
CuPit-2: A Portable Parallel Programming Language
for Artificial Neural Networks

Holger Hopp, Lutz Prechelt (hoppjprechelt@ira.uka.de)
Universität Karlsruhe, Fakult¨at für Informatik, 76128 Karlsruhe, Germany

ABSTRACT

CuPit-2 is a programming language specifically designed to express neural network learn-
ing algorithms. It provides most of the flexibility of general-purpose languages like C/C++, but
results in much clearer and more elegant programs due to higher expressiveness, in particular
for algorithms that change the network topology dynamically (constructive algorithms, pruning
algorithms). Furthermore,CuPit-2 programs can be compiled into efficient code for parallel ma-
chines; no changes are required in the source program. This article presents a description of the
language constructs and reports performance results for an implementation ofCuPit-2 on sym-
metric multiprocessors (SMPs).

INTRODUCTION

For researchers in neural network learning algorithms, there are usually two possibilities when it
comes to implementing and running an algorithm. They can either adapt or extend a preprogrammed
simulator (such as SNNS [13], Xerion [10], NeuroGraph [12], NeuralWorks [8] etc.) or use a general-
purpose programming language (such as C or C++) to create a complete implementation by hand.
Simulators have more powerful interactive facilities than hand-written implementations but often lack
flexibility and extensibility. In particular, most simulators do not provide good support for algorithms
that change the network topology during learning. Hence, neural network researchers often end up
with hand-implementations. Somewhat in between these two approaches are libraries such as MUME
[4] or Sesame [7] that provide neural network building blocks for C/C++. Just like simulators, such
libraries do not seem to be widely used in neural network research.
On a parallel computer things become even worse. A few parallel implementations of simulators exist,
but most are very restricted or unreliable. There are also high-level parallel languages (e.g. Concurrent
Aggregates [2]) in which a hand-implementation would be about as easy as in plain C/C++, but they
cannot yet be translated into sufficiently efficient parallel code. Lower level parallel programming
platforms such as C or C++ with a message-passing or threads library require the programmer to
implement data distribution and thread management. Such programs are non-portable and difficult
to design, to debug, to understand, to change, and to optimize. Parallel implementations of neural
network building blocks provide some kind of compromise between these properties but inherit all of
the respective problems.
To simplify the implementation of neural network algorithms for sequential and parallel platforms,
we present the programming languageCuPit-2. CuPit-2 describes networks in an object-centered
way using special object types “connection”, “node” and “network”. It has special operations for
manipulating network topology and allows for parallel operations by parallel procedure calls at the
network, node group, and connection level.
Compared to low-level parallel programming languages,CuPit-2 has higher expressiveness, clarity,
and ease of programming.
Compared to high-level parallel languages it will also result in more efficient code. Due to its built-in
domain model, aCuPit-2 compiler knows enough about the behavior of the user programs to apply
optimizations unavailable to compilers for general-purpose parallel languages.



Compared to sequential C/C++, CuPit-2 still has the advantages of higher expressiveness and clarity
but may result in less efficient code.CuPit-2 programs can be ported to parallel machines without
change, though.
Compared to pre-programmed simulators,CuPit-2 is more flexible, while the relative efficiency de-
pends on the application.
To obtain similar advantages, various proposals have been made for network description languages
[1, 5, 6, 11]. Most of these cover only static network topologies and are not full programming lan-
guages, thus still exhibit most of the problems of hand-written implementations. Even the description
languages that represent or are integrated with a full programming language do not provide constructs
for dynamic changes of network topology.
In the remainder of this article we informally describeCuPit-2 language constructs and present per-
formance results obtained with a parallel implementation on symmetric multiprocessor machines
(SMPs).

LANGUAGE OVERVIEW

The programming languageCuPit-2 [3] is based on the observation that neural algorithms predom-
inantly execute local operations (on nodes or connections), reductions (e. g. sum over all weighted
incoming connections) and broadcasts (e. g. apply a global parameter to all nodes). Operations can be
described on local objects (connections, nodes, network replicates) and can be performed groupwise
(connections of a node, nodes of a node group, replicates of a network, or subsets of any of these).
This leads to three nested levels of parallelism: connection parallelism, node parallelism and exam-
ple parallelism. There is usually no other form of parallelism in neural algorithms, such that we can
restrict parallelism to the above three levels without loss of generality.
CuPit-2 is a procedural, object-centered language; there are object types and associated operations
but no inheritance or polymorphism. The identification of network elements is based on three special
categories of object types: connection, node, and network types. A simplified view of theCuPit-2
network model is shown in the example in Figure 1.

