
Appeared in J. of Universal Computer Science 3(9), Sept. 1997
http://www.iicm.edu/jucs root

Why We Need an Explicit

Forum for Negative Results

|

Announcement of the

Forum for Negative Results (FNR)

Lutz Prechelt
Universit�at Karlsruhe, Germany

prechelt@ira.uka.de

Abstract: Current Computer Science (CS) research is primarily focused on solving
engineering problems. Often though, promising attempts for solving a particular prob-
lem fail for non-avoidable reasons. This is what I call a negative result: something
that should have worked does not. Due to the current CS publication climate such
negative results today are usually camouaged as positive results by non-evaluating or
mis-evaluating the research or by rede�ning the problem to �t the solution.
Such publication behavior hampers progress in CS by suppressing some valuable in-
sights, producing spurious understanding, and misleading further research e�orts. Spe-
ci�c examples given below illustrate and back up these claims.
This paper is the announcement of a (partial) remedy: a permanent publication forum
explicitly for negative CS research results, called the Forum for Negative Results, FNR.
FNR will be a regular part of J.UCS.

Key Words: FNR, forum, negative results, failures, research culture, progress.

Category: A.m, K.7.m, K.4.m, I.2.7 speech recognition, I.2.6 learning, C.1.3 data ow
architectures, B.6.3 veri�cation.

1 Current Computer Science research culture

Almost all Computer Scientists agree that Computer Science (CS) has a strong
engineering problem-solving component: most of it ultimately aims at building
useful systems and making them ever better and cheaper. This excludes only
some parts of the theoretical CS research.

As a result, we tend to judge research contributions by their short or mid-
term application usefulness: Those contributions are considered best that very
successfully solve an important engineering problem. Contributions that solve
only a small fraction of their problem are considered less good and contribu-
tions that entirely fail to solve their problem are often not considered research
contributions at all. Consequently, most researchers strive for problem-solving
successes, where the problems to be solved are selected from an engineering point
of view.

On the other hand, most CS researchers also agree that CS needs a �rm
scienti�c base on which to build new engineering solutions. Such a base is pro-
vided when research emphasizes understanding more than engineering problem



solutions. In this case, obvious practical applicability needs not be a research
quality attribute.

Note that the discrimination between problem-solving research and research
for understanding is not a sharp one, it is only a matter of emphasis; see also
the article of Fred Brooks in the March 1996 issue of CACM [Brooks 1996] and
the responses in the July issue.

Looking at actual CS research contributions, a large majority of them makes
claims that clearly belong to engineering problem-solving; a study conducted in
1994 found about 75 percent of all articles in a random CS article sample to be
of this type [Tichy et al. 1995].

Thus, our emphasis in non-theoretical CS as a whole is quite clearly on engi-
neering (which is not necessarily harmful) and our judgement of what constitutes
good research is consequently biased (which is harmful).

The following sections will discuss how this bias slows down progress in CS
and why a forum for negative results might help; I will give speci�c examples
to illustrate my point. Then I will present the structure of the new Forum for
Negative Results and �nally discuss the most important objections against it,
before concluding the paper with a call for comments.

2 Why and how it hurts CS

The CS research culture described above has negative impact on our discipline
as a whole in three di�erent ways: First, results that could contribute to un-
derstanding may be suppressed; second, results may be presented in misleading
ways; and third, research may be misguided towards less fruitful directions. I will
discuss these problems in order and intersperse speci�c examples for illustration.
These examples are authentic reports of actual research; for sake of brevity and
clarity of argument, their technical content was somewhat simpli�ed.

2.1 Lost insights

If a failure is not published at all, obviously nobody else can learn from it. How-
ever, non-publication does not seem to be frequent in CS. More often, and more
seriously, failures are published in a clouded, hidden form: Either the problem is
rede�ned appropriately as to �t the solution obtained, or the \solution" is eval-
uated using only selected examples where it works well. Sometimes the solution
is hardly evaluated at all. In all of these cases, the reasons for the failure are not
analyzed and our understanding is improved less than it could have been.

2.2 Example 1: Estimating speaking rate

This example of non-publication I heard from members of a world-class speech
recognition research group that wish to remain anonymous. It exempli�es the
loss of an insight due to the complete suppression of a negative result.

