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Abstract

This paper tries to identify the basic problems en�
countered in automated theorem proving in many�
valued logics and demonstrates to which extent they
can be currently solved� To this end a number of re�
cently developed techniques are reviewed� We list the
avenues of research in many�valued theorem proving
that are in our eyes the most promising�

� Introduction

The purpose of this note is to review a number of
techniques that lead to a computationally adequate re�
presentation of the search space of many�valued logics
and to identify the avenues of research in many�valued
theorem proving that are in our eyes the most promi�
sing� We do not mention the large number of possi�
ble applications of many�valued theorem proving� but
refer to ���� for an extensive list of applications and
to ��	� for a case study�

If one is doing many�valued deduction� typically a
number of problems that are not as much prominent
in classical deduction have to be addressed


�� The number of case distinctions is much larger
due to the increased number of truth values�

�� The amount of redundancy in deductions is much
bigger� Typically� many�valued connectives show
a certain degree of regularity and one has to �nd
ways of how to exploit this�

� In general� internal normal forms �that is� normal
forms based solely on connectives from the logic
under consideration� are not available�

�� In the case of in�nitely�valued logics there is the
problem to �nd a �nite representation of the se�
arch space�

Throughout this paper we assume that the reader is
familiar with the basic notions of computational logic
and with the semantic tableau proof procedure in par�
ticular� A good reference for the required background
is ����� We will use a standard syntax for propositio�
nal and �rst�order logic� here and there enriched with
some new unary and binary operator symbols� We
use p� q� r� p�� q�� r�� � � � for propositional variables and
predicate names� c� ci� t� tj� � � � for constants and terms�
�� �� � � � for propositional and �rst�order formulas� F
for unspeci�ed connectives�

� Many�Valued Logic

De�nition � �Syntax� L is a propositional langua�
ge with propositional variables L� and �nitary connec�
tives F�

De�nition � �Truth Values� Semantic� Logic�
Let N be the set of truth values� for de�niteness in
the �nitely�valued case� take equidistant rational num�

bers� i�e� N �
n
�� �

n��
� � � � � n��

n��
� �
o

and set n � jN j�

in the in�nitely�valued case let N � Q � ��� �� and
n � �� Connectives F � F are interpreted as functi�
ons with range and domain over N � in other words� if
k is the arity of F we associate a function f 
 Nk � N

with F which we call the interpretation of F � Let
f be the family of functions over N associated with
connectives in F� Then we callA � hN� f i an n�valued
matrix for L and L � hL�Ai an n�valued proposi�
tional logic�

De�nition 	 �Valuation� Let L be an n�valued pro�
positional logic� A valuation for L is a function
v 
 L� � N � As usual� v can be uniquely extended
to a homomorphism from L to N via

v�F ���� � � � � �k�� � f�v����� � � � � v��k��

where f is the interpretation of F �



De�nition 
 �S�Satis�ability� �Consequence� If
S � N � and L is an n�valued propositional logic then
call a formula � � L S�satis�able i� there is a valua�
tion v such that v��� � S� Call � an S�tautology i�
v��� � S for all valuations� � � L is an S�consequence
of � � L� denoted by � �S �� if every valuation that
S�satis�es � also S�satis�es ��

We can extend our presentation to quanti�ed logic
in the following way


De�nition � �First�Order Syntax� L� is a �rst�
order language which is constructed from a proposi�
tional language L in the usual way by replacing the
set of propositional variables with atoms of the form
p�t�� � � � � tm�� the ti being from a term language T
made up of sets Ei that contain function symbols of
arity i for i � � and object variables V � p � P � where
P �

S
i��Pi is a non�empty set of predicate sym�

bols and each Pi contains i�ary predicates� Moreover�
we allow quanti�ed formulas� if x � V � � � L� and
Q � fQ�� � � � � Qrg then �Qx�� � L��

De�nition � �First�Order SemanticsLogic� A
domain D� a variable assignment �� an interpre�
tation I� a model M � hD� Ii� a �rst�order valua�
tion vM�� � �rst�order satis�ability� and validity
are de�ned as in classical logic 	just note that predi�
cates are evaluated in N � hence I�p� 
 Di � N
� The
semantics of quanti�ers is given via their distribu�
tion dQ 
 �N � N of truth values as the quanti�ed
variable runs through D�

vM����Qx��� � dQ�fvM��ux
���j u � Dg�

Given d � fdQ�
� � � � � dQrg and an n�valued propo�

sitional logic L� an n�valued �rst�order logic L�

associated with L is de�ned by the triple hL��A�di

Example � Consider the propositional logic with
a unary negation connective �� binary connectives
	�t�u called truncated sum� disjunction and con�
junction� respectively� For arbitrary N � the seman�
tics is given by �i 
� � 
 i� i 	 j 
� minf�� i � jg�
i t j 
� maxfi� jg� i u j 
� minfi� jg�

In the �nitely�valued case we can specify a �rst�
order logic based on these connectives and � and �
by stipulating d� 
� max and d� 
� min �where max�
min are interpreted naturally�� We call the family of
logics just de�ned �Lukasiewicz Logics�

The general problem in many�valued deduction can
now be formulated as follows
 given a collection of sets

of truth values S�� � � � � Sk � N � a many�valued ��rst�
order� logic L and closed formulas ��� � � � � �k �L� is
there a model M which simultaneously Si�satis�es �i
for all �  i  k � Hence� we assume that there
is some kind of deduction theorem which gives us a
translation Tr 
 �L � L � �L

�

from S�consequence
to �simultaneous� S�satis�ability such that � �S �

i� Tr��� �� is satis�able� Such deduction theorems
indeed exist for many logics� See �	� for some non�
trivial examples and further references�

� Sets as Signs

If one is seeking for e�cient many�valued deduction
a simple� but very useful device is needed
 analogously
to the signs T and F in classical semantic tableaux ����
one introduces subsets of the set of truth values as a
meta�logical notation in order to denote restrictions
on the truth value a formula may take on�

De�nition � �Signed Formula� Let S � N and
� � L� Then we call the expression S � a signed
formula and we denote the set of all signed formulas
with L�� S � is satis�able i� � is S�satis�able�

A semantic tableau�based proof procedure for �ni�
tely�valued logics based on truth value sets as signs
was �rst introduced in �����

Let us look at the example in Table � in order to
see what the sets�as�signs approach �as we prefer to
call it� can gain�

Semantic tableau rules correspond to a classical
DNF representation of the premise� Each rule exten�
sion is a conjunction of signed subformulas and re�
presents a partial covering of those truth table entries
that occur in the sign of the formula in the premise
�in the example indicated by the arcs�� The union of
all partial coverings �that is the collection of all rule
extensions� characterizes exactly those entries�

Obviously� using sets�as�signs �in contrast to single
truth values� can shorten the rules considerably� The
rule from Table �� but with singleton signs only� beco�
mes

�
�
� t �

�

�
� �

�
� � �

� � �

�
� �

�
�

It is clear that nested application of such rules can
result in exponential di�erences between sets�as�signs
and singleton signs�



Table �
 Sets�as�signs rule and truth table for t and n � �

f�
�
g � t �

f �

�g � f�� ��g �
f�� ��g � f �

�g �

t � �

�
�

� � �

�
�

�

�

�

�

�

�
�

� � � �

Although the e�ect of using sets�as�signs is drama�
tic also in practice �cf� Section �� the idea was not
systematically exploited before ������

Note that a tableau for a many�valued formula em�
ploying sets�as�signs is still a classical tableau on the
meta level� Hence� truth value sets as signs are just
meta connectives which are suitably chosen in order
to allow for an e�cient representation of many�valued
models�� Therefore� the sets�as�signs approach is use�
ful not only in the context of tableau�based theorem
proving� from where it evolved� but also� as we shall
see in Sections � and �� within the scope of other theo�
rem proving paradigms� See ���� for more examples�

In the presence of quanti�ers the usefulness of sets�
as�signs becomes even more striking� Let us �rst give
a computational description of the distribution of a
quanti�er Q
 If v��Qx���x�� � i holds due to the fact
that dQ�fi�� � � � � ikg� � i for a certain distribution of
truth values� where fi�� � � � � ikg � N and i � N � this
means that

�� v���t��� � i�� � � � � v���tk�� � ik must hold for
certain terms t�� � � � � tk� and

�� v���t�� � fi�� � � � � ikg must hold for any term t�

These conditions can be conveniently expressed in
rule format with Skolem terms and signs


I �Qx���x�

fi��g ��c�� fim�g ��c��
��� � � �

���
fi�k�g ��ck�� fimkmg ��ckm�

I� ��t�� Im ��tm�

����� ��� are the only approaches employing the idea at all
that we are aware of� Both� however� are restricted to speci�c
logics� For a complete historical account and bibliography on
many	valued theorem proving� see �
���

�In non	classical theorem proving the existence and choice
of a suitable meta language is crucial� cf� ��� ����

Here d��Q �I� � fI�� � � � � Img� Ij � fij�� � � � � ijkjg�

the c�� c�� � � � are new Skolem constants�� and the
t�� � � � � tm are arbitrary terms�

For each Ij such that dQ�Ij� � I there is a rule ex�
tension wherein Condition � above is expressed by the
�rst kj formulas and Condition � by the last formula�
We note that in the case of Ij � fijg for some j for
the corresponding extension it is su�cient to contain
the single signed formula Ij ��t�� and one can always
delete tautological signed formulas of the form N ��t��
We stress that condition � above is extremely compli�
cated to formulate as a rule when only singleton signs
are available� cf� ���� Again� the use of sets�as�signs can
lead to exponential speed�ups� On the other hand� in
the formulation above we have still up to �n 
 � ex�
tensions in a rule since for each set of truth values in
d��Q �I� exactly one extension must be generated�

If we compute� for example� the tableau rule for
f�� �

�
g��x���x� in three�valued logic we obtain the rule

shown in Table ��
This rule is obviously not the simplest possible one�

In order to obtain it� we encoded each truth value set
in d��� �f�� �

�
g� with Skolem conditions� If we turn this

process around� and ask ourselves which distributi�
ons of truth values can be encoded using conjuncti�
ons of Skolem conditions of the form I ��c� or J ��t��
where I� J � N � we see that this �Skolem language�
is quite powerful� We may encode� for instance� the
family of truth value sets de�ned through the expres�
sion �N 
fXjX � fi� �

n��
� � � � � �gg by f�� � � � � ig��c�

for each i � N � Hence� the rule shown in Table � can
be simpi�ed to

f�� �
�
g ��x���x�

f�� �
�
g ��c�

���

As has already been pointed out by Carnielli ���
p� �		�� even for singleton signs it is as yet an unsolved
problem to �nd minimal rules for distribution quan�
ti�ers automatically in a feasible way that is without

�It is su�cient for Skolem constants to be new only wrt to
the current branch ����



Table �
 Tableau rule for f�� �
�
g ��x���x� in three�valued logic�

f�� �
�
g ��x���x�

f�g ��c� f�g ��c� f�g ��c� f�
�
g ��c�

f�
�
g ��d� f�

�
g ��d� f�g ��d� f�g ��d�

f�g ��e�
f�g ��t�� f�� �

�
g ��t�� f�� �g ��t�� f�

�
g ��t�� f�

�
� �g ��t��

enumerating all possible rules� What would be nee�
ded is a sound and complete set of rewrite rules over
the �Skolem language� de�ned above� In the next sec�
tion� however� we develop a notion which� at least in
the case of the standard quanti�ers � and �� leads to
a satisfactory solution�

� Regular Logics

It turns out that a number of many�valued lo�
gics have particularly simple computational proper�
ties� Working with sets�as�signs is again useful for
identifying them� Let us start with the observation
that if we omit the 	 connective in the logic de�ned
in Section � and consider only the following signs