In order to support constructive neural algo-

node group

network

OUT interface

node

IN interface

connection

Figure 1: Important terms of theCuPit-2 network
model

rithms, special operations are included for cre-
ation and deletion of network, node, and con-
nection objects.
This approach makes a wealth of information
readily available to the compiler that would be
difficult to extract from a similar program in
a normal parallel programming language. We
use this information to generate efficient par-
allel and sequential code.
The rest of this section will describe the main
parts of aCuPit-2 program consisting of con-
nection, node, and network descriptions (in-
cluding operations) and a main program that
controls the algorithm.

Connections

Let us start with an example definition of a connection type that handles weight multiplication and
weight pruning. The following declaration defines a connection typeWeight for connecting two
nodes of typeSigmoidNode . More precisely: anOUTinterface of aSigmoidNode with an IN
interface of another (or the same)SigmoidNode . The node typeSigmoidNode and its interfaces
will be introduced below.



Connections are always directed, i. e. , there are no connectionsbetweenA and B, butfrom A to B,
so the compiler can co-locate connection data with node data on the processors of a parallel machine.
Nevertheless, data can always be sent along a connection in both directions.

The Weight connection object is a structureTYPE Weight IS CONNECTION
FROM SigmoidNode OUT out;
TO SigmoidNode IN in;
Real weight := 0.0, delta := 0.0;

Real FUNCTION weightMultOutput () IS
RETURN ME.weight * out.data;

END FUNCTION;

PROCEDURE prune (Real CONST threshold) IS
IF abs(ME.weight) < threshold

THEN REPLICATE ME INTO 0; (* self-delete *)
END;

END PROCEDURE;

(* further connection procedures left out *)
END TYPE;

of two data elementsweight and delta of
the built-in typeReal . Associated with this
type are its object functions and procedures. The
function weightMultOutput yields the
product of theweight with thedata element
of the connectedFROMnode (namedout , be-
cause it is the out interface of the node).ME
always designates the object for which the cur-
rent procedure is being called. Theprune pro-
cedure implements a conditional self-deletion of
the connection; the same could be done for

nodes including all their connections. Both routines can only be called from nodes that have con-
nections of typeWeight attached, as in the following node type example.

Nodes

This is an example definition of a node type that handles forward propagation and connection pruning.
The node typeSigmoidNode has two data el-TYPE SigmoidNode IS NODE

IN Weight in;
OUT Weight out;
Real data, bias;

PROCEDURE forwardHidden () IS
Real VAR inData;
REDUCTION ME.in[].weightMultOutput():rsum

INTO inData;
ME.data := activation (inData + ME.bias);

END PROCEDURE;

PROCEDURE prune (Real CONST threshold) IS
ME.in[].prune (threshold);

END PROCEDURE;

(* further node procedures left out *)
END TYPE;

ements,data andbias , and twoconnection
interfaces: in for incoming connections of the
above typeWeight andout for outgoing con-
nections. Node procedures operate on all con-
nections attached to an interface at once. For in-
stance the node procedureprune calls the con-
nection procedureprune on all connections at-
tached to thein interface of the node. The[]
notation stands for“all” and designates parallel
calls. The connection procedureprune is ex-
ecuted in asynchronous parallel fashion for ev-
ery connection. This call realizes nested paral-

lelism, as the node procedureprune itself may be executed for several nodes in parallel as well.
The REDUCTIONstatement in the node procedureforwardHidden combines the results of
weightMultOutput of all connections attached to thein interface using the reduction operator
rsum , which is defined by the user as

The result is written into the variableinDataReal REDUCTION rsum NEUTRAL 0.0 IS
RETURN (ME + YOU);

END REDUCTION; and will be theNEUTRALvalue of the reduction
operator if there are no connections. The order

of reduction operations (here: summations) is not explicitly defined. Arbitrary reduction operators on
arbitrary data types can be defined in the above manner and will be translated into efficient parallel
implementations.
Theactivation function called above is a so-calledfree subroutine: it is not attached to any object
type and can be called from anywhere.

