KIT | KIT-Bibliothek | Impressum | Datenschutz

Shortcomings of generalized affine invariant skewness measures

Gutjahr, Steffen; Henze, Norbert ORCID iD icon 1; Folkers, Martin
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper studies the asymptotic behavior of a generalization of Mardia's affine invariant measure of (sample) multivariate skewness. If the underlying distribution is elliptically symmetric, the limiting distribution is a finite sum of weighted independent ξ$^2$-variates, and the weights are determined by three moments of the radial distribution of the corresponding spherically symmetric generator. If the population distribution has positive generalized skewness a normal limiting distribution occurs. The results clarify the shortcomings of generalized skewness measures when used as statistics for testing for multivariate normality. Loosely speaking, normality will be falsely accepted for a short-tailed non-normal elliptically symmetric distribution, and it will be correctly rejected for a long-tailed non-normal elliptically symmetric distribution. The wrong diagnosis in the latter case, however, would be rejection due to positive skewness.


Originalveröffentlichung
DOI: 10.1006/jmva.1999.1823
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2002
Sprache Englisch
Identifikator ISSN: 0047-259X, 1095-7243
KITopen-ID: 134199
Erschienen in Journal of multivariate analysis
Verlag Academic Press
Band 71
Heft 1
Seiten 1 - 23
Vorab online veröffentlicht am 25.05.2002
Schlagwörter multivariate skewness, test for multivariate normality, affine invariance, elliptically symmetric distribution
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page