
JavaParty { Transparent Remote Objects in Java

Michael Philippsen and Matthias Zenger

University of Karlsruhe, Germany

phlipp@ira.uka.de

In: Concurrency: Practice & Experience, Volume 9, Number 11, pp. 1225-1242, November 1997.

Abstract

Java's threads o�er appropriate means either for parallel

programming of SMPs or as target constructs when compil-

ing add-on features (e.g. forall constructs, automatic par-

allelization, etc.)

Unfortunately, Java does not provide elegant and

straightforward mechanisms for parallel programming on

distributed memory machines, like clusters of workstations.

JavaParty transparently adds remote objects to Java

purely by declaration while avoiding disadvantages of ex-

plicit socket communication, the programming overhead of

RMI, and many disadvantages of the message-passing ap-

proach in general. JavaParty is speci�cally targeted to-

wards and implemented on clusters of workstations. It

hence combines Java-like programming and the concepts

of distributed shared memory in heterogeneous networks.

1 Introduction

Among the essential features that made Java [6] popular
are (a) the availability of portable Internet communication
APIs [7], like for example socket communication, and (b)
the fact that threads and synchronization mechanisms are
part of the language [14].

Java's threads allow for portable parallel programming
within the bounds of shared memory; if the hardware of-
fers several processors, (in theory) a threaded application
can gain speed.1 For wide area client-server applications,
the communication libraries o�er a good set of tools for
implementing arbitrary communication protocols.

If the intended protocol can be reduced to method in-
vocations on remote Java objects, then RMI [20] can be
used. With RMI, Java objects that reside on di�erent hosts
can be used in a CORBA-like fashion, i.e., remote object
references provided by a name server are bound to local
variables. Then, methods can be called on those remote
objects. RMI o�ers a rich set of exceptions to deal with
network problems.

Therefore, Java o�ers good support for medium grain
shared memory parallelism and for medium to coarse grain
distributed parallel applications with restricted communi-
cation needs. However, Java does neither o�er any signif-
icant support for cluster computing or workstation-based

1Currently some implementation restrictions apply: On sev-

eral SMP platforms multiple threads are still scheduled to a

single processor, and not all platforms implement pre-emptive

scheduling.

parallel computing nor does it address more involved or
irregular communication needs.

Currently several projects are under way that achieve
increased bandwidth, reduced latency, and better reliabil-
ity within workstation clusters [1, 2, 21]. These projects
will �ll the gaps between desktop SMPs, parallel comput-
ers, and Internet-based meta computing.

A similar gap can be noticed on the software side. With
improved cluster interconnection technology and growing
cluster reliability and availability, Java's current mech-
anisms become insu�cient: Explicit socket communica-
tion is too low-level for comfortable parallel programming.
RMI is too restrictive and its overhead for dealing with net-
work problems is too verbose for a cluster setting. Both
sockets and RMI result in increased program size and thus
reduce programmer productivity and code maintainability.

JavaParty �lls this gap.2 It extends Java as minimally
and transparently as possible with a pre-processor and a
run-time system for distributed parallel programming in
heterogeneous workstation clusters.

Although in principle a JavaParty can include any num-
ber and type of workstations, high network latencies and
low network speeds restrict the usefulness of traditional
networks. Better runtimes can be achieved with special
interconnection hardware.3 Our current JavaParty im-
plementation runs in a ParaStation network [21], where
TCP/IP-like sockets deliver 15 MByte/s for small-packet
point-to-point communication with 3.4 �s latency.

JavaParty is a two purpose platform. It serves as a
programming environment for cluster applications and it
is a basis for computer science research in optimization
techniques to improve locality and reduce communication
time. Several projects are under way that either use the
JavaParty platform or improve it. The projects { some
of which are supported by the DFG, Germany's national
science foundation { include a data-intensive geophysical
application (in cooperation with the Stanford Exploration
Project [3]), a data mining project, real-time vehicle track-
ing in tra�c scenes, and locality optimization and improve-
ment of the underlying communication libraries.

In section 2 we discuss the features of JavaParty. Sec-

2Think of JavaParty as a party of Java virtual machines

cooperating on a common task.
3For the remainder of this paper, we consider workstation-

based parallel computers as a specialization of workstation

clusters.

1

tion 3 compares JavaParty code to code that uses the net-
work API and to code that uses RMI. The fourth section
presents the design and implementation of JavaParty in
some detail. After a look at related work in section 5 we
conclude this paper.

2 JavaParty

A multi-threaded Java program can easily be turned into a
distributed JavaParty program by identifying those classes
and threads that should be spread across the distributed
environment. The programmer indicates this by a newly
introduced class modi�er remote. The new modi�er is the
only extension of Java. Since Java's threads are objects of
a thread class, remote threads can be created as objects
of a remote thread class. There is no need to signi�cantly
re-write or re-organize a given Java program nor does it
grow in size.

JavaParty provides a shared address space, i.e., al-
though objects of remote classes may reside on di�erent
machines their methods and variables (both non-static
and static) can be accessed in the same way as in pure
Java. Since JavaParty hides addressing and communica-
tion mechanisms from the user and handles network excep-
tions internally, no explicit communication protocol needs
to be designed and implemented by the programmer.

The modi�er remote is the only extension of the lan-
guage. We would have loved to even avoid this extension,
but there is no way to transform the basic JDK library
classes into remote classes for the following reasons: We do
not have the source code of the complete JDK; and even
if we had, several classes have quite a lot of native code
that is designed speci�cally for single processor implemen-
tations, e.g., Thread, I/O, Runtime, or System. Upgrading
these classes to transparently implement remote semantics
would require a major redesign of the class libraries and
the Java runtime system. Moreover, JavaParty would no
longer be available on all platforms, since it would di�er
from the standard JDK.

JavaParty is location transparent, i.e., the programmer
does not need to map remote objects and remote threads to
speci�c nodes of the network; compiler and runtime sys-
tem deal with locality and communication optimization.
Objects that are stored locally are used locally at the cost
of a pointer indirection instead of expensive OS communi-
cation overhead.