Networks

Now we will construct a network ofSigmoidNode s and theirWeight connections:



TYPE Layer IS GROUP OF SigmoidNode END;

Real IO xIn, xOut; (* I/O-areas, managed externally *)

TYPE Mlp IS NETWORK
Layer inL, hidL, outL; (* three groups of nodes *)
Real totError; (* total sum squared error *)

PROCEDURE createNet (Int CONST inputs, hidden, outputs) IS
EXTEND ME.inL BY inputs; (* create input node group *)
EXTEND ME.hidL BY hidden; (* create hidden node group *)
EXTEND ME.outL BY outputs; (* create output node group *)
CONNECT ME.inL[].out TO ME.hidL[].in; (* create all input-to-hidden con. *)
CONNECT ME.hidL[].out TO ME.outL[].in; (* create all hidden-to-output con. *)

END;

PROCEDURE trainEpoch (Int CONST nrOfExamples, repl) IS
Int VAR i := 0; (* start example index *)
Bool VAR done := false; (* termination indicator *)
ME.out[].resetErrors(); (* clear output node error sums *)
REPEAT

getExamples (xIn, xOut, repl, nrOfExamples, i, INDEX, done);
ME.inL[].data <-- xIn; (* write input & output coeffs. *)
ME.outL[].data <-- xOut; (* into appropriate nodes *)
ME.hidL[].forwardHidden (); (* begin forward pass *)
ME.outL[].processOutput (); (* forward + backward *)
ME.hidL[].backwardHidden (); (* finish backward pass *)

UNTIL done END REPEAT;
END PROCEDURE;

END TYPE;

The network typeMlp is a simple three layer perceptron consisting of the node groupsinL, hidL,
outL and a floating point valuetotError . A node group is a dynamic, ordered set of nodes. The
createNet procedure creates the nodes in the groups and the connections between them. Similar
operations could also be performed later during the program run. ThetrainEpoch procedure
executes the forward and backward pass through the network for all input/output example pairs.
The individual data values for the example are brought into the network by the<-- operations via
so-called I/O-areas. This mechanism is required for having a defined I/O memory layout, but will not
be described here.

Main Program

The following presents a partial main program:

Mlp VAR net; (* THE NETWORK *)

PROCEDURE program () IS
Int VAR epochNr := 0; Real VAR error;
net[].createNet (inputs, hidden, outputs);
REPLICATE net INTO 1...maxReplicates;
REPEAT

epochNr += 1;
net[].trainEpoch (nrOfExamples, MAXINDEX(net)+1);
MERGE net; (* sum weight changes from all replicates *)
net[].adapt; (* modify weights *)
net[].computeTotalError(); (* sum errors over output nodes *)
error := net[0].totError;

UNTIL (error <= stoperror) OR (epochNr >= maxEpochs) END REPEAT;
REPLICATE net INTO 1; (* merge, then remove replicates *)
net[].fwrite ("TrainedNetFilename.net", ... ); (* store net *)

END PROCEDURE;

The statementREPLICATE net INTO 1...maxReplicates requests network replication in
order to exploit parallelism over examples. The compiler or run time system can choose how many
replicates to actually use for fastest execution; any number in the range 1. . .maxReplicates is
allowed.
During training, the replicates will diverge in their data values but not in their network topology, since
topology modifications are forbidden while a network is replicated. To synchronize data in replicates,



the program callsMERGE net, which executes type-specific user-defined merge operations in all
objects. In the above program, merging is only required for thedelta values in the connections just
before the weight update step.

Merging is realized by including the definition shown besides inMERGE IS
ME.delta += YOU.delta;

END MERGE; the typeWeight . All other management of network replicates
is implicit and provided by the compiler. To perform topology

changes on the network, one must reunite the replicates into just one network by the callREPLICATE
net INTO 1 , which also performs a merge first.

Other Features

Some topology modification statements are not shown in the above program:DISCONNECT(inverse
of CONNECT), node self-cloning (e. g.REPLICATE ME INTO 3, which triplicates the node and all
its connections), node self-deletion (REPLICATE ME INTO 0), and node deletion using negative
arguments toEXTEND.
Furthermore, a powerful library provides operations for input and output of complete networks using
SNNS [13] style network files.

IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

We have implemented prototype compilers for the massively parallel MasPar MP-1/MP-2, for se-
quential computers, and for symmetric multiprocessors (SMP). We focus on the sequential and SMP
compilers here.

