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Abstract

Thread-based concurrent languages currently do not
provide much support to (a) avoid deadlocks, (b) treat
competing threads in a fair way, and (c) allow branch-
ing depending on lock availability. This makes parallel
programming di�cult and error prone and thus reduces
the programmer's productivity. In this paper we present
a lock statement for fair atomic locking of several locks
that supports (a), (b), and (c). We discuss the expres-
sive power of the new lock statement and show the basic
principles of an e�cient implementation.

1 Introduction

When extending a language for thread-based paral-

lelism commonly several new features are introduced.

The minimal set of features comprises mechanisms for

thread creation and locking.

However, by adding these features common thread

problems are introduced and regrettably left for the

programmer to solve. The most signi�cant of these

problems is caused by locking constructs based on the

\one lock at a time" idea. With these constructs the

programmer must de�ne a (partial) order of all locks

to avoid deadlocks in situations where a thread needs

to hold more than a single lock. Although the order

is essential for the correctness of the program it is not

an integral part of the code. This causes maintenance

and reusability problems, especially in team projects.

Additionally, most languages do not have constructs

to block a thread until it gets one out of a set of locks.

Ada and OCCAM do have similar constructs which are

not used for locking, but for rendezvous (Ada) or to

select an input channel (stream) that does have some

data to be read (OCCAM).

To solve these problems, a thread-parallel program-

ming language should allow for atomic locking of a set

of several locks out of a list of sets of locks and thus

move the di�culties of deadlock avoidance and selec-

tion to the run-time system. In section 2 we present a

multi-branch lock statement that meets these demands

and discuss its expressive power.

We further show that although simple locks are suf-

�cient, one would rather use conditional locks which

can only be locked when its associated condition is
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true. Conditional locks greatly enhance the simplic-

ity and readability of parallel programs and simplify

maintenance and reusability.

For a formal presentation of the construct we use

pSather [10, 13, 8] although other languages would

have been equally appropriate. In section 3 we present

the basic principles of our implementation and give a

formal proof of fairness and absence of starvation. We

show that since the basic problems can be solved ef-

�ciently by the underlying run-time system there is

no reason to bother the programmer with them. By

adopting the implementation ideas, similar language

extensions can be introduced into di�erent languages.

Section 4 discusses performance issues. After a look at

related work in section 5 we conclude this paper.

2 Multiple Locking

Multiple threads are similar to multiple serial programs

executing concurrently, but threads share variables of

a single name space.

2.1 Syntax and Semantics

Threads may acquire lock objects of type $LOCK. The
thread then holds the lock until it releases it. Then the

lock object is free again. Locks can be acquired with

the following multi-branch lock statement:

lock

when Lck11 [, Lck12,..., Lck1n] then

stmt list 1

when Lck21 [, Lck22,..., Lck2m] then

stmt list 2

...

[else

stmt list e]

end

The multi-branch lock statement is evaluated by a

thread as follows:

(1) The lock expressions Lckij of all when branches

are evaluated in order. They all must return ob-

jects of type $LOCK.

(2) In case the set S of branches where all $LOCK
objects can be acquired is not empty, one branch

is selected randomly. The thread acquires all locks

atomically at once, executes the corresponding list

of statements and continues at (4).



(3a) Otherwise (S = ;, i.e., for all when branches

there is at least one lock that cannot be acquired),

if there is an else branch, the thread executes

stmt list e and continues at (4).

(3b) If S = ; and the else branch is missing, the thread

blocks until it can complete (2) by atomically ac-

quiring all $LOCK objects of one of the when

branches.

(4) After execution of one branch, all locks acquired

by the lock statement are released.

In the above steps contention must be handled by the

run-time system. If several threads compete for a non-

disjoint set of locks, the implementation must ensure

the following:

� If no lock is held forever, it is guaranteed that no

thread will starve to death, i.e., if a thread can

eventually run, it will do so.

� If a single lock statement is executed repeatedly,

no branch will be inde�nitely chosen over another

one of the same lock statement.

Section 3 presents an implementation and proves that

it meets these requirements.

Because all locks are acquired atomically, deadlock

can never occur due to concurrent execution of two or

more lock statements with multiple locks, although it

is possible for deadlock to occur by dynamic nesting of

lock statements or in other ways.

