)) = Y, DADV({AX ,  AY}, M) becomes

DC(AX,X) ∨ Y
∧

DPE(AX ,X) ∨ CC(AY ,Y)

It turns out that this rule applies to the example used in Sections 3.1 and 3.2,
and shown below.

A   ∨   C A
∧ ∨ ∧
B E  ∨  C

Since CE(AX) = AX , the simplified rule for this case results in the following graph.

B ∨
A
∧

E ∨ C

∧
A ∨ C

2. If CE(AX) = X, then DC(CE(AX), X) = ∅ (true). Hence DPE(AX ,  X) = AX
and DC(AX ,  X) = X −{AX}. DADV({AX ,AY }, M) becomes

X − {AX} ∨ DC(AY,Y)
∧

AX ∨ CC(AY ,  Y)

3. If both Case 1 and Case 2 apply, then CE(AX) = X = AX , and the above for-
mula simplifies to

AX  ∨  CC(AY ,  Y)

Note that in all the above versions of DADV, the roles of X and Y can be
interchanged.



-

3.6. Disjunctive Anti-Links and Factoring.

It is interesting to note that the DADV operation contains factoring (i.e., the
ordinary application of the distributive law to a pair of conjunctions containing a
common argument) as a special case. This is just the condition for Case 2 above
except that both CE(AX) = X and CE(AY) = Y hold. Under these conditions,
DADV({AX ,  AY}, M) becomes

X − {AX} ∨ Y − {AY}
∧
A

This is the graph obtained by disjunctive factoring [9].

The DADV operator also captures the absorption law (or merging). If AX and
AY are both arguments of the same disjunction, then X = AX , Y = AY , and
DADV({AX ,  AY}, M) = AX . Note, however, that the anti-link is not redundant in
this case.

3.7. Conjunctive Anti-Links

There are conjunctive anti-links that always indicate the presence of d-paths
that are subsumed by others, and they are easy to detect. However, the conditions to
be met are much more restrictive than those for redundant disjunctive anti-links.
Consider a conjunctive anti-link {AX , AY}, where the smallest full block M contain-
ing the anti-link is (AX ∧ Y). Every d-path in Y which passes through AY will be
subsumed by the d-path consisting of the single literal AX . Hence we can replace Y
by DC(AY , Y).

This is a kind of dual to Case 3 of the simplified versions of DADV discussed
earlier. There, the anti-link {AX ,  AY} is disjunctive and M = (AX ∨ Y). The
simplified DADV operation just replaces Y by CC(AY ,  Y). Note that the conjunctive
anti-link operation above removes subsumed d-paths, whereas the Case 3 disjunctive
anti-link operation can either remove paths or merely remove the second occurrence
of the anti-link literal on paths that contain the anti-link. Both operations involve d-
paths, and both have strictly dual operations that would affect c-paths instead.

4. Conclusion and Future Work

We have introduced anti-links and defined useful equivalence-preserving
operations on them. These operations can be employed so as to strictly reduce the
number of d-paths in an NNF formula. Unlike path dissolution, which removes
unsatisfiable (or tautological, in the dual case) paths, anti-link operations remove
subsumed paths without any direct checks for subsumption. This is significant for
prime implicate computations, since such computations tend to be dominated by sub-
sumption checks.

Some experimental results on a dissolution- and PI-based prime implicate sys-
tem are reported in [12]. That system should be extended to include anti-link opera-
tions, so as to test their effectiveness in practice. The applicability of our techniques
to Ngair’s examples [10] is also worthy of study, because for many of his examples
the full dissolvent contains useful anti-links. Also, his method requires a normal
form that is somewhat more general than CNF or than DNF, whereas our techniques
require only NNF and are thus more general.



-

References

1. de Kleer, J. An improved incremental algorithm for computing prime impli-
cants. Proceedings of AAAI-92, 780-785.

2. Jackson, P., and Pais, J. Computing prime implicants. Proceedings of
CADE-10, Kaiserslautern, W. Germany, July, 1990. In LNAI, Springer-
Verlag, Vol. 449, 543-557.

3. Jackson, P. Computing prime implicants incrementally. Proceedings of
CADE-11, Saratoga Springs, NY, June, 1992. In LNAI, Springer-Verlag, Vol.
607, 253-267.

4. Kean, A., and Tsiknis, G. An incremental method for generating prime
implicants/implicates. Journal of Symbolic Computation 9 (1990), 185-206.

5. Kean, A., and Tsiknis, G. Assumption based reasoning and clause manage-
ment systems. Computational Intelligence 8,1 (Nov. 1992),1-24.

6. Letz, R. First-order calculi and proof procedures for automated deduction.
Ph.D. thesis, TH Darmstadt, June 1993.

7. Murray, N.V., and Rosenthal, E. Inference with path resolution and semantic
graphs. J.ACM 34,2 (April 1987), 225-254.

8. Murray, N.V., and Rosenthal, E. Path dissolution: A strongly complete rule
of inference. Proceedings of AAAI-87, Seattle, WA, July 12-17, 1987, 161-
166.

9. Murray, N.V., and Rosenthal, E. Dissolution: Making paths vanish. J.ACM
40,3 (July 1993), 504-535.

10. Ngair,T. A new algorithm for incremental prime implicate generation.
Proceedings of IJCAI-93, Chambery, France, August, 1993.

11. Przymusinski, T.C. An algorithm to compute circumscription. Artificial Intel-
ligence 38 (1989), 49-73.

12. Ramesh, A., and Murray, N.V. Non-clausal deductive techniques for comput-
ing prime implicants and prime implicates. Proceedings of LPAR-93. St.
Petersburg, Russia, July 13-20,1993. In LNAI, Springer-Verlag, Vol. 698,
277-288.

13. Reiter, R. and de Kleer, J. Foundations of assumption-based truth mainte-
nance systems: preliminary report. Proceedings of AAAI-87, Seattle, WA, July
12-17, 1987, 183-188.

14. Slagle, J.R., Chang, C.L., and Lee, R.C.T. A new algorithm for generating
prime implicants. IEEE Transactions on Computers, C-19(4) (1970), 304-
310.

15. Strzemecki, T. Polynomial-time algorithms for generation of prime impli-
cants. Journal of Complexity 8 (1992), 37-63.