Problem: Every speech recognition system expects a certain speaking rate.
If a speaker speaks very fast, the error rate increases; the system only works well
for roughly the speaking rate for which it was built | an important limitation
that must be overcome. However, several separate subsystems can be built for



di�erent speaking rates. Then it becomes necessary to estimate the speaking rate
before the actual speech recognition in order to select the appropriate subsystem.

Idea: The basic layer of a speech recognition system is the set of phoneme
models: There is one module for each of, say, 40 di�erent phonemes and at each
time each of these modules m estimates the probability that the current speech
input represents m's phoneme. During a phoneme, the corresponding module is
high and the others are low. During a transition from one phoneme to the next,
all modules are low and therefore the entropy of the module signals is higher.
The local maxima of the entropy time series should thus indicate the phoneme
transitions, the frequency of which is a direct measure of speaking rate.

Result: The idea was implemented and tried with various sorts of phoneme
models and for various speaking rates. Speaking rates were estimated for 2-
second long blocks of speech. The correlation between estimated and actual
speaking rate was between �0:15 (sic!) and 0.26, typically 0.12. The idea does
not work at all; it is essentially useless.

Insight:The idea does not work because the output of the individual phoneme
models is too unreliable; there are many spurious maxima in the entropy time
series. This is true although the given phoneme models are among the best
available world-wide. The accuracy of speech recognition systems mostly stems
from the integration of other knowledge sources such as phoneme pair frequency
distributions and dictionaries.

Handling: The idea, results, and analysis have not been and will not be
published.

E�ect: The maxima-counting idea is so appealing, even for somebody who
knows about the unreliability of the individual phoneme models, that other
speech recognition research groups will most probably steer into the same blind
alley again once they �nd it.

2.3 Spurious insights

Spurious insights occur in one of three forms:
1. Sometimes dressed-up or distorted evaluations as mentioned above make

the reader believe something that is not there. A solution may appear to
possess properties that it does not have at all or only to a lesser degree.

2. Also, positive results sometimes occur by chance as shown in the example
below. In both cases, such spurious results can seriously distort CS knowl-
edge.

3. Most of the time, however, the authors only try to convey a success, but fail
to convince the reader of it. As a result, a lot of CS research lacks credibility,
which also harms CS as a whole.

The problem of cases 1 and 3 is lack of a fair and thorough evaluation of a
solution. Several papers have published quantitative evidence or constructive
critique in this matter, e.g. [Fenton et al. 1994; Prechelt 1996; Tichy et al. 1995].
One reason why we �nd such insu�cient evaluations is that they would often
produce negative results which would be hard to publish. The problem of case 2
is the non-publication of negative results as illustrated by the following example.

2.4 Example 2: Comparing neural network algorithms

The following is an example of distributed research. It shows how the suppression
of negative results can lead to spurious positive results. The example is not



concrete, because it is impossible to �nd all the participants, but is quite realistic.
It is discussed in similar form by Salzberg [Salzberg 1997].

Problem: Many researchers are trying to improve current neural network
learning algorithms, e.g., for pattern classi�cation tasks. Let us say that 20
di�erent researchers are all trying to improve the same algorithm A.

Idea: Let us further assume that each of these 20 researchers has come up
with the same modi�ed version M of A and that this modi�cation is useless:
it neither improves nor reduces the performance of A. Both assumptions are
realistic; there are many changes to learning algorithms that seem plausible as
an improvement, but are neutral overall and that many people could come up
with independently.

Result: Ideally, each of our 20 researchers will evaluate his or her change
using multiple di�erent problems and multiple training runs for each, and they
will compare the results obtained for M to their results for A using a statistical
signi�cance test. Note that most neural network learning algorithms are inde-
terministic, because they start with a random initialization of the the network
parameters. Therefore, the results of the signi�cance test are indeterministic as
well (after all, that is what statistical tests are for) and we can expect one of our
20 researchers to obtain signi�cance at the 0.05 level.

Insight: The conclusion of this researcher will be that M is indeed better
than A.

Handling: This one researcher will publish M as an improvement of A.
Maybe one or two others also had (weakly) signi�cant results and publish them
as well. The other 17 will probably not publish their negative result that M is
not a useful improvement of A although M seems appealing.

E�ect:The research community will get the false impression thatM is better
than A | a spurious insight which is due to the suppression of the negative
results obtained by the majority of researchers. The same could happen, although
with smaller probability, even if M was in fact worse than A. The spurious
positive result may further contribute to the evolution of false and misleading
theories of learning that explain why M is supposed to be better than A.