To achieve location transparency, JavaParty o�ers dis-
tribution strategies that are used when new objects are
created. Distribution strategies are implemented in the
runtime system using the \strategy" design pattern [5];
they can thus be selected and changed at runtime. Com-
piler analysis (or a well-informed programmer) can insert
code that directs the strategy's placement decision.

In addition to distribution strategies for object creation,
the runtime system monitors the interaction of remote ob-
jects and the induced communication paths. If appropri-
ate, the runtime system (or the well-informed program-

mer) schedules object migration to enhance locality. The
runtime system is based on load-balancing and network
partitioning algorithms. Currently replication is not con-
sidered, although it could easily be added, at least for
static variables and methods.

3 JavaParty versus Sockets and RMI

For benchmarking purposes, we implemented some of the
Salishan Problems [4] four times: in sequential Java, in
Java with explicit socket communication, in Java with
RMI, and in JavaParty. Problems include the ordered
computation of all isomers of para�n molecules (without
repetition), a queue simulation of a doctor's o�ce with
multiple doctors, multiple patients and a potentially repli-
cated receptionist, and Hamming's problem. To under-
stand the discussion below, it is not necessary to have a
deep understanding of the problems except that they are
quite irregular and unpredictable and much di�erent from
typical numerical applications. Moreover, we implemented
a multi-threaded version of a geophysical method, called
Veltran or \normal moveout" in Java and in JavaParty.

Code size is the most signi�cant di�erence between the
four program versions.

Java
java sockets RMI

Party

wc -l Salishan 1277 2086 2123 1277
63.3% 66.2%

Veltran 967 { { 967

sdiff Salishan 0 992 969 28
77.7% 75.9% 2.2%

Veltran 0 { { 7
0.7%

Both the sequential Java programs and the JavaParty ver-
sions have the same number of lines, namely 1277 for the
Salishan problems and 967 for Veltran. In contrast, code
size increases by about 63.3% for the versions using sockets
to a total of 2086 lines. It grows by 66.2% on average for
the RMI versions (2123 lines).

The results are even more signi�cant, if the edit distance
is considered, i.e., if we count the number of lines that have
been added, changed, or deleted, see sdiff lines of the
above table.4 These numbers more appropriately re
ect
the amount of work that had to be done to construct a
distributed version from a threaded Java program.

Interestingly, although code sizes are quite similar, it
took more than twice as long to get the socket versions
right than we needed for the RMI versions.

The JavaParty implementation of the Veltran operator
on a four processor SGI PowerChallenge runs only about
twice as long as the corresponding implementation in par-
allel Fortran.

4This information is computed by: sdiff -sb file1.java

file2.java | egrep -c '[<|>]'

2

Since our port of RMI to ParaStation sockets is still
incomplete, we can only give qualitative performance re-
sults that have been measured on standard workstations.
Since JavaParty is currently implemented on top of RMI
(see section 4), we measure similar runtimes for the RMI
versions and the JavaParty versions. However, where lo-
cality can be exploited, JavaParty easily outperforms the
RMI versions. The socket versions are faster for smaller
problem sizes, since RMI su�ers from a signi�cant startup
time and marshaling/unmarshaling of arguments is more
costly than in explicit socket protocols.

The following comparison focuses on program structure,
programming experiences, and performance problems.

� Program Structure and Remote Object Cre-

ation. Because of the shared address space approach
of JavaParty, neither arti�cial separations into client
and server portions nor complex code for creation of
remote objects is needed. This is quite di�erent for
socket and RMI versions.

In general, socket and RMI programs follow the
client/server approach. The programmer has to iden-
tify client portions and server portions and he has to
explicitly allocate them to the underlying machines.

Let us assume that a given threaded Java program
can easily be cut into client and server portions. For
the socket and the RMI versions, one then has to
write at least two di�erent programs, i.e., code for a
server and for the clients. These programs have to
be started manually or by an additional script on the
various hosts. Separation into two or more programs
causes a slight overhead in total code size.

If the two portions are not obvious, use of sockets or
RMI requires more work, since there is no straightfor-
ward way to create remote objects. For the socket so-
lution, the communication protocol must be extended
with commands that cause the recipient on a remote
machine to create a new object on that machine by
calling the appropriate constructor. Similar for RMI:
on the remote machine an additional remote object
is needed that o�ers a method that itself calls a con-
structor of the desired class.

� Connection Setup. JavaParty hides the addressing
and communication mechanisms from the user, han-
dles network exceptions internally, and thus keeps the
code smaller than socket and RMI versions.

To connect server and client processes, the socket and
RMI programs must solve TCP/IP addressing tasks.
They must access the IP name of their host machine,
they must know about port numbers and about names
used to register objects with the RMI name server.

The following code is used at the client side to open
the socket connection and to get hold of appropri-
ate streams. It is left to the programmer to handle
IOExceptions that might occur for example because
of busy ports or race conditions that result when a
server has not yet o�ered a connection.

DataInputStream is;

DataOutputStream os;

try {

Socket MySocket = new Socket(server, port);

is = new DataInputStream(MySocket.

getInputStream());

os = new DataOutputStream(MySocket.

getOutputStream());

} catch (IOException e) {

// ... what to do?

// ... Try again? Involve the user?

}

In the RMI versions, the server must be registered
at the name server, called RMI registry, of its host.
An RMI registry process must be running on each
host that implements a remote object, i.e., a server
process.

// create server

Server server = null;

try {

server = new Server(...);

} catch (RemoteException e) {

...what to do?

}

// register server

try {

InetAddress iaddr =

InetAddress.getLocalHost();

String url = "//"+iaddr.getHostName()+

"/server";

java.rmi.Naming.bind(url, server);

server.work();

} catch (AlreadyBoundException e) {

... what to do?

} catch (MalformedURLException e) {

... what to do?

} catch (java.rmi.UnknownHostException e) {

... what to do?

} catch (java.net.UnknownHostException e) {

... what to do?

} catch (RemoteException e) {

... what to do?