2.2 Examples

In contrast to other languages, the core of the din-

ing philosophers [12] implementation is straightforward

with multiple locking because the system guarantees

the absence of deadlocks and starvation. Both left frk
and right frk are local lock objects that are speci�c for

each philosopher thread.

loop

-- when can be omitted if there is only one branch
think; lock left frk, right frk then eat end;

end

The else part can be used to elegantly implement any

kind of polling.

The usefulness of multiple branches is shown with

the producer-consumer situation. Assume a situation

where a bunch of producer threads is combined into

a thread group; two (typed) queues are used for the

communication, and each queue is used by multiple

producers, while consumers read values from any of

those queues. When all producers stop and there are

no more values left to be consumed, the consumers

should stop too.

consumer(prod:ThreadGrp,queue1,queue2:Bu�erfTg)
is loop

lock

when queue1.not empty then

t:=queue1.dequeue;

when queue2.not empty then

t:=queue2.dequeue;

when queue1.empty, queue2.empty,

prod.no threads then

return;

end;

-- consume t
end; end;

In this example queuej .not empty, queuej .empty, and
prod.no threads are of type $LOCK and implement the

suggested condition.1

The consumer thread loops and repeatedly enters

the lock statement. In each iteration it enters one of

the �rst two branches unless there are neither produc-

ers nor elements to consume left. Only then it enters

the last branch and terminates.

To program this example with only simple lock (or

try) statements and semaphores and without using a

busy loop is far from trivial. Especially the condition

that the consumers should stop as soon as both the last

producer stopped and there is nothing left to consume

is rather tricky to implement. More details can be

found in the following section.

2.3 Expressive Power

In this section we compare some examples that use the

multilock statement to implementations of the same

examples in a language that o�ers only simple lock (or

try) statements and semaphores. In this language, a

single lock can be acquired at a time, and the lock will

be released at the end of the block as in pSather. It

also supports the else clause. The comparisons show

that the multilock statement is a real advantage and

signi�cantly simpli�es code.

Comparison I. Consider the following multilock

code that waits until it can acquire one of two locks:

lock

when a then -- critical section for a

when b then -- critical section for b
end;

There are two general approaches to implement the

intended behavior in a simpler language. The easiest

solution uses a busy loop:

loop

lock a then

-- critical section for a

break!; -- end the loop

else lock b then

-- critical section for b

break!; -- end the loop

else end; -- do it again.
end; end;

If performance goals prohibit the busy loop, the solu-

tion becomes more complex as two additional threads

are needed each of which monitors one of the locks and

signals the main thread which one got the lock �rst:

-- test to see if the lock has already been locked by me

if a.locked by me then

lock a then -- this works for sure

-- critical section for a

1In pSather ThreadGrp and Bu�erfTg are called Gates which
o�er methods that return the mentioned locks.



end;

elsif b.locked by me then

lock b then -- this works for sure

-- critical section for b

end;

else -- we have to lock one of the two locks ...

-- this lock is used to prevent a race condition

Lock mutex:=#Lock; -- new

-- the semaphore is set as soon as one of the two

-- monitoring threads ends the critical section.

Semaphore sem:=#Semaphore; -- new

-- used to avoid locking both locks one after the other

found lck:=false;

fork -- start the thread that monitors lock a

lock a then -- acquire the lock

lock mutex then -- enter critical section

if ~found lck then -- if this is the first lock

found lck:=true;

-- critical section for a

sem.signal; -- send a signal to the main thread

end;

else end;

end; end;

fork -- start the thread that monitors lock b

-- (uses the exact same algorithm as a)

lock b then

lock mutex then

if ~found lck then

found lck:=true;

-- critical section for b

sem.signal;

end;

else end;

end; end;

sem.wait;

end;

Although this code does work, it has several draw-

backs:

1. Two additional threads are created, which use sys-

tem resources without actually doing anything to

solve the real problem.

2. For a short period of time both locks could be

locked together. Depending on the algorithm this

may be a problem.

3. One thread may lock the second lock long after

the main thread continued, albeit only for a short

time.

4. To allow recursive locking, the program has to test

at the beginning if the locks were already locked

by this thread. Consequently we also have to du-

plicate the critical sections, which makes mainte-

nance more di�cult.

5. Deadlock may occur if the critical section for a or

b is executed by one of the newly created threads

and if this thread tries to acquire a lock that has

been locked by the main thread. If the main

thread would try this, it would succeed as pSather

supports recursive locking.