2.5 Misdirected research

As a consequence of both lost or spurious insights, other researchers might pursue
investigations that are ine�ective or at least ine�cient and that they would
not have pursued, had the respective negative results been published with an
appropriate analysis.

2.6 Example 3: Dataow computers et al.

The history of dataow computers is an example of misdirected research due to
insu�cient evaluation or insu�cient consideration of negative aspects of research
results. It bears many similarities to several other areas of CS; these could be
discussed here just as well.

Problem: How to build e�cient computer hardware given advancing elec-
tronics technology, beginning in the early 1970s.

Idea: Express a program as a dataow graph and build hardware that can
execute dataow graphs. This will automatically exploit instruction-level par-
allelism by executing a program instruction when all of its input values are



available. Implicit control ow replaces the program counter. Programming be-
comes simpler and increasing numbers of transistors per chip can be utilized by
increasing the number of basic execution units. Instruction-level parallelism is
the most general kind of parallelism and thus will be more e�cient than explicit
parallelism with explicit synchronization [Dennis 1980].

Result: Operational prototypes of static dataow computers were built in
the mid-1970s. For most program domains, their parallelism was limited severely
by the inability to execute loop iterations or recursive calls in parallel. This
limitation is inherent in the principle of a static(!) dataow computer. In the
absence of su�cient instruction parallelism, sequential execution of dataow
computers is quite slow.

Insight:The insight at this point should have been that entirely replacing von
Neumann style computing with dataow computing might be the wrong idea.
The next goal should have been understanding what combination of aspects of
both paradigms would be most e�cient [Iannucci 1990].

Handling: However, a decade after dataow computers were �rst proposed
and several years after the �rst prototypes became operational and the lack
of instruction-level parallelism became apparent, one of the principal dataow
researchers still wrote: \What are the prospects for data ow supercomputers?
[. . . ] A machine with up to 512 processing elements or cell blocks seems feasible."
[Dennis 1980]

E�ect: Instead of working towards hybrid von-Neumann/dataow architec-
tures, the dataow community went on to building dynamic dataow machines
[Hwang and Briggs 1984], which increased the amount of available parallelism
but (predictably) su�ered from its large token tagging, tag comparing, and data
duplication overhead and was never able to keep up with von Neumann proces-
sors of similar cost.

A more critical evaluation and increased focus on problematic aspects of the
dataow idea could have saved signi�cant amounts of research resources and had
probably resulted in faster progress. As Hwang and Briggs diplomatically put
it in 1984: \Most advances are claimed by researchers in this area. The claimed
advantages were only partially supported by performance analysis and simulation
experiments. Operational statistics are not available from existing prototype data
ow machines. Therefore, some of the claimed advantages are still subject to
further veri�cation." [Hwang and Briggs 1984, p. 745]

CS research history features several other examples of similar nature, such
as most areas of Arti�cial Intelligence (e.g. automatic program veri�cation, pat-
tern recognition, symbolic AI, neural network learning, fuzzy logic) computer
integrated manufacturing (CIM), object-oriented methods, and others. In all of
these cases, a lack of weakness analysis or the suppression of its negative results
has led to avoidable waste of research resources and slowdown of progress, at
least for a signi�cant time during the early development phases of the respective
areas.

Again: This is clearly not to say that all research in the above areas was
wasted. Each of these areas has produced many valuable contributions to our
knowledge. However, some parts of the work in these areas was wasted or inef-
�cient and these parts were much larger than would have been necessary.



2.7 Example 4: Hardware veri�cation

This �nal example illustrates how deeply researchers have absorbed the principle
of not publishing negative results and how this can prevent useful analyses.

Problem: In formal hardware (VLSI) veri�cation, several research groups
have produced operational systems that all have di�erent strengths and weak-
nesses. A comparative evaluation of these systems could be a powerful means of
understanding why these weaknesses occur and might produce ideas for further
improvements.

Idea: One researcher in this �eld, who wishes to remain anonymous, invited
selected colleagues from all of these research groups to write a contribution to an
edited monograph that was intended to provide such a comparative evaluation.
Each group was given a set of example problems and was asked to elaborate
which of these their system could handle well or not well and why. All of the
papers were practically already accepted before they were even written, so there
was no pressure towards producing only positive results | quite on the contrary:
The editor asked explicitly to elaborate on weaknesses and their cause.

Result: Despite repeated explicit queries, several of the groups did hardly
describe, let alone discuss, those cases where their system did not do well.