}

The server program needs similar code for termina-
tion, i.e., to remove the server object from the RMI
registry. The client program needs similar code to
get access to the server. Hence, the programmer has
to deal with the exceptions mentioned above at least
three times. Note that the above code is simpli�ed
with respect to host names.

Whereas these three points can be hidden behind a
layer of abstraction, for method calls hiding is no
longer possible without a complete re-engineering of
given code (see bullet Communication/Invocation be-
low).

3

Whereas RemoteExceptions do occur in wide area
networks they are quite unlikely in clusters, unless
caused by the socket or RMI model itself. A pro-
grammer who does not have to construct URLs and
IP addresses will not run into errors and will not cause
the corresponding exceptions.

Section 4 presents in detail how JavaParty achieves
transparent connection setup.

� Communication/Invocation. In JavaParty, there
is no need to design and implement the communica-
tion protocol by hand. JavaParty does not require
to change method signatures and variables and hence
neither causes major code re-working, nor does it re-
quire dealing with network exceptions.

The socket versions cannot invoke methods of remote
objects. Instead, the programmer has to design a
communication protocol that must be implemented
by two automata, one for each side. Unfortunately,
design and implementation of communication proto-
cols are di�cult tasks: race and error conditions are
especially hard to handle.

Although one should expect that this complexity can
be avoided with RMI, this is only partially true. In
RMI, there is no way to access instance variables of
remote objects. If an algorithm requires access to a
variable of a remote object, the RMI programmer has
to add at least one access function for that variable.
For arrays a collection of access functions is needed
(for the array, for individual dimensions, for single
array elements). Moreover, RMI cannot be used for
static methods and static variables. These restric-
tions often require signi�cant changes to given code,
before RMI can be used.

Other code changes are caused by additional RMI re-
quirements:

{ For every remote object that is to be used, an
interface has to be declared that lists the avail-
able methods that can be called from remote.

{ Both in the new interface and in the class im-
plementation, all these methods are required to
throw a RemoteException. Therefore, all places
in the code where remote methods are called
have to be changed manually since the new ex-
ception must be handled.

For example, let foo be a method of an
RMI object that can be called from remote.
Then the programmer must surround every call
of foo by a try statement that catches the
RemoteException.

try {

server.foo(...);

} catch (RemoteException e) {

... what to do?

}

Whereas remote exceptions are a useful ap-
proach for wide area client-server applications,
they do not occur in closely connected cluster
settings. Whereas the extra code for register-
ing and accessing the server can be hidden in a
layer of abstraction, it is not easy to do so for
ubiquitous method calls.

Another disadvantage is that standard inter-
faces of the JDK, e.g., java.lang.Enumeration
can no longer be implemented by remote meth-
ods.

{ In general, remote classes extend one of RMI's
classes, e.g., UnicastRemoteObject. Since Java
does not provide multiple inheritance, this may
require a complete re-organization of the rela-
tionship between classes. (Instead of extending
RMI classes, the programmer can explicitly add
code that otherwise is inherited. However, this
approach exposes even more internal details of
the RMI mechanisms.)

{ Additionally, all JVMs must install the RMISe-
curityManager to use RMI. This is not only an-
other task for the programmer but it prevents
the use of other security managers, the user
might prefer.

Section 4 presents in detail how JavaParty achieves
transparent method invocation.

� Flexibility and Locality. JavaParty speci�cally ad-
dresses the locality problem: If objects reside locally,
they are used locally. Instead of expensive OS over-
head a much cheaper single pointer indirection is suf-
�cient. Since JavaParty objects can migrate, locality
and thus performance can be improved.

Quantitative measurements show that locality must
be exploited: The invocation of an empty method via
a pointer indirection takes about 0.7 �s for a Java
1.1.1 interpreter on a Sun Ultra which is about 18%
higher than without indirection. A comparable RMI
call of an empty method of a server that resides on
the same physical machine takes 2.8 ms and is thus
about 4000 times slower.

If the hardware topology is variable there may be sit-
uations where some clients and the server reside in
the same JVM on the same physical machine. Nei-
ther the socket versions nor the RMI version can take
advantage of unexpected locality. Even worse, nei-
ther approach can exploit locality as a means of op-
timization at all. Since neither approach is intended
for automatic object placement there will be no opti-
mization for taking advantage of locality in future.

For the socket versions, communication is handled by
the OS even if client and server reside on the same
host. There is no way to avoid that messages travel
through the protocol stack.

4

RMI is implemented on top of the socket layer and
thus inherits the same disadvantages. But since stub
and skeleton objects are used to implement RMI's
remote method invocation, RMI could potentially
do better. Instead of the stub-socket-socket-skeleton
overhead to access a target object, the real target ob-
ject could be addressed directly if it is local. Unfor-
tunately, RMI does not do this. Moreover, there are
no mechanisms in RMI to migrate objects and thus
to increase locality on purpose.

Section 4 presents in detail how JavaParty imple-
ments migration and exploits locality.

4 Design and Implementation

We have implemented JavaParty as a pre-processing phase
into our Java compilers EspressoGrinder [17] and Pizza
[18]. Both Java compilers are freely available and have
thousands of non-commercial and commercial users world
wide. Alternatively, the JavaParty transformation can be
used stand-alone to generate regular Java code that is then
fed through any Java compiler, e.g., javac.

JavaParty currently uses RMI as a target and thus in-
herits some of RMI's advantages, e.g. distributed garbage
collection. As shown in the diagram below, JavaParty code
is transformed into regular Java code plus RMI hooks. The
resulting RMI portions are then fed into Sun's RMI com-
piler (stub & skeleton generator).

JavaParty code

portable ByteCode

RMI hooks
pure Java with

Transformation
JavaParty

Java compiler
regular

Skeleton generator
regular RMI Stub &

JavaParty Compiler JPC

In the following sections we present the central ideas used
for the transformation of JavaParty into Java plus RMI
hooks. Many details of the transformation (e.g., object
equality, this, synchronization, etc.) must be omitted.