Comparison II. The next problem deals with a sim-

pli�ed consumer-producer. Here we have just one con-

sumer monitoring a queue. The consumer should stop

after all producers �nished their work. First, consider

the multilock code:

loop

lock

when queue.not empty then

t:=queue.dequeue;

when prod.no threads, queue.empty then

break!; -- end the loop

end;

end;

Now we implement the same behavior in a simple lan-

guage where producer and consumer communicate via

a semaphore and a queue. Each time a value is en-

queued the semaphore is signaled. Before the last pro-

ducer exits it will signal the semaphore a last time.

loop

semaphore.wait;

if queue.empty then break!; end; -- end the loop

t:=queue.dequeue;

end;

To make the code work for several consumers we must

make sure that the last producer signals the semaphore

once for each consumer. Additionally we must serialize

the if statement:

loop

semaphore.wait;

lock consumer lck then

if queue.empty then break!; end; -- end the loop

t:=queue.dequeue;

end;

end;

To implement the behavior of the two way consumer-

producer example from section 2.2 with semaphore and

try-locks we need to create one thread for each com-

munication queue which reads the queue and pushes

everything into one common queue. Each of those in-

termediate threads plays two roles: the role of a con-

sumer with respect to the producer and the role of a

producer with respect to the consumers. Although this

will work, it is not completely equivalent to the multi-

lock code from section 2.2, as the number of consumers

cannot change dynamically depending on the work to

do. The number has to be �xed at the beginning since

the last producer must know how many consumers are

active before it dies.2

3 Implementation Issues

In this section we focus on the most challenging prob-

lems of the run-time system, which are posed by the

requirement for atomic locking of several locks and by

the co-existence of several branches.

2With the appropriate synchronization it would be possible to
allow the dynamic creation of consumers, but this would further
complicate the code.



3.1 Stick-Model

Although the implementation principles could have

been presented by means of a system of queues and

atomic operations on subsets of these queues, we pre-

fer a problem representation called stick-model which
shortens the presentation and eases understanding.

Each lock in a given program is represented as a ver-

tical stick. As a lock can be either held by a thread or

be free, the stick can be either open or closed at its bot-

tom end. The bottom ends of all sticks are located on

an imaginary horizontal line, called the bottom of the

sticks. Each when branch is represented by a horizon-

tal plate that is speared on exactly those sticks (locks)

that must be acquired. For a lock statement with n

when branches, n plates are speared in random order

on possibly disjoint sets of sticks. The plates are 
at

to indicate the fact that operations at the bottom of

the sticks must happen atomically. The random order

ensures that no branch is preferred.

If a branch needs a single lock, the corresponding

plate is a small disk which has exactly one hole and is

speared on a single stick. For m locks, the plate has

m holes, is speared on m sticks, and by shape avoids

contact with all other sticks.3 The �rst diagram below

only has small plates speared on a single stick. In the

second diagram thread t2 has a branch that needs two

locks; the corresponding plate is speared on two sticks.

Attempting to acquire a lock corresponds to a plate

sliding down the stick. If the stick is open, i.e., if the

lock is free, the plate falls out at the bottom of the

stick and closes it. Closing the bottom of the stick

re
ects acquiring the lock. The thread that closes the

stick then holds the lock. In contrast, a closed stick

prevents the plate from falling out and keeps it on the

stick. Then the plate waits for the lock to become free,

i.e., the stick to open again. The attempt to acquire

the lock blocks. Plates cannot overtake others on their

way to the bottom. Releasing a lock is represented by

opening the bottom of the corresponding stick.

open closed

=) =)

The above diagram shows a single open stick on the

left, representing a free lock. Three when branches

try to acquire this lock, i.e., three plates are sliding

down that stick. Often the bottom-most plate belongs

to the thread that �rst tried to acquire this lock. The

middle part of the diagram shows the transition state

3Ignore the fact that the three-dimensional representation has
its hassles for certain patterns of non-disjoint sets of locks. Note
that the arrangement problems re
ect the programmer's struggle
for a partial ordering of all locks in \one lock at a time" systems
as has been mentioned earlier. The general idea of the model
however, remains valid.

where the bottom-most plate falls out of the open stick,

closing this stick (on the right). While the �rst thread

holds the lock, the other two plates block and wait

for the thread to release the lock. While blocked, the

plates sit on the stick.