E�ect: The comparative analysis was only half as useful as it could have
been. Probably some important insights were lost.

3 A counter-measure: The Forum for Negative Results

Even if a meant-to-be problem-solving contribution fails and thus represents no
direct engineering progress, it can be a useful research contribution: Quite often
an analysis of the reasons why a particular approach to a problem failed could
contribute to understanding, thus promoting further engineering advances and
avoiding unfruitful research e�orts.

The right thing to do with such a failure would thus be to publish a de-
scription and an analysis of the reasons instead of the now common disguised
mis-presentation as a success. One major reason why such presentation of re-
search as a negative result is so rare today is a lack of encouragement as discussed
in Section 1.

This is why J.UCS hereby announces the establishment of a publication fo-
rum that explicitly and exclusively calls for negative results: The Forum for Neg-
ative Results (FNR). FNR is a permanent, specially marked section of J.UCS.



Call for Papers: The Forum for Negative Results (FNR)

The Forum for Negative Results (FNR) is a permanent special section of the
Journal of Universal Computer Science (J.UCS) and exclusively publishes neg-
ative results, i.e., research that did not have the desired outcome, but still ad-
vances knowledge. J.UCS is an electronic journal published by Springer Verlag.

Rationale: As most of Computer Science is rather usefulness-oriented, it is
currently di�cult to publish work that demonstrates a non-progress, or negative
result, with respect to usefulness. Therefore today,

{ lessons to be learned from negative results are often lost, and
{ many works tend to demonstrate neither progress nor non-progress.

FNR is a top-class forum for publishing Computer Science negative results
that imply scienti�c insights. Just like J.UCS, FNR does not restrict contribu-
tions to particular topics. However, only papers with the following properties
qualify for publication in FNR:

1. The work described had a clear goal, stated in the paper.
2. The starting point or approach of the work was promising and had plausible

chances of success. These chances are explained in the paper.
3. Still, the goal was not met. The failure was not foreseeable during the im-

plementation phase of the work; it was apparent only from the evaluation
phase. (This rules out most purely theoretical work.)

4. There must be danger of somebody else trying a similar approach again, and
failing.

5. Both implementation and evaluation were carried out according to highest
scienti�c standards. These standards are documented in the paper.

6. At least part of the reason for the failure was understood in the evalua-
tion or in subsequent analysis. The explanation is given in the paper. This
explanation represents the scienti�c contribution of the paper.

FNR will be extremely selective. Any paper to appear in FNR must be
impeccable with respect to points (1) and (5). High standards will also be applied
to points (2), (3), and (4). As for point (6), the lesson learned must become clear,
but no cure needs to be known.

Articles should be as concise as possible and concentrate on goals, approach,
and reasons for failure instead of on technical details of implementation and
evaluation. The reviewers of a paper submitted to FNR will apply these criteria
when judging the contribution.

For further information see the FNR homepage at
http://wwwipd.ira.uka.de/fnr.

3.1 Additional remarks

Some points require particular emphasis: First, in order not to become a trash
can of failed low-quality research, FNR will be very demanding. FNR will only



have a signi�cant positive impact on the overall publication climate if it becomes
a prestigious place for publishing one's research.

Second, whether an initial idea was really \promising" and the failure \un-
foreseeable" does obviously depend on the researchers' previous knowledge; oth-
ers might have anticipated the problem. Here, similar reasonably high (but not
too high) standards will be applied as for conventional J.UCS contributions.

Submissions to FNR will be reviewed and published like submissions to
J.UCS, except that

{ the FNR review criteria will be applied,
{ the paper will appear with the subtitle \a contribution to the Forum for

Negative Results", which also must be used by the author for submitting to
FNR.

In particular, FNR contributions are in the same publication queue as J.UCS
contributions. There is no �xed minimum or maximum number of FNR contribu-
tions in one J.UCS issue. No article submitted to FNR will ever directly compete
with any non-FNR article submitted to J.UCS, as such competition could inval-
idate FNR's basic idea. Instead, when space becomes scarce, accepted articles
will usually be published in order of submission. The typical publication delay,
however, will be short compared to other high-class scienti�c journals.