The transformation is presented by means of the follow-
ing example.

remote class B extends A implements C {

T x = I; // instance variable

static U y = J; // static variable

T foo(V z) { P } // method

static void foo2() { Q } // static method

static { R } // static block

B(T z) { S } // constructor

}

The original class hierarchy is shown below. Solid arrows
indicate subclassing by means of extend, open arrows rep-
resent the implementation of interfaces with implements.
Boxes are used for classes, ovals are used for interfaces.

Object

A

BC

Instance Part and Static Part

The implementation of a class can be separated into those
methods and variables that are static, i.e., that are the
same for all objects of that class, and instance methods and
variables that may have di�erent values for each object.
The semantics of the static class part are challenging to
implemented in a distributed setting.

Whereas static parts cannot be accessed through RMI,
they can be used in JavaParty. To achieve this, a remote
class B is implemented by two RMI classes B impl for the
instance parts and B class impl for the static parts. Both
classes are RMI classes. The situation is shown in the
diagram below.

We mentioned above that RMI requires the declaration
of an interface for each RMI class. This interface must
declare all methods that can be called remotely. Therefore,
in addition to the implementation classes * impl there are
two interfaces B intf and B class.

The following diagram presents a still incomplete ver-
sion of the hierarchy of the resulting classes. The missing
classes are called \handles" and will be discussed below.
The top layer has classes that are provided by JavaParty's
runtime system. These classes extend or implement RMI
classes as appropriate.

Instance parts Static parts

A_intf

B_intf B_class

A_impl

B_impl

RemoteClassIntf

A_class

RemoteClass

A_class_impl

B_class_impl

RemoteIntf RemoteInstance

For the static parts of class B the following code is gener-
ated:

interface B_class extends RemoteClassIntf {...}

class B_class_impl extends RemoteClass

implements B_class {

U y;

5

// Initialization of the class object

protected void _init() {

y = J; // static variables

toRemote(R); // static block

}

public void foo2() throws RemoteException {

toRemote(Q)

}

// constructor for instance part

public B_intf _new(T z) throws RemoteException {

return new B_impl(z);

}

}

In the generated code, RemoteExceptions are thrown as
required by RMI. For each class that is loaded dynami-
cally, a single object of B class impl is created on one of
the hosts. (The host is determined by JavaParty's distri-
bution strategy.) This single object implements the static
variables and the static methods. The init() method
is called by the runtime system for initialization. In this
and in the following code fragments we use toRemote to
indicate that the code transformation is not presented in
detail.

The last routine new(T z) must be explained in some
detail. JavaParty requires that objects can be created on
remote hosts. There are two ways to implement that. One
approach is to create the object locally and then migrate
it to its �nal destination.

The cheaper and more elegant way, though, creates an
object right at its intended destination. Without changing
the Java virtual machine the only way of doing this is to
call a regular class constructor at the destination. And
this is what the new routine does: It calls the constructor
B impl and returns a remote reference to the new object.
Therefore, an instance of B class impl must be present
on all hosts that need to create objects of type B impl.
However, only one of these instances actually implements
the static parts.

The instance part of class B leads to the following two
classes. (The implementation of B impl is incomplete for
ease of explanation; it will be completed below.)

interface B_intf extends A_intf {...}

class B_impl extends A_impl implements B_intf {

T v = I; // instance variable

public T foo(V z) // instance method

throws RemoteException {

toRemote(P)

}

// constructor

B_impl(T z) throws RemoteException {

toRemote(S)

}

public final T _get_B_v() //access method

throws RemoteException {

return v;

}

public final T _set_B_v(T _x) //access method

throws RemoteException {

return v = _x;

}

// in case T is a numeric base type:

// access method

public final T _inc_B_v(T _x, boolean _postfix)

throws RemoteException {

T _e = v;

v += _x;

if (_postfix) return _e; else return v;

}

}

In the above code there is an instance variable v, a method
foo, and a constructor B impl. Three additional meth-
ods implement access functions, their names incorporate
package, class, and variable names to deal with Java's dif-
ferent name resolution strategies for variables and meth-
ods. As required by RMI, all remote methods throw a
RemoteException. If T is a numeric base type, then an ad-
ditional access routine is created to e�ciently implement
++, --, +=, and -=. In the example, we do not show special
access routines for arrays (whole, individual dimensions,
elements), for this, and others.

Handles and Locality

The careful reader might have noticed that the trans-
formed code as presented so far no longer contains the
original class B. Since existing code might be using B, this
would result in inconsistencies. Moreover, remote methods
throw RemoteExceptions that are still unhandled.

This problem is solved by a handle object B that hides
the four RMI B * classes/interfaces from users:

class B extends A implements C {

...

T foo(V z) { // instance method

while (true)

try { return ((B_intf)ref).foo(z); }

catch (MovedException _e)

{_adaptRef(_e);}

catch (RemoteException _e)

{_handleRemoteException("B.foo",_e);}

}

static void foo2() { // static method

try { ((B_class)RuntimeEnvironment.

getClassObj("B")).foo2(); }

catch (RemoteException _e)

{_handleRemoteException("B.foo2", _e);}

}

...

}

The class hierarchy of the handles is identical to the origi-
nal class hierarchy shown above. For all instance and static

6

methods of the original class there are methods with the
same signature that do not throw any new exceptions. An
incoming call is passed on to the appropriate remote ob-
ject. For that purpose, handle classes internally hold a
reference ref to access the instance part. The runtime en-
vironment is used to reference the static part of the class.

In addition to passing on method calls, handle objects
deal with RemoteExceptions. Moreover, handles are used
to hide migration, see below.

If the object B impl does not reside on a remote host
but is located locally, the handle sets the reference ref to
directly point to the local object. Thus, no RMI overhead
is needed at all and locality can be exploited at the cost of
a single pointer indirection.

Object Migration

If a remote object that implements an instance part is mov-
ing to a di�erent host, a proxy is left behind. If a method
call arrives at the proxy, a MovedException is thrown back
to the caller. Together with the exception, the caller is in-
formed about the new location of the moved object. The
caller uses this information to update the internal refer-
ence ref and to call the method at the new location. This
explains the while loop in method foo of the above code
fragment.