If one of the plates of a lock statement with multi-

ple branches actually acquires the desired locks, i.e., if

the corresponding plate falls out, all other plates that

belong to other branches of the same lock statement

are removed from their sticks, since only one branch

can be entered. (Section 3.2 discusses else branches.)

Because of the potential for competing locking re-

quests, we must make sure that only one plate is being

speared on a set of sticks at a time. Thus a thread

�rst reserves the necessary sticks, inserts its plates,

and then gives the sticks up again. Stick operations

of concurrent lock statements that a�ect non-disjoint

sets of sticks thus are serialized.

lock L a then

...

lock L b then

...

end end;

lock L a, L b then

...

end;

t1: La: Lb:

t2:

This basic model, however, is still incomplete. Con-

sider the above situation where a thread t1 (gray

plates) already holds lock L a. Later on, t1 will at-

tempt to acquire L b. In between, another thread t2
(black plate) uses the multiple locking feature and at-

tempts to acquire both L a and L b. Without extension

of the basic model, this would result in a deadlock since

the small plate representing t1 locking L b is speared

later and cannot overtake.

To extend the model to deal with these situations,

we introduce the concept of temporary postponement.

If a plate cannot acquire the desired locks in a certain

time, it postpones its claim, i.e., the plate is removed

from the bundle of sticks and speared again at the top.

The postponed plate lets other plates pass; the oth-

ers get a chance to acquire the locks �rst. It is easy

to see that this extension will solve the above dead-

lock problem. However, the time interval mentioned

above needs tuning to avoid starvation. The central

idea here is to have a waiting time that grows with the

age of a plate. Young plates are postponed frequently,

aging plates show increased \stubbornness" and thus

have more patience before giving up. When we assume

that all locks will eventually be released, the oldest

plate certainly will succeed. Stubbornness is similar to

the concept of aging found in several operating system

scheduling policies, see for example [14]. In section 3.6

we formally prove the absence of starvation.

3.2 Implementation of Else Branches

The semantics of the lock statement dictate that the

else branch is selected if there is no when branch for



which the necessary locks can be acquired. There is

some degree of freedom for the implementation.

From three di�erent strategies that come to mind,

the �rst one is ruled out because it may result in star-

vation, the second one is ruled out because it slightly

favors the else branch. Nevertheless, all three 
avors

are interesting.

Powertry instantly decides which branch to select. If

all desired locks of a when branch are not currently

held by other threads they are acquired immediately.

Thus, powertry ignores the fact that other threads

might block on a lock statement for (some of) the same

locks. If at least one of the locks of all when branches

is held, a lock statement with powertry semantics im-

mediately executes the else branch.

In the stick-model, one plate is inserted at the bot-

tom of the sticks for each branch. This is equivalent to

plates having the \power" to slide through all earlier

plates. If none of the plates can fall out of the sticks,

the else branch is selected and the plates are removed.

Powertry is ruled out because it may result in star-

vation: Powertry ignores waiting threads in a situation

where one thread executes a lock statement on a cer-

tain lock and a competing thread repeatedly uses a

lock statement with an else branch inside of a loop to

acquire the same lock. The �rst thread might starve.

Weaktry. Similar to powertry, weaktry instantly de-

cides whether to execute the else branch. In con-

trast to the former, weaktry respects other threads that
block on a lock statement for (some of) the same locks.

Therefore, weaktry enters the else branch if one of two

conditions is true for each plate: (1) at least one of the

desired locks is held by another thread or (2) another

thread already waits for one of the desired locks.

In the stick-model, for each branch (in random or-

der) a plate is speared at the top of the bundle of sticks.

If one plate can instantly slide through the bottom

of the sticks, the locks are acquired. If otherwise all

falling plates are stopped either by a closed stick or

by another waiting plate that is already sitting on at

least one of the relevant sticks, then the else branch is

selected and the plates are removed.

Due to (2) a lock statement will enter the else

branch even when all locks needed for a branch are

free, but there is another thread already waiting for

them. Hence, the disadvantage of weaktry is that the

else branch is selected even if there is a when branch

that might get the desired locks soon.

Blocktry. In contrast to the two other strategies,

blocktry might block when called, it may even select

the else branch after a pause. Whereas weaktry imme-

diately selects the else branch in presence of a di�er-

ent thread blocking on some of the same locks, blocktry
blocks until (1) occurs for all branches. I.e., only if at

least one lock in each when branch is actually held by

a di�erent thread, the else branch is selected.