�j 
� �j� ���N �j 
� ��� j��N

then all tableau rules have either the shape of �
rules or of � rules in the sense of Smullyan ����� Mo�
reover� the signs occurring in the conclusion of the
rules are again of the form �j � �j � Let us call
these signs regular signs�

The main reasons for this very simple shape are
�i� the restricted form of the signs� �ii� the truth va�
lues corresponding to the truth table entries are mo�
notonically increasing or decreasing� starting from one
corner� We express these constraints in a formal de��
nition


De�nition � �Circle� Corner ��	�� A metric d on
Nk can be de�ned by

d��x� �y� � max
��i�k

jxi 
 yij

for �x� �y � Nk� For r � N we de�ne the circle in
Nk with center �x and radius r as the set

c�x�r � f�yj �y � Nk and d��x� �y� � rg�

We de�ne the corner set of Nk as

Ik � f�xj xi � f�� �g� �  i  kg�f�� �gk�

De�nition �� �Regular Logic ��	�� A k�ary con�
nective f is called regular i� there is an �x � Ik such
that

�� for all r � N the set ff��y�j�y � c�x�rg is a singleton�
say fxrg� and

�� the sequence x�� � � � � x� composed of these xr is
monotonic 	either increasing or decreasing
 wrt
the natural order on N �

We call �x the starting point of f �
A many�valued logic with only regular connectives�

standard quanti�ers� and queries restricted to regular
signs is called regular logic�

The logic de�ned in Section � without the 	 connec�
tive is regular� In regular logics all tableau rules for
propositional connectives are � rules or � rules� all
quanti�er rules are 	 or 
 rules in the sense of Smul�
lyan ����� see below� Moreover� these rules can be com�
puted straightforwardly in a schematic manner from
the semantics� see ��� ��� for details�

The attractive feature of regular logics is that they
can be handled almost like classical logic� but they still
are quite expressive�� For instance� the connective 	
de�ned above is not regular� however it can be easily
composed of regular connectives� To see this� we �rst
de�ne for n �  the connective f via the truth table
on the left� On the right the truth table of the target
function 	


f � �

�
�

� � � �
�
�

� � �

� � � �

	 � �

�
�

� � �

�
�

�
�

�
�

� �

� � � �

It is easy to see that ��	 �� � ��� t�� t ��f���
holds for n � ��

�In �
�� it is shown that for each n there is a functionally
complete regular n	valued logic�

�Note� however� that the de�nition of � becomes increasin	
gly more complex while the number of truth values is growing�
Also the size of a formula can increase exponentially during the
translation into a regular formula� A remedy to this are the
techniques introduced in Section ��



In the presence of regular signs the standard quan�
ti�er rules become also extremely simple �cf� the clas�
sical rules in �����


	�x�
	�t�


�x�

�c�

where t is an arbitrary term� c a new Skolem constant�
�i ��x�� and �i ��x�� are formulas of type �� and

�i ��x�� and �i ��x�� are formulas of type ��

A full soundness and completeness proof of these
rules� which generalize ���� is given in �����

It turns out that the notion of a regular sign can
be naturally extended to arbitrary partially ordered
sets and they coincide with the well�known notions of
upset and downset from lattice theory�

De�nition �� �Partially Ordered Set� A parti�
ally ordered set 	briey� poset
 is a pair hP��i�
where P is a nonempty set� � a binary relation on P

and 	P�
�	P�
 below hold�

�P�� For any x � P � x � x�

�P�� For any x� y� z � P � If x � y and y � z then
x � z�

�P	� For any x� y � P � If x � y and y � x then
x � y�

De�nition �� �Up�� Downset� Let hP��i be a po�
set� We de�ne for a � P � � a 
� fxj a � x� x � Pg�
� a 
� fxj x � a� x � Pg�

For example� if � is the natural order on N � we
have �i � � i� �i � � i� fig � � i � � i� Natural
candidates for a weaker structure to try out would be
�nite �complemented and�or distributive� lattices�

Here close connections to work done in theorem pro�
ving in paraconsistent annotated logics show up ����

� Normal Forms

So far we have mainly talked about short repre�
sentations of semantic tableau rules for many�valued
logic� We have� however� promised that the presented
techniques are universally applicable� In order to see
this we emphasize the normal form aspect of tableau
rules� It has been already remarked that a tableau
rule corresponds to a DNF representation of the si�
gned formula in the premise� As an example� let us
rewrite the conclusion of the rule for f �

�g �� t �� from
Table � as �f �

�g ��f�� ��g ��� �f�� ��g ��f �

�g ��� Note

that �� � are classical connectives and the literals S�
in this DNF are interpreted classically in the obvious
way
 S � is classically satis�able i� � is S�satis�able�

Hence recursive application of tableau rules to sub�
formulas transforms any �nitely�valued signed formula
into a classical DNF representation based on signed
atoms as literals�� Such a DNF clause is a conjunc�
tion of signed atoms and its satis�ability can be easily
checked
 C � S� p� � � � � � Sm pm is unsatis�able i�
there are Si� pi� � � � � � Sik pik such that pi� � � � � � pik
and

T
��j�k Sij � ��

With the two basic ingredients �i� DNF transfor�
mation and �ii� satis�ability checking of conjunctive
paths �which is just another name for a DNF clause�
we can apply the techniques of the previous sections
to a lot of well�known proof procedures which rest on
these properties� for instance� to the connection me�
thod� model elimination� model generation� path dis�
solution� decision diagrams� See ���� for some worked
out examples�

On the other hand� the seemingly most successful
theorem provers for classical �rst�order logic are wor�
king with CNF�based resolution� In order to achieve a
signed CNF instead of DNF� all we have to do is to pro�
vide tableau rules that relate to CNF instead of DNF
and use free variable versions ���� � of the rules for �
and � of the previous section �for other quanti�ers the
free variable problem is more complex�� For the ex�
ample from the beginning of this section we have the
picture summarized in Figure �� Each rule extension
corresponds to a region of the truth table that covers
all �elds with entries that occur in the premise� The
intersection of all such coverings �the darkly shaded
�elds in the table on the righthand side in Figure ��
comprise exactly those �elds� The double vertical bars
in the rule indicate that it is a CNF rule�

Several optimizations of this approach to CNF
transformation are possible� For instance� one can de�
sign a structure preserving algorithm extending Tsei�
tin�s work ��� for classical logic� The result of such an
algorithm is always polynomially bounded wrt to the
length of the input ���� in the case of �nitely�valued
�rst�order logics with standard quanti�ers�

Finally� a number of sound and complete resolution
rules can be de�ned on signed clauses� We give one
possible formulation and refer the reader to ���� ���
��� �� for further details�

Resolution� parallel version�

�In the �rst	order case we do not know the required number
of applications of quanti�er rules beforehand� so we can speak
only of a DNF approximation�



f�
�
g � t �

f �

�g � f�� ��g �

f�� ��g � f �

�g �

f �

�g � t � �
f�� ��g � � �f �

�g � � f �

�g �� � f�� ��g �

t � �

�
�

� � �

�
�

�

�

�

�

�

�
�

� � � �

Figure �
 Illustration of CNF sets�as�signs rule for t and n � �

S� p��D� � � � Sm pm�Dm

�D� � � � � �Dm��

Tm

i�� Si � �
� mgu of p�� � � � � pm

Merging�

S� p� � � � � � Sm pm �D

��S� � � � � � Sm� p� �D��
� mgu of p�� � � � � pm

If we deal with regular logics� only regular signs
occur in the literals� In this case a binary resolution
rule is su�cient�

An important feature of signed resolution is that
many resolution re�nements known from classical lo�
gic can be either directly applied or can be extended in
a suitable way �this has been done in ��� for singleton
signs�� Examples are deletion of tautologies and pure
clauses� UR�resolution� lock resolution� ordered reso�
lution� as a concrete example we state subsumption�

De�nition �	 �Signed Subsumption� Let D�E

be signed clauses� D is subsumed by E i� there is
a substitution � such that for each literal S� p� in E

there is a literal S� p� in D such that S� � S� and
p�� � p��

� Integer Programming

Let us restrict our attention to classical proposi�
tional logic for the moment� The correspondence bet�
ween classical propositional formulas in CNF and �
�
integer programs is well known and has led to some
research on the relationship between logic satis�abi�
lity checking and linear optimization ����� It turns
out that a semantic tableau based view leads to a ge�
neralization of this relationship� The key idea is to
use regular signs and leave the variables in the signs
uninstantiated� Hence� we allow rules as the following


�i F ���� ���

�i� F ���� ���

�i� F ���� ���

For most instances of i� i�� i� such a rule does not re�
 ect the semantics of F � hence we must impose some

additional constraints in order to make it sound� It
turns out that constraints in the form of linear in�
equalities over the variables occurring in the signs are
su�cient to produce extremely concise tableau rules
for classical as well as for many�valued logics� inclu�
ding the otherwise di�cult to handle !Lukasiewicz sum�

For classical propositional logic the rules summari�
zed in Table  constitute a sound and complete rule
set� The variables in the signs run over f�� �g� In the
case of many�valued logics they would run over N �

It can be easily shown that for each instance of
the variables that solve the annotated integer program
�IP�� a rule that is sound in the usual sense �that is�
it preserves satis�ability� results� On the other hand�
the conclusions of all instances of a rule with a sol�
ved annotated IP together form a complete set of rule
extensions in the usual sense �that is� one of them pre�
serves unsatis�ability��

Regarding branch closure we may view atomic for�
mulas ��propositional variables� as object variables
ranging over the set of truth values� We can take ad�
vantage of the fact that the �meta��variables in the
signs and the �object��variables in the formulas are
of the same type and merge them into a single con�
straint� Speci�cally� if p is atomic and �i p is present

on the current �and only� branch we simply add the
constraint p � i to the IP already associated with the
branch� and we add the constraint q  j� when �j q

is present� Branch closure is then encoded in the fact
that all generated constraints cannot be solved simul�
taneously�

Note that all rules are linear� so we can extract from
the fully expanded tableau together with the closure
conditions a single IP problem whose number of va�
riables is not greater than the length of the input for�
mula� There is ample room for improvements of va�
rious sorts� For example� two of the rules in Table 
can be improved in the following way


�i �

�i�j	� �� i  j

�j ��

�i �

�i�j �� i � j

�j ��



Table 
 Classical Tableau Rules in Constraint Formulation�

�i �

�i� �� i� � i�  i � �

�i� ��

�i �

�i ��

�i ��

�i �

�i� �� i� � i� � i

�i� ��

�i �

�i ��

�i ��

S ���

S �

In the conclusion only one new variable is intro�
duced instead of two� The price is to admit linear
expressions in the signs� but that is no problem�

As said before� this approach works well also for
�nitely�valued logics and even for some ��valued lo�
gics� In the case of ��valued logics� some of the va�
riables are over the rationals� some are binary� Let us
give a linear constraint rule formulation for the signed
formula �i �	 � in the ��valued case� If we plot
the three�dimensional region which is spanned by the
triples ��� �� i� for which �i �	 � is true �the hypo�

graph of 	� we obtain the union of the two regions
depicted in Figure ��

�

�

i

Figure �
 Hypograph of 	 in ��valued logic�

The resulting region is not convex� so it cannot be
represented as a linear program� We can� however�
introduce a new binary variable and represent it con�
veniently with a mixed �
 � program resulting in the
tableau rule shown in Table ��

Table �
 Linear rule for �i and 	 using MIP con�
straints�

�i �	 �

�i� � y  i� i� � i�  y � i

�i� � y  i�� y  i�

There� i� and i� are rational variables� while y is
a binary control variable which selects the lighter
shadowed convex region if y � �� the �partly hidden�

darker shadowed convex region if y � ��

The tableau�based translation from formulas to in�
teger problems can be extended to the �rst�order case
with appropriate free variable quanti�er rules ���� ��
Two main problems have to be addressed then
 �rst�
as usual in semantic tableaux� one does not know be�
forehand how many copies of a 	 formula �correspon�
ding to the number of di�erent instances in Herbrand�s
theorem� are needed in order to get a refutation� Se�
cond� the resulting integer programs from such a trans�
lation contain free �rst�order variables which have to
be instantiated somehow� On the other hand� simi�
lar problems have to be addressed in most theorem
proving systems and it may have certain advanta�
ges to use integer programming as a ground solver
besides the capability to handle many�valued logic�
See ���� for a more detailed account of �rst�order is�
sues and ���� ��� on integer programming methods for
many�valued logic�

� Implementation

What recommendations concerning the logical basis
can we give to somebody who is willing to build a
many�valued theorem prover for real applications�

The answer strongly depends on the expressive po�
wer of the logics under consideration and� to a certain
degree� on the intended application�

For propositional ��valued logics an MIP�based
implementation as sketched in Section � is probably
best� For other logics� the state�of�the�art approach
in the two�valued case should be taken and modi�
�ed using the sets�as�signs technique� In particular�
for propositional �nitely�valued logics a modi�cation
of the Davis�Putnam procedure seems best if tauto�
logy checking is the aim ��� and decision diagrams
if simpli�cation of large and unstructured expressi�
ons is desired ���� For �rst�order �nitely�valued lo�
gics a resolution framework as sketched in Section �
is very interesting� In the future also re�nements of
tableaux might turn out to be competitive ���� or per�
haps a tableau�based approach incorporating integer



programming �����
For the time being two tools are under development

at University of Karlsruhe� The tableau�based many�
valued theorem prover
 �T

AP ���� �� can in principle
handle arbitrary �nitely�valued �rst�order logics and
makes use of sets�as�signs� regularity properties and
optimized standard quanti�er rules� In addition it in�
corporates other state�of�the�art features of classical
tableau�based provers such as lemma generation �also
for many�valued logic� see ����� and uni�cation ���

To gain some insight into how much is achieved
in practice with the sets�as�signs concept� two imple�
mentations of the three�valued �rst�order logic used
in ���� were provided� The �rst version runs with ru�
les which use only singleton signs� The second ver�
sion has a full set of signs and rules� that is� for each
� � S � f�� �

�
� �g and each connective a rule is compu�

ted� In Table � statistical �gures of runs in both ver�
sions are summarized for various �rst�order problems
from �����

Run times are roughly proportional to the number
of generated branches� thus there is a very clear ad�
vantage for the sets�as�signs approach� All run times
required in this case are within fractions of a second�
Note that the sample problems are not particularly
hard and the underlying logic has only three truth va�
lues� For logics with a larger number of truth values
the di�erence becomes even more spectacular�

The second tool is a mixed integer programming im�
plementation �written in C		� together with a trans�
formation algorithm from logic into MIP along the
lines in Section � �written in PROLOG�� The perfor�
mance for classical propositional logic is not quite as
good as state�of�the�art satis�ability checkers ���� but
the system is still under development �including the
extension to �rst�order logic� and moreover works for
all �nitely�valued and most��valued logics� We hope
to put a �rst version of this system into the public
domain during this year�

For prototyping purposes� a constraint logic pro�
gramming �CLP� approach o�ers an easy way to im�
plement �nitely�valued and in�nitely�valued logics�
Consider the rule from Table �� It can be written
more compactly as the top left rule in Table �� To the
right and below of it the rules for �i and for negation
are shown�

These rules can be translated one to one into the
following constraint logic program �in CLP �R� syn�
tax� cf� ��"��


�
�T
AP is available without charge to research institutions�

Please contact the author if you are interested in receiving a
copy� �T

AP is written in PROLOG and runs on Quintus Prolog
��
 and higher and Sicstus Prolog ��
�� and higher�

Table �
 Improved rules for 	 and negation�

�i �	 �

�i�j	y � y  i

�j	y � j  i

�i �	 �

�i�j �

�j �

�i ��

���i �

�i ��

���i �

leq�plus�Phi�Psi��I� �� leq�Phi�I�J�Y��
leq�Psi�J�Y��
truth�var�J��
control�var�Y��
Y	
I� J	
I�

leq�neg�Phi��I� �� geq�Phi���I��

leq�atom�Phi��I� �� truth�value�Phi��
Phi	
I�

geq�plus�Phi�Psi��I� �� geq�Phi�I�J��
geq�Psi�J��
truth�var�J��

geq�neg�Phi��I� �� leq�Phi���I��

geq�atom�Phi��I� �� truth�value�Phi��
I	
Phi�

control�var���
control�var����

truth�var�J� �� 	
J� J	
��

In order to test� for instance� the formula �p 	 p

for validity� it is su�cient to verify that the following
query fails


�� Phi 
 plus�neg�atom�P���atom�P���
leq�Phi�C�� truth�var�C�� C	��

To avoid operator de�nitions� we write the input
as a PROLOG term� where the unary function atom

denotes that its argument is an atomic formula� If
the query fails� then the truth value of Phi cannot be
smaller than � under any valuation� hence� Phi must
be a f�g�tautology of the in�nitely�valued logic over
	 and �� We assume� of course� that strict inequality
constraints are implemented properly �otherwise� we
have to minimize C� and we can no longer use CLP�
but only a proper MIP implementation��

The same program can also be used for �nding sa�
tisfying valuations� If Phi is f�g�satis�able� then the
query



Table �
 Some Test Results with �T
AP �

Problem Closed branches when using
singleton signs Sets�as�Signs

Unlinked� Linked� Unlinked Linked
Lemma ��� ��� ��" � �
Theorem �� ��� 	� � �
Lemma ��" #��  � �
Figure ���� ��� ��� �� 	
Figure ���� # # # 	
Axiom MVEQ� ��  � �

�� Phi 
 ���� leq�Phi���� geq�Phi����

yields a satis�able constraint system over the va�
riables occurring in Phi� such that every solution to
this system forces Phi to evaluate to �� in other words�
the solution f�g�satis�es Phi�

We obtain a theorem prover for n�valued logic
simply by changing the de�nition of the predicate
truth var�� as follows


truth�var���
truth�var����	n������
���
truth�var����

Finally� we would like to mention that ���� report
an experimental resolution prover for �nitely�valued
logics that operates on signed clauses�

	 Conclusion and Outlook

In this paper we have reviewed some recently de�
veloped techniques for automated deduction in �rst�
order and propositional many�valued logics� Where
are the main prospects for future research that can
lead to further improvements and new applications�

The computational properties of many�valued lo�
gics are still only understood in special cases� Tools
like the translation technique to MIP could be used to
identify classes of logics with interesting computatio�
nal properties as� for instance� the existence of strong
cutting planes for the resulting MIP �����

Another interesting topic is the development of re�
solution or tableau closure rules that can exploit orde�
ring of the truth values to prune the search space� This

�All formulas are present on the initial branch�
	Only formulas with links into the formula in focus are fet	

ched from the knowledge base on demand�
�
No proof found after several minutes�

could be done by generalizing sets�as�signs to ordered�
sets�as�signs as in De�nition ��� Exploiting the order
could then lead either to more concise rules �in the
tableau setting� or to less resolvents �in the resolution
setting�� Looking at up� and downsets in truth value
lattices seems to be a good starting place� See also �"�
for a related approach in the domain of substructural
logics�

Finally� the upsets and downsets occurring in the
MIP translation can be considered as a natural genera�
lization of positive and negative formulas in the sense
of logic programming� Hence� a constraint tableau rule
might be interpreted as �a� clause�s� of a constraint lo�
gic program �with linear arithmetic constraints�� This
line of thought would lead to many�valued analoga
of Horn formulas� de�nite Horn formulas� etc� Also
there are connections to the work of Subrahmanian
et al� on implementing non�monotonic reasoning with
constraint logic programs using linear arithmetic con�
straints ���� which have not been explored yet� In this
context it is also interesting to note that there has
recently been established a close relationship between
many�valued logics and non�monotonic logics ��	��
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