Since we have to make sure that objects are not moved
while their methods are executed, the transformation of
B impl must be re�ned as shown below: the original
method body is included in a try statement and sur-
rounded by enter() and leave(). We only complete
foo(V z), the other methods require identical comple-
tions.

class B_impl extends A_impl implements B_intf {

...

public T foo(V z)

throws MovedException,

throws RemoteException {

_enter();

try { toRemote(P) }

finally { _leave(); }

}

...

}

For actually migrating an object, the runtime system o�ers
two options. An object can move to the position of the
caller or it can be moved to the location of a di�erent
remote object. A migration is possible if no method is
executing on the object, no other migration is in progress,
and the object does not have its resident
ag set. Then,
the object's internal state is serialized into a byte array
which is sent to the runtime system on the target host.
The receiving runtime system unpacks the byte array and
returns an RMI stub reference to the runtime system of the
original host. Upon receipt, the original host completes the
migration; for future method invocations the new reference
will be thrown.

Runtime System

The runtime system consists of a central component, called
RuntimeManager. In addition, each host runs a LocalJP

that is registered at the manager. A host and its LocalJP
can be added dynamically to the system. The manager
knows all LocalJPs and knows the location of all class ob-
jects, i.e., for each class that is loaded the manager knows
which host implements the static part. This information
is replicated in the LocalJPs to reduce manager load. Nei-
ther manager nor LocalJPs need to know the location of
individual remote objects. LocalJPs are needed to call
constructors in class objects and to implement either side
of a migration.

RuntimeManager

LocalJP

RuntimeEnvironment

r e g i s t r a t i o n migrat ion
 create class object

r e s e t

 c a l l f o r c u r r e n t s t a t e

RuntimeEnvironment

LocalJP

Access distributed environment
(d i f fe ren t Loca lJP)

Current Shortcomings

Since JavaParty is implemented on top of RMI and since
there are both remote classes and non-remote classes, some
inconsistencies can occur:

� In method invocations, RMI passes remote objects
by reference. Non-remote objects however are copied.
Therefore, if a non-remote object is passed as param-
eter that itself refers to a structure of non-remote ob-
jects, then the whole graph of objects is copied to the
recipient. If the receiving method changes the graph,
then there will be di�erent versions of it in the net.

However, this is not as bad as it seems: Only ob-
jects can be copied that implement the interface
java.io.Serializable. For method invocations, the
compiler can often issue warnings if non-remote seri-
alizable objects may be passed to remote objects. If
the programmer intends to change the copied data he
either has to accept inconsistencies or must change
the passed objects to be remote themselves.

� RMI requires that all methods must be public so that
they can be called remotely. Thus, we have to weaken
some of the access privileges for variables and meth-
ods.

Since we cannot solve this problem outside of RMI,
we do our best to keep it as small as possible. During

7

co
m
p
ila
tio

n
th
e
J
ava

P
a
rty

co
m
p
iler

ch
eck

s
th
a
t
n
o
a
c-

cess
rig

h
ts

a
re

b
ro
k
en
;
a
s
u
su
a
l,
a
n
y
a
ccess

v
io
la
tio

n
s

w
ill

ca
u
se

erro
r
m
essa

g
es.

O
n
ly

a
fter

sem
a
n
tic

a
n
a
l-

y
sis,

th
e
m
eth

o
d
s
in

th
e
g
en
era

ted
cla

sses
a
re

m
a
d
e

p
u
b
lic.

T
h
erefo

re,
a
fa
ir
p
ro
g
ra
m
m
er

d
o
es

n
o
t
su
�
er

fro
m

th
e
d
i�
eren

t
a
ccess

rig
h
ts.

H
ow

ev
er,

a
p
o
ten

tia
l

in
tru

d
er

fro
m

w
ith

in
th
e
�
rew

a
ll
w
h
o
h
a
s
a
ccess

to
th
e
clu

ster
m
ay

b
e
a
b
le
to

�
n
d
a
w
ay

to
ca
ll
m
eth

o
d
s

o
f
ex
istin

g
o
b
jects,

th
a
t
w
h
ere

in
ten

d
ed

to
b
e
p
riva

te.

W
e
co
n
sid

er
th
is

p
ro
b
lem

to
b
e
a
ccep

ta
b
le

fo
r
o
u
r

p
ro
to
ty
p
ica

l
im

p
lem

en
ta
tio

n
.
A

p
o
ten

tia
l
fu
tu
re

im
-

p
lem

en
ta
tio

n
o
f
J
ava

P
a
rty

th
a
t
is
n
o
t
b
a
sed

o
n
R
M
I

m
ay

b
e
a
b
le
to

a
d
eq
u
a
tely

g
u
a
rd

p
riva

te
�
eld

s.

�
If
th
e
sig

n
a
tu
re

o
f
a
cla

ss
is
ch
a
n
g
ed
,
a
ll
its

su
b
cla

sses
m
u
st

a
lso

b
e
reco

m
p
iled

sin
ce

th
e
R
M
I
stu

b
s
a
n
d

sk
eleto

n
s
o
th
erw

ise
rem

a
in

in
a
n
in
co
m
p
a
tib

le
sta

te.

�
F
ro
m

a
sin

g
le

J
ava

P
a
rty

cla
ss

B
,
ten

J
ava

B
y
teco

d
e

�
les

a
re

g
en
era

ted
.

W
e
h
av
e
a
lrea

d
y
m
en
tio

n
ed

B
,

B
i
n
t
f
,
B
i
m
p
l
,
B
c
l
a
s
s
,
a
n
d
B
c
l
a
s
s
i
m
p
l
a
b
ov
e.