In the stick-model, blocktry is similar to weaktry.
A falling plate is stopped by a waiting plate that is

already sitting on at least one of the relevant sticks. If

for all branches at least one lock is actually held by a

di�erent thread, i.e., if there is at least one closed stick

for each plate, then the else branch is selected and all

plates are removed. If on the other hand there is at

least one plate that could acquire the necessary locks

if other plates waiting below give up, all plates remain

on the sticks.

Both weaktry and blocktry properly implement the

semantics of the lock statement. In addition to being

less biased towards selecting the else branch, another

reason for using blocktry in our implementation is that

weaktry behavior can be emulated with blocktry.4

3.3 Conditional Locks

Until now we have only discussed the implementation

of the multilock statement when standard locks are

used, i.e., locks that can be acquired by a thread as

long as no other thread already acquired it.5 However,

in some of our examples above we used so called condi-

tional locks, i.e. locks that can only be acquired when

some additional condition is true. For example, the

queues in section 2.2 had to be not empty before they

were locked for a dequeue operation.

At �rst glance, conditional locks seem to be an ex-

tension of standard locks that are quite complicated

to implement. However, they are not since they can

easily be handled with a small extension of the same

locking algorithm and �t well into the stick-model.

To understand the relationship between standard

locks and conditional locks, consider a blocking queue.

A skeleton implementation is provided below.

There are three locks used in the implementation,

two of which are conditional locks. The queue itself

(the main lock) can be locked unconditionally by a

thread, thus preventing all other threads from access-

ing it. In addition, the queue can be locked under the

condition that the queue is empty or not empty.

1class QUEUEfTg < $LOCK, $QUEUEfTg is

2-- the number of elements in the queue

3attr size:INT;

4-- dequeue blocks a thread as long as the queue is

5-- empty or locked by another thread.

6-- While dequeuing, the queue is locked.

7dequeue:T is

8lock not empty then

9t::=queue elements[size-1];

10size:=size-1;

11return t;

12end;

13end;

14-- enqueue blocks a thread as long as the queue is

15-- locked by some other thread. While enqueuing,

16-- the queue is locked.
17enqueue(e:T) is

18lock self then

4For the emulation use two threads: The �rst thread has the
original lock statement, without the else branch. The second
thread has the original else branch guarded by a new lock. The
threads must be initiated in order. One thread must be termi-
nated if the other enters a branch.

5A thread can acquire the same lock multiple times, an ap-
proach also used in Java.



19queue elements[size]:=t;

20size:=size+1;

21end;

22end;

23-- the objects returned by the following methods can

24-- only be locked if the queue is empty (non empty),

25-- and locking it will also lock the queue.

26empty:$LOCK;

27not empty:$LOCK;

28end;

The essential aspect to note is that the state of the

queue (and hence the acquirability of the conditional

locks) can only change while the queue is already

locked. It can only change during enqueue (lines 19{

20) and dequeue (lines 9{10); and when it is changed

it is inside a lock statement.6

The following table shows the detailed conditions

that must be ful�lled to acquire each of the three types

of locks that are involved in the queue implementation:

lock Condition

queue (queue not locked) or (queue locked by

same thread)

not empty ((queue not locked) or (queue locked by

same thread)) and (queue not empty)
empty ((queue not locked) or (queue locked

by same thread)) and (queue empty)

Since the condition that must hold for standard locks

is a part of the conditions of the conditional locks, both

types of locks can be handled in the same way. The

additional condition needs only be checked if the other

conditions must be checked anyhow.

The remaining question is how the stick-model has

to be extended to work with conditional locks. It turns

out that there is a natural extension to this model:

� All locks that lock the same object share the

same stick. In our case the objects returned by

not empty and empty will be speared on the same

stick as the queue itself.

� Each plate has its own view of the stick end. The

locks whose condition evaluates to true see an

open stick, while others see a closed stick.

� A lock whose condition evaluates to false is invis-

ible and its plate can be surpassed by any other

plate whose condition evaluates to true.

How do those changes a�ect the semantics of the stick-

model if only standard locks are present? In fact, they

do not change it at all: The conditions of all plates

speared on a stick evaluate to either true or false. It

is not possible that some conditions evaluate to true

while others evaluate to false, so all plates see either

an open stick or a closed one. In either case no plate

can pass in front of another one, so the order of the

plates does not change. See [5] for details.