4 Critique

Most people I talked to are in favor of the idea of having an explicit forum for
negative results. Some others, though, disapprove. This section discusses their
objections.
� Science is not about truth, it is about status, money, and power.
This objection was posed by a few and seems to be considered correct by many
| to some degree. However, all researchers I talked to also feel that science
should not be this way. Moreover, the contradiction between truth and personal
status that most people see connected with a failure is only a result of over-
emphasizing engineering success in Computer Science. Most researchers dislike
the contradiction; so why not try and open new opportunities for removing it?
FNR is such an opportunity.
� Nobody likes failures. (This one is closely connected to the one above.)
Sure, no researcher likes admitting that something just did not work. However,
most dislike disguise even more and will often prefer to analyze the failures they
had as failures instead of feeling pressed to discuss or mis-evaluate them into
successes.
� Knowing the reasons for a failure is a competitive advantage that
people will not give away. For a few research areas that are both very focused
and fast-moving, this may be true. In such an area, many research groups are
targeting the same problems using similar methods and the area is leaping from
success to success | and only success counts. In any really fast-moving area,
on the other hand, the usual publication delay is su�cient for protecting the
competitive advantage. Most areas of computer science are not critical in this
respect, anyway.
� A published failure may keep people from picking up the same idea
later. This fear is valid when a failure was only due to technological conditions



or constraints that might change later: If an idea was published as leading to a
negative result, wouldn't other researchers be deterred from trying the idea again
later? Wouldn't some successes be lost that way? No, they wouldn't | quite on
the contrary: The contribution of the respective FNR paper would be to make
the relevant technological constraints explicit and identify alternative conditions
under which the same idea would probably work well. Such a description would
foster, rather than discourage, picking up the idea again later, at exactly the
right time.
� High-quality negative results are also published elsewhere. Right.
Any paper FNR will accept would most probably also be accepted by other
high-class journals. But that is not the point. The point is that today writing a
paper in this way is daunting and getting it accepted is often unnerving. Hence,
only a fraction of all failures that could be instructive is actually published and
analyzed as negative results, thus damaging scienti�c progress. With FNR, more
such useful negative results would appear.

As we see, on close examination all of this critique is invalid. Nevertheless,
it may still adversely a�ect the success of FNR.

5 Conclusion

We cannot know in advance whether FNR will be accepted and will become
a scienti�c success. However, if we want to improve the scienti�c quality of
Computer Science research, we will have to give it a try.

Furthermore, J.UCS has an annotation facility whereby comments or addi-
tions can be attached to published articles. The annotation facility can be used
by everyone: select \Discussion forum" (http://www.iicm.edu/jucs annotations)
on the JUCS homepage, register, and submit. All annotations are reviewed to
ensure high quality. Discussions and additions bundled through the annotation
mechanism will further improve the scienti�c impact of FNR contributions.

Hence, the Journal of Universal Computer Science proudly announces the
Forum for Negative Results and encourages all authors to submit appropriate
high-quality papers.

I also encourage every CS researcher to contribute an additional argument
for or against FNR itself or an additional research war story, etc., by means of
an annotation to the present article.

References

[Brooks 1996] Fred P. Brooks. The computer scientist as toolsmith II. Communica-
tions of the ACM, 39(3):61{68, March 1996.

[Dennis 1980] Jack B. Dennis. Data ow supercomputers. IEEE Computer, 13:48{56,
November 1980.

[Fenton et al. 1994] Norman Fenton, Shari Lawrence Peeger, and Robert L. Glass.
Science and substance: A challenge to the software engineering community. IEEE
Software, 11(4):86{95, July 1994.

[Hwang and Briggs 1984] Kai Hwang and Fay�e A. Briggs. Computer Architecture and
Parallel Processing. McGraw-Hill, 1984.

[Iannucci 1990] Robert A. Iannucci. Parallel Machines: Parallel Machine Languages:
The Emergence of Hybrid Dataow Computer Architectures. Kluwer Academic Pub-
lishers, 1990.



[Prechelt 1996] Lutz Prechelt. A quantitative study of experimental evaluations of
neural network learning algorithms: Current research practice. Neural Networks,
9(3):457{462, April 1996.

[Salzberg 1997] Steven L. Salzberg. On comparing classi�ers: Pitfalls to avoid and a
recommended approach. Data Mining and Knowledge Discovery, 1(3), 1997.

[Tichy et al. 1995] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz.
Experimental evaluation in computer science: A quantitative study. Journal of Sys-
tems and Software, 28(1):9{18, January 1995. Also as TR 17/94 (August 1994),
Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany, ftp.ira.uka.de.