S
in
ce

B
i
m
p
l
a
n
d

B
c
l
a
s
s
a
re

R
M
I
�
les,

th
e
R
M
I

co
m
p
iler

g
en
era

tes
stu

b
s
a
n
d
sk
eleto

n
s
(
B
i
m
p
l
S
t
u
b
,

B
i
m
p
l
S
k
e
l
,
B
c
l
a
s
s
S
t
u
b
,
a
n
d
B
c
l
a
s
s
S
k
e
l
).

F
in
a
lly,

fo
r
sep

a
ra
te

co
m
p
ila
tio

n
a
n
d
th
e
in
tera

ctio
n

o
f
rem

o
te

cla
sses

w
ith

n
o
n
-rem

o
te

cla
sses

d
u
rin

g
se-

m
a
n
tic

a
n
a
ly
sis,

w
e
n
eed

a
n
a
d
d
itio

n
a
l
h
elp

er
cla

ss
B
.
l
o
c
a
l
th
a
t
is
o
n
ly

u
sed

d
u
rin

g
co
m
p
ila
tio

n
.

B
.java

B
.class

B
_intf.class

B
_im

pl.class

B
_class_im

pl.class

B
_class.class

B
_im

pl_S
tub.class

B
_im

pl_S
kel.class

B
_class_S

tub.class

B
_class_S

kel.class

B
.local

j p c

5
R
e
la
t
e
d
W
o
r
k

�
C
o
n
c
u
r
r
e
n
t
o
b
je
c
t-o

r
ie
n
te
d

la
n
g
u
a
g
e
s
.

F
ro
m

ov
er
a
h
u
n
d
red

ex
istin

g
im

p
era

tiv
e
co
n
cu
rren

t
o
b
ject-

o
rien

ted
la
n
g
u
a
g
es

(C
O
O
L
)
su
rv
ey
ed

in
[1
9
]
m
o
re

th
a
n
h
a
lf
d
o
n
o
t
co
n
sid

er
p
ro
b
lem

s
o
f
d
istrib

u
tio

n
a
n
d

lo
ca
lity

a
t
a
ll.

T
h
e
rea

so
n
s
a
re

d
i�
eren

t:
S
o
m
e
la
n
-

g
u
a
g
es

h
av
e
o
n
ly

b
een

im
p
lem

en
ted

in
a
p
ro
to
ty
p
ica

l

w
ay

o
n
a
sin

g
le
w
o
rk
sta

tio
n
,
w
h
ere

n
etw

o
rk

la
ten

cies
d
o
n
o
t
o
ccu

r;
th
eir

d
ev
elo

p
ers

h
av
e
m
a
in
ly
b
een

in
ter-

ested
in

th
e
d
esig

n
o
f
co
o
rd
in
a
tio

n
m
ech

a
n
ism

s
a
n
d

a
p
ro
o
f
o
f
co
n
cep

t.
O
th
er

la
n
g
u
a
g
es

a
re

restricted
to

sh
a
red

m
em

o
ry

m
u
ltip

ro
cesso

rs,
th
ey

rely
o
n
th
e

ca
ch
e
sy
stem

s
p
rov

id
ed

b
y
th
o
se

m
a
ch
in
es.

M
o
st

o
f
th
e
o
th
er

la
n
g
u
a
g
es

a
re

u
sed

to
d
o
resea

rch
in

co
n
cu
rren

cy
co
o
rd
in
a
tio

n
co
n
stru

cts.
T
h
rea

d
s
a
n
d

ex
p
licit

sy
n
ch
ro
n
iza

tio
n
a
s
u
sed

in
J
ava

a
n
d
J
ava

-
P
a
rty

a
re

n
o
t
o
p
tim

a
l
fo
r
o
b
ject-o

rien
ted

la
n
g
u
a
g
es

b
eca

u
se

th
is

a
p
p
ro
a
ch

su
�
ers

fro
m

va
rio

u
s
ty
p
es

o
f

in
h
erita

n
ce

a
n
o
m
a
ly

[1
5
].
5

J
ava

P
a
rty

h
a
s
sev

era
l
a
d
va
n
ta
g
es

th
a
t
m
o
st

o
f
th
e

w
ell

k
n
ow

n
C
O
O
L
s
d
o
n
o
t
h
av
e:

S
in
ce

J
ava

P
a
rty

is
a
lm

o
st

id
en
tica

l
to

J
ava

,
it

ca
n
im

m
ed
ia
tely

b
e

u
sed

b
y
a
n
a
rm

y
o
f
J
ava

p
ro
g
ra
m
m
ers

w
h
erea

s
o
th
er

C
O
O
L
s
o
ften

a
re

d
i�

cu
lt
to

lea
rn
.
O
th
er

a
d
va
n
ta
g
es

a
re

in
h
erited

fro
m

J
ava

a
s
w
ell:

P
o
rta

b
ility

a
cro

ss
a
n
d
in
sta

n
t
ava

ila
b
ility

o
n
a
lm

o
st

a
ll
h
a
rd
w
a
re

p
la
t-

fo
rm

s,
fu
tu
re

p
erfo

rm
a
n
ce

im
p
rov

em
en
ts

d
u
e
to

in
-

ten
siv

e
w
o
rk

o
n
a
ll
a
rea

s
o
f
th
e
J
ava

en
v
iro

n
m
en
t

(b
y
te
co
d
e
o
p
tim

iza
tio

n
,
ju
st-in

-tim
e
a
n
d
n
a
tiv

e
co
m
-

p
ila
tio

n
,
g
a
rb
a
g
e
co
llectio

n
,
etc.)

�
P
a
r
a
lle
lis
m

in
J
a
v
a
.
A
lth

o
u
g
h
th
rea

d
b
a
sed

p
a
ra
l-

lelism
is
ava

ila
b
le
in

J
ava

so
m
e
resea

rch
ers

co
n
sid

er
it

in
a
p
p
ro
p
ria

te
a
n
d
la
ck
in
g
in

ex
p
ressiv

e
p
ow

er.
S
o
m
e

resea
rch

g
ro
u
p
s
th
erefo

re
a
d
d
ed

d
a
ta

p
a
ra
llelism

to
J
ava

[9
]
o
th
ers

a
d
d
ed

m
u
ltip

le
p
a
ra
d
ig
m
s
[1
1
,
1
3
].