The following discussion of the algorithm assumes

that there are no conditional locks and that a stick

6This is a mandatory condition for all types of conditional
locks that can be handled by multilock: A conditional lock c
that belongs to a main lock m may only change its state if m
has already been locked.

is either open for all locks or closed for all of them.

However, if one tests the openness of the sticks with

respect to each single lock, we immediately get the

algorithm for conditional locks.

3.4 Algorithm

In this section we �rst discuss a pseudo-code notation

of the locking algorithm for lock statements without

else branches. Then we show the corresponding re-

lease of locks. To ease the presentation, the code is

simpli�ed; the complete code can be found in [13].

Finally, we show that by simply adding a few lines

of code, the locking routine can be extended to handle

else branches with blocktry semantics as well.

Locking. A thread executing a lock statement calls

multilock which returns the branch number to be ex-

ecuted. In general, multilock does not return immedi-

ately but blocks until the necessary locks can be ac-

quired. The �rst loop (lines 2{7) spears a plate for

each branch and queues a change event for it. This

event causes the plate to be considered in the second

loop (lines 8{32).

The second loop loops until the locks have been

acquired, i.e., the sticks are closed (line 13{17). If a

plate receives a timer event (lines 19{21), this plate

propagates the timer event to the plates immediately

above itself and moves itself to the top. In case of

a change event, the status of (some of) the locks has

been changed. If the sticks are open, the plate has

a chance to acquire the locks (lines 13{18). We only

have to check in line 13 that there is no other plate

below already waiting for the locks. Then the locks are

acquired, the sticks are closed, all plates belonging to

the lock statement are removed, and multilock returns.
Otherwise the timer is started again with a new

value that depends on the age of the plate. The older a

plate is, the longer it takes before the alarm timer rings;

this implements the stubbornness of aging plates.

1multilock is

2loop over all branches in random order

3reserve sticks;

4make plate; spear it;

5queue change event for this plate;

6give up sticks;

7end;

8loop

9wait for event;

10with event plate do

11reserve sticks;

12if all sticks open then

13if not other plate below then

14close stick ends;

15give up sticks;

16remove plates of all branches;

17return number of branch to be executed;

18end;

19elsif event = timer call then

20queue wake-up event for plate above;

21move plate to top;

29end;

30give up sticks;



31start timer(f(age))

32end end end; -- multilock

Whenever a thread is active inside the body of multi-
lock it must reserve all the sticks its plate is speared

on. This is necessary to avoid race conditions between

two threads attempting to acquire the same locks. To

avoid potential deadlocks, each thread must reserve the

sticks according to the same global order.

Releasing. The release of locks held by a thread is

straightforward: After reserving the sticks, the thread

wakes up the lowest plate on each stick, opens the

sticks, and gives them up.

33endlock is

34reserve sticks;

35queue wake-up event for lowest plate;

36open stick ends;

37give up sticks;

38end; -- endlock

Else Branch. The multilock code needs only a slight
extension after line 21 to become an implementation

of the blocktry semantics for else branches. Each plate

has an execelse 
ag that is initially false. The execelse

ag is set to true, a counter is incremented. If this

counter reaches the number of plates of the current

lock statement, each plate has seen at least one lock

help by another thread, the else branch is selected.

22if not execelse then

23execelse:=true; elsecounter:=elsecounter+1;

24if elsecounter = number of plates then

25give up sticks;

26remove plates of all branches;

27return number of else branch

28end end; -- not execelse

3.5 Distributed Implementation

The above algorithm is easy to implement on a shared

memory machine. This section presents two implemen-

tations on distributed memory parallel systems. Both

approaches are based on message passing. The �rst

one uses a centralized lock server, while the second

one implements a truly distributed locking algorithm.

Centralized Lock Server. The centralized lock

server uses multilock. Whereas in the shared mem-

ory implementation the locking thread itself handles

its plates and the operations on the stick bundle, here

locking and stick operations are handled by di�erent

threads communicating by message passing.

Each thread attempting to lock sends a list of the

desired locks to the server, which creates the plates and

spears them on the correct sticks. It noti�es the thread

as soon as its plate slips through all the sticks (acquires

all locks), or of an eventual failure (else). The holding

thread noti�es the server upon release.