For simple feed-forward algorithms
Example parallelism Node parallelism

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

Figure 2: SMP performance on a large network

Example parallelism Node parallelism

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

Figure 3: SMP performance on a small network

(backprop, rprop) the performance
of sequential code is a little better
than the SNNS simulator [13].
CuPit-2 is about 10% to 100% fast-
er than SNNS on Sun SuperSPARC
or HyperSPARC, and about the
same speed (�5%) on DEC Alpha
systems. The performance gain in-
creases for algorithms performing
connection pruning.
In contrast to the MasPar compiler,
the implementation on SMPs never
uses connection parallelism, but
makes use of as much example par-
allelism (network replicates) as al-
lowed. If there is more than one
processor per network replicate,
node parallelism will be used. Our
results show performance variation
depending on the size of the net-
work: Example parallelism is bad

for networks larger than the cache, see Figure 2. The figure shows RPROP [9] performance expressed
in “Million Connection Updates Per Second” (MCUPS) for a large network (nettalk, 203+120+26
nodes, 27480 connections, 200 patterns). The poor example-parallel performance on the Hyper-
SPARC system occurs because this network does not fit in the 256KB local processor cache. Using
only node parallelism is much better in this case.



Figure 3 shows RPROP performance for a small network (vowel recognition, 9+20+3 nodes, 240
connections, 5453 patterns). In this case the network is too small to use node parallelism efficiently,
but example parallelism is quite efficient.

CONCLUSION

CuPit-2 offers several advantages as a platform for neural learning algorithm research. It features
high expressiveness for typical neural network constructs resulting in more readable programs than
general purpose languages such as C/C++. The expressiveness is particularly high for algorithms
using dynamic network topologies due to special constructs for topology changes. As the above
measurements show,CuPit-2 run time performance is good. All of these advantages carry over
to parallel implementations, asCuPit-2 compiles into efficient parallel code without source code
changes. Our performance results suggestCuPit-2 as a basis for small-scale parallelism in neural
networks research.
However,CuPit-2 is no panacea. If the algorithm is not effectively parallelizable at all or if the
parallelism is made non-obvious in theCuPit-2 program, the compiler will not be able to produce
efficient parallel code. Similarly, if the problem at hand is too large or too small for the given machine,
run time performance suffers. On the other hand, it may sometimes be worthwhile to useCuPit-2
just for its high expressiveness even if no use of parallel machines is planned.
More information on the language and its implementations can be found at theCuPit web page
http://wwwipd.ira.uka.de/˜hopp/cupit.html .

REFERENCES

[1] N. Almássy. Ein Compiler f¨ur CONDELA-III. Master’s thesis, Institut f¨ur praktische Informatik,
TU Wien, Austria, Feb. 1990.

[2] A. A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel Programs.
MIT Press Cambridge, Massachusetts, London, England, 1993.

[3] H. Hopp and L. Prechelt. CuPit-2: A parallel language for neural algorithms: Language refer-
ence and tutorial. TR 4/97, Univ. Karlsruhe, Fakult¨at für Informatik, Germany, Mar. 1997.

[4] M. Jabri, E. Tinker, and L. Leerink. MUME: An environment for multi-net and multi-
architectures neural simulation. Technical report, System Engineering and Design Automation
Laboratory, University of Sydney, NSW 2006, Australia, 1993.

[5] G. Kock and N. Serbedzija. Artificial neural networks: From compact descriptions to C++. In
Proceedings of the International Conference on Artificial Neural Networks, 1994.

[6] R. R. Leighton. The Aspirin/MIGRAINES neural network software, user’s manual, release v6.0.
Technical Report MP-91W00050, MITRE Corp., Oct. 1999.

[7] A. Linden and C. Tietz. Combining multiple neural network paradigms and applications using
SESAME. InProc. of the Intl. Joint Conf. on Neural Networks, Baltimore, June 1992. IEEE.

[8] NeuralWorks Reference Guide, NeuralWare Inc. http://www.neuralware.com/.
[9] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The

RPROP algorithm. InProc. of the IEEE Intl. Conf. on Neural Networks, pages 586–591, San
Francisco, CA, Apr. 1993.

[10] D. van Camp. A users guide for the Xerion neural network simulator version 3.1. Technical
report, Department of Computer Science, University of Toronto, Toronto, Canada, May 1993.

[11] A. Weitzenfeld. NSL — neural simulation language. InProc. of the Intl. Workshop on ANN,
number 930 in LNCS, pages 683–688, Malaga-Torremolinos, Spain, June 1995. Springer.

[12] P. Wilke and C. Jacob. The NeuroGraph neural network simulator. InProceedings of MAS-
COTS’93, San Diego, CA, 1993.

[13] A. Zell, G. Mamier, et al. SNNS User Manual, Version 4.1. Technical Report 6/95, Institut f¨ur
parallele und verteilte H¨ochstleistungsrechner, Universit¨at Stuttgart, Germany, Nov. 1995.