S
o
m
e
o
f
th
ese

sy
stem

s
req

u
ire

a
d
d
itio

n
a
l
m
a
ch
in
e
d
e-

p
en
d
en
t
lib

ra
ries

o
r
n
o
n
-p
o
rta

b
le

J
ava

v
irtu

a
l
m
a
-

ch
in
es.

In
co
n
tra

st
to

th
o
se,

J
ava

P
a
rty

rem
a
in
s
a
s

clo
se

to
J
ava

a
s
p
o
ssib

le
a
n
d
ru
n
s
in

a
n
y
sta

n
d
a
rd

J
ava

en
v
iro

n
m
en
t.

J
ava

P
a
rty

cu
rren

tly
d
o
es
n
o
t
o
�
er
a
n
y
m
ea
n
s
fo
r
d
a
ta

p
a
ra
llelism

.
H
ow

ev
er,

w
o
rk

is
n
ea
rin

g
co
m
p
letio

n
th
a
t
�
lls

th
is
g
a
p
:
W
e
a
re

cu
rren

tly
a
d
d
in
g
a
f
o
r
a
l
l

sta
tem

en
t
th
a
t
is
p
re-p

ro
cessed

in
to

th
rea

d
ed

ex
ecu

-
tio

n
w
ith

rem
o
te

th
rea

d
s
b
y
m
ea
n
s
o
f
a
n
o
th
er

so
u
rce-

to
-so

u
rce

tra
n
sfo

rm
a
tio

n
.

�
O
b
je
c
t
M
ig
r
a
tio

n
.

T
h
e
p
o
sitiv

e
e�
ects

o
f
o
b
ject

m
ig
ra
tio

n
h
av
e
fo
r
ex
a
m
p
le
b
een

stu
d
ied

in
th
e
E
m
er-

a
ld

p
ro
ject

[1
0
].
T
h
e
J
ava

P
a
rty

g
ro
u
p
cu
rren

tly
stu

d
-

ies
th
e
in
teg

ra
tio

n
th
ereo

f
in
to

co
m
p
ile-tim

e
a
n
d
ru
n
-

tim
e
o
p
tim

iza
tio

n
.
N
o
n
e
o
f
th
e
sy
stem

s
m
en
tio

n
ed

a
b
ov
e
o
�
ers

o
b
ject

m
ig
ra
tio

n
.

�
T
a
r
g
e
t
p
la
tfo

r
m
.
C
u
rren

tly,
th
e
im

p
lem

en
ta
tio

n
o
f

J
ava

P
a
rty

is
b
a
sed

o
n
R
M
I
w
h
ich

is
p
a
rt
o
f
th
e
sta

n
-

5
A

v
ery

b
a
sic

in
tro

d
u
ctio

n
to

in
h
erita

n
ce

a
n
o
m
a
ly
:

T
h
e

p
ro
b
lem

is
th
a
t
th
e
lin

es
o
f
co
d
e
th
a
t
im

p
lem

en
t
th
e
sy
n
ch
ro
-

n
iza

tio
n
req

u
irem

en
ts

m
a
y
b
e
sp
rea

d
a
cro

ss
a
ll
m
eth

o
d
s
o
f
a

cla
ss.

If
a
su
b
cla

ss
h
a
s
slig

h
tly

d
i�
eren

t
sy
n
ch
ro
n
iza

tio
n
n
eed

s,

in
h
erita

n
ce

a
n
o
m
a
ly

is
lik
ely

to
o
ccu

r:
th
en

in
stea

d
o
f
in
h
erit-

in
g
m
eth

o
d
s
fro

m
th
e
p
a
ren

t,
n
ea
rly

a
ll
m
eth

o
d
s
m
u
st

b
e
re-

co
d
ed

in
th
e
su
b
cla

ss.
H
o
w
ev
er,

in
th
e
re-im

p
lem

en
ta
tio

n
s,
th
e

a
lg
o
rith

m
s
th
em

selv
es

rem
a
in

u
n
ch
a
n
g
ed
,
ju
st
th
e
sy
n
ch
ro
n
iza

-

tio
n
co
d
e
lin

es
a
re

m
o
d
i�
ed
.
C
o
d
e
d
u
p
lica

tio
n
resu

lts
in

h
ig
h
er

m
a
in
ten

a
n
ce

e�
o
rts.

8

dard JDK distribution. Therefore, JavaParty pro-
grams run on all major platforms, including Solaris,
Windows, and NT.

There are several alternatives: CORBA o�ers multi-
lingual elements and is therefore not closely coupled
to Java. Therefore, use of CORBA would require us
to implement a lot of functionality that is already pro-
vided with RMI, e.g., a distributed garbage collector.

\Horb" [8] is similar to RMI and o�ers a CORBA-like
distributed environment. Hence, the results of the
comparison of JavaParty versus RMI apply to Horb
as well. On the other hand, Horb { claiming to have
less runtime overhead than RMI { could have been
used as a target for the implementation of JavaParty.
But since RMI is part of the JDK 1.1 distribution
and there are chances that RMI will eventually out-
perform Horb, JavaParty's usability is better if based
on RMI.

We refrained from implementing our own basic com-
munication platform because we want JavaParty to
instantly run on all major platforms.

� Other remote Java objects. We know of two other
systems that try to implement transparent remote ob-
jects in Java.

In contrast to JavaParty, \Remote Objects in Java"
(ROJ) [16] introduces a new keyword remotenew that
must be used to create objects on a speci�c remote
host. The programmer is in charge of object place-
ment. Since objects cannot migrate there is no way
to enhance and exploit locality. The new keyword
is mapped to a new Bytecode opcode. This op-
code is implemented by an extended Java virtual ma-
chine and requires a speci�c interpreter. Therefore,
ROJ cannot take advantage of progress in just-in-time
compilation.

ROJ method arguments are restricted to base types,
i.e., it is not possible to pass object references. This
restriction would have made it much more compli-
cated to port our benchmark programs than it has
been even with the socket and RMI versions.