Independent of the number of locks to be acquired

atomically, the protocol requires three messages be-

tween lock server and locking thread for lock state-

ments without else branch and two or three messages

for lock statements with else branch (\need lock",

\you got the following locks" or \execute else branch",

\locks released"). Therefore, with an increasing aver-

age number of locks that are acquired at once, the per

lock cost e�ciency of a centralized lock server grows

and its bandwidth is increased.

Distributed Lock Server. The distributed lock

server also uses the algorithm given in 3.4. Whereas all

sticks are handled by a single thread above, the sticks

are now considered to be resources which must be col-

lected by threads entering a multilock before operating

on them. To be more speci�c: Sticks are implemented

as token objects which are sent around between the

threads trying to reserve them. Stick objects store in-

formation about all plates speared on them. Plates, on

the other hand, stay connected and are handled solely

by the creating thread.

A straightforward implementation associates a

reservation handling thread with each stick. Then

sticks.reserve sends messages to all necessary reserva-

tion handlers that store a list of pending reservations

and return the desired stick object. When the stick

object is sent back to the handler, the next reserving

thread is satis�ed. Although conceptually one reserva-

tion handler per stick is required, a simple optimization

implements one handler per node which is capable of

serving several locks.

Whereas reservation handlers are necessary for mes-

sage passing systems that do not o�er broadcasting

primitives, handlers can be avoided when broadcasting

is provided. Removal of reservation handlers requires

the list of pending reservations to become part of the

stick objects. When sticks.reserve broadcasts reserva-

tion requests, all threads except the current owner of a

stick ignore the message. The owner adds the request

to the reservation list of the stick. Note that the imple-

mentation must make sure that no reservation request

is lost, especially while sending a stick from one thread

to the next. To avoid deadlocks, each thread must re-

serve all sticks separately and may not have more than

one pending reservation request.

This truly distributed implementation avoids the

bottleneck caused by the centralized lock server. How-

ever, the number of messages increases signi�cantly.

For each iteration two messages are sent to reserve a

stick. The total number of messages is proportional to

the number of locks desired simultaneously.

3.6 Fairness and Starvation

Fairness and starvation are other aspects related to

performance. Since locks are non-preemptive resources

any discussion on fairness and starvation must assume

that all threads will release locks. If a lock is held

forever, other threads waiting for this lock will starve.

An implementation can only be fair and starvation-free

if there is an upper bound L of the lock holding time.

The algorithm described above implements a fair be-

havior for multi-branch lock statements with optional

else branch and guarantees that no thread will starve,

as long as the locks eventually become available. It



also assumes that all plates that cannot get their locks

because another thread that locked some of them waits

for some more locks, have been temporarily removed.

This is necessary as otherwise there may be no upper

bound L if the above algorithm is used.

Since the waiting time w1 of a plate p1 attempting to

acquire l locks grows with the age �1 of it, w1 = f(�1)

will eventually become larger than L. When waiting at

the bottom of the sticks, the plate then will attain the

locks, in the worst case after a waiting time of L. (All

locks that p1 waits for will be free after at most time

L. No other plate can acquire those locks, since p1 is

at the bottom of the sticks and prevents other plates

from falling through.) Hence we must prove that the

plate will eventually reach the bottom of the sticks and
still wait for L before its alarm timer rings. This is the

argument: assume that plate p1 is the top-most plate.

This situation will occur immediately after p1's alarm

timer has rung. From all the plates below, the waiting

time w2 = f(�2) of the second oldest plate determines

how long it will take until p1 reaches the bottom of the

sticks. All younger plates will either get their locks

or jump on top of p1 after at most f(�2). Thus, we

can ignore all plates except for p1 and p2. At the time

p1 reaches the bottom of the sticks, it will stay there

for at least w1 � w2. For the older plate to remain at

the bottom longer than L, we need w1 � w2 > L or

respectively f(�1) � f(�2) > L. This requirement is

eventually met for all functions f() that have a growing

derivative.7 Our implementation uses f(x) = x2.

4 Performance Considerations

The question is whether adding multiple locks in the

language results in unbearable performance losses in

the run-time system. The answer is given with the

above outline of implementation approaches: The run-

time system is not more costly than a hand implemen-

tation of the multiple locking functionality would be.

On the other hand, if the programmer decides not to

use the multiple locking facility but use nested locking

statements instead, locking is automatically reduced to

a standard algorithm.

The run-time cost of the locking algorithm depends

on the number of iterations (postponements) each

plate faces until the thread �nally acquires the locks.

For our measurements, we test an aging function

f(x) = a � xb, although our standard implementation

of multilock is based on f(x) = x2 for reasons of sim-

plicity. Parameter a grows logarithmically from 10�9

to 10, b is taken from [1:1; 2:4] in increments of 0.1.

The graph below uses log(a) for the axis to the

right, and b for the left axis. The vertical axis gives

the number of timer restarts caused by our benchmark

program. The number of timer restarts is an upper

bound of the number of postponements. The surface

is smoothed out by a spline function.

7f() grows fast enough so that for a constant � = �1��2 the
expression f(�1)� f(�2) is growing.

The measurement is based on a benchmark program

implemented for a thread package on Solaris 2.5.1. The

tested program has 20 threads each of which locks 1 to

3 locks, randomly selected out of a total of 40 locks, in

each of 6 nested lock statements. The nested locking

is iterated 6 times. Other than that, the threads do no

real work.
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Optimization. By reducing the number of timer

alarms the run-time system performance can be im-

proved. This is especially signi�cant in the distributed

implementation since stick reservation requires sending

of messages.

For simplicity of presentation, a plate's alarm timer

was restarted in 3.4 whenever it rang. However, it is

su�cient to start the timer only when (a) the plate is

at the bottom of at least one of its sticks and (b) there

is another plate lying over it.

For the optimizations (a)+(b) our measurements re-

sulted in a surface that is very similarly shaped but is

situated below the one shown in the above graph. The

2D graph below is a cross section for b = 2:0, i.e. with

an aging function f(x) = a � x2. For other values of b

we get similar diagrams.
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The two curves give the actual number of timer restarts

for an unoptimized multilock (upper line) and for the

optimized version (lower line). The rough edges are

caused by the fact that random numbers are used both

in the benchmark program to select locks and in mul-



tilock to determine the order of newly speared plates.

Note that the horizontal a-axis is in reverse order to

ease comparison with the 3D graph. The number of

plate jumps (not shown) is reduced even more signi�-

cantly.

The optimization does not a�ect the correctness

considerations. This can easily be proven by extend-

ing the list of locks in every branch by a unique new

lock. By construction the newly introduced locks are

always free when needed. Therefore, the new locks do

not change the blocking behavior. Moreover, immedi-

ate timer restarts and selective timer restarts cannot

be distinguished since on the newly introduced stick

there is only one plate which is per de�nition always

at the bottom of the stick.

5 Related Work

Since there is related work in four di�erent areas, we

structure the following discussion accordingly.

Thread-based O-O Languages. Several paral-

lel object-oriented languages or systems, for example

Amber [4], Java [6], MeldC [7], �C++ [2, 3], and SR

[1] are available that are based on thread parallelism.

Although all o�er basic locking mechanisms of some

kind, none of them o�ers atomic locking of multiple

locks and multiple branches. To our knowledge fair-

ness is not addressed in any of them.8 Hence, all the

languages mentioned (and several others) could be im-

proved by a multi-branch locking of several locks.

Operating Systems. Deadlocks have been an im-

portant topic of operating system research for several

decades. [15] gives an overview of the literature. Com-

pared to operating systems, a run-time system has dif-

ferent intentions. Since neither deadlock avoidance and

detection nor usage quotas are of interest, we rely on

the programmer to make his application fair and dead-

lock free. However, by providing an atomic locking

mechanism for several locks, pSather helps in solving

this problem.

Database Systems. In general, optimistic locking

as used in database systems is not desirable in thread-

based languages because the critical operations are no

simple update operations. If they are, reader/writer

protocols can be used, which are o�ered in pSather

and are handled by the lock manager in a fair and

starvation-free way.

Software Design Patterns. Recently, design pat-

tern researchers focus their attention on parallel pat-

terns [11]. However, the locking statement presented

here is not yet identi�ed as a pattern although it neatly

extends previous work, e.g. [9].

6 Conclusion

This locking mechanism that allows atomic locking of

several locks improves the programmer's productivity

8In Java there are situations where the programmer cannot
even control the order in which locks are re-acquired.

by reducing or even eliminating deadlock considera-

tions. The starvation-free and fair implementation in

the run-time system is e�cient on both shared mem-

ory and distributed parallel systems. The presented

constructs and their implementation can be adopted

by other languages.
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