An interesting idea is that ROJ does not rely on a
common �le system. Whereas JavaParty uses the
standard network to access Bytecode �les, ROJ ships
Bytecode. By shipping Bytecode, a single resulting
Bytecode �le is su�cient instead of ten.

\Java/DSM" [22] is an implementation of Java on top
of the Treadmarks distributed shared memory system
[12]. Java/DSM requires special implementations of
the Java virtual machine since objects must be allo-
cated on the heap. In addition, Java/DSM has to
struggle with heterogeneous environments which are
already solved by our RMI approach. Moreover, since
Java/DSM relies on Treadmarks for e�cient caching
and locality, we expect to get better performance
since our approach which is based on compile time
analysis can achieve more informed decisions.

6 Conclusion

JavaParty is an elegant way to program clusters of work-
stations and workstation-based parallel computers with
Java. JavaParty programs are signi�cantly shorter than
equivalent programs based either on explicit socket com-
munication or on RMI, they adapt more
exibly to vary-
ing network con�gurations and can exploit locality. Java-
Party's runtime performance is comparable to RMI's per-
formance. It will be much better once optimizations have
been implemented.

We have presented transformation templates used by
the JavaParty pre-processor to explain how various goals
are met in practice.

JavaParty, consisting of a pre-processor generating
regular Java, a complete compiler generating Byte-
code, a runtime system, and some utilities, is freely
available upon request for non-commercial projects.
For more details and downloading information see
http://wwwipd.ira.uka.de/JavaParty.

Acknowledgements

We would like to thank other members of the JavaParty
group for their support of the JavaParty environment, es-
pecially Matthias Jacob who implemented the Veltran op-
erator.

References

[1] Thomas E. Anderson, David E. Culler, and David A. Pat-

terson. A Case for NOW (Network of Workstations). IEEE

Micro, 15(1):54{64, February 1995.

[2] Nanette J. Boden, Danny Cohen, Robert E. Felderman,

Alan E. Kulawik, Charles L. Seitz, Jarov N. Seizovic, and

Wen-King Su. Myrinet: A Gigabit-per-Second Local Area

Network. IEEE Micro, 15(1):29{36, February 1995.

[3] J. Clearbout and B. Biondi. Geophysics in object-

oriented numerics (GOON): Informal conference. In Stan-

ford Exploration Project Report No. 93. October 1996.

http://sepwww.stanford.edu/sep.

[4] John T. Feo, editor. A Comparative Study of Parallel Pro-

gramming Languages: The Salishan Problems. Elsevier

Science Publishers, Holland, 1992.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns { Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, Mass., 1994.

[6] James Gosling, Bill Joy, and Guy Steele. The Java

Language Speci�cation. Addison-Wesley, Reading, Mass.,

1996.

[7] James Gosling, Frank Yellin, and The Java Team. The

Java Application Programming Interface, volume 1 { Core

Packages. Addison-Wesley, Reading, Mass., 1996.

[8] Satoshi Hirano. Horb { the magic carpet for network com-

puting. http://ring.etl.go.jp/openlab/horb/, 1996.

[9] Susan Flynn Hummel, Ton Ngo, and Harini Srinivasan.

SPMD programming in Java. Concurrency: Practice and

Experience, June 1997.

9

[10] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew

Black. Fine-grained mobility in the Emerald system. ACM

Transactions on Computer Systems, 6(1):109{133, Febru-

ary 1988.

[11] L. V. Kal�e, Milind Bhandarkar, and Terry Wilmarth. De-

sign and implementation of parallel Java with global object

space. In Proc. of Conf. on Distributed Processing Tech-

nology and Applications, Las Vegas, Nevada, 1997.

[12] P. Keleher, A. L. Cox, and W. Zwaenepoel. Treadmarks:

Distributed shared memory on standard workstations and

operating systems. In Proc. 1994 Winter Usenix Conf.,

pages 115{131, January 1994.

[13] Pascale Launay and Jean-Louis Pazat. Integration of con-

trol and data parallelism in an object oriented language. In

Proc. of 6th Workshop on Compilers for Parallel Comput-

ers (CPC'96), Aachen, Germany, December 11{13, 1996.

[14] Doug Lea. Concurrent Programming in Java { Design

Principles and Patterns. Addison-Wesley, Reading, Mass.,

1996.

[15] Satoshi Matsuoka and Akinori Yonezawa. Analysis of in-

heritance anomaly in object-oriented concurrent program-

ming languages. In Gul Agha, Peter Wegner, and Aki-

nori Yonezawa, editors, Research Directions in Concurrent

Object-Oriented Programming, pages 107{150. MIT Press

Cambridge, Massachusetts, London, England, 1993.

[16] Nataraj Nagaratnam and Arvind Srinivasan. Remote ob-

jects in Java. In IASTED Intl. Conf. on Networks, January

1996.

[17] Martin Odersky and Michael Philippsen. Espresso Grind-

er. http://wwwipd.ira.uka.de/�espresso, 1996.

[18] Martin Odersky and PhilipWadler. Pizza into Java: Trans-

lating theory into practice. In Proc. 24th ACM Symposium

on Principles of Programming Languages, January 1997.

[19] Michael Philippsen. Imperative concurrent object-oriented

languages. Technical Report TR-95-050, International

Computer Science Institute, Berkeley, August 1995.

[20] Sun Microsystems Inc., Mountain View, CA. Java Remote

Method Invocation Speci�cation, beta draft, 1996.

[21] Thomas M. Warschko, Joachim M. Blum, and Walter F.

Tichy. The ParaStation Project: Using Workstations as

Building Blocks for Parallel Computing. In Intl. Conf. on

Parallel and Distributed Processing, Techniques and Ap-

plications (PDPTA'96), pages 375{386, Sunnyvale, CA,

August 9{11, 1996.

[22] Weimin Yu and Alan Cox. Java/DSM: A platform for

heterogeneous computing. This issue, 1997.

10

