
Appeared in "Proc. ICSE Workshop on Process Modeling and Empirical Studies of Software Evolution"

pp. 72-76, Boston, MA, May 18, 1997.

Documenting Design Patterns in Code

Eases Program Maintenance

Lutz Prechelt, Barbara Unger, Michael Philippsen

(prechelt,unger,phlipp@ira.uka.de)

Fakult�at f�ur Informatik, Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

Abstract

Software design patterns are a promising idea with many advocates. While subjective reports of

their usefulness are available, scienti�c proof is still missing.

We consider the case of programmers using design pattern documentation (in the form of com-

ments in the source program) during maintenance. Is such pattern documentation (PD) helpful for

understanding a program more quickly and designing better solutions for given maintenance tasks?

We describe a controlled experiment for investigating this question, present its results, and

conclude that design pattern documentation can speed up program changes as well as improve

their quality.

1 Background

Design patterns [3] are a promising approach to simplifying the design and construction as well as the

understanding and evolution of software systems. Design patterns are prepackaged design solutions

on the level of a few classes (\micro architectures"). They provide a solution approach for a class of

problems. Besides the solution(s), design patterns also discuss the context where they are appropriate

and the advantages and disadvantages of the solution variants.

Note that the new idea is not in the individual patterns itself (which are not meant to be new, but

known and time-proven solutions), but in their explicit documentation and use as design building

blocks.

The idea of design patterns is appealing and practitioners report subjectively that design patterns

(1) simplify communication between designers by providing a concise common vocabulary, (2) can be

used to record and reuse best practices, and (3) \capture the essential parts of a design in compact

form" [1].

However, no rigorous test has yet been presented that design patterns are useful. This paper is a

report on the �rst controlled experiment that investigates the bene�ts obtained from explicit use

(here: documentation) of design patterns. We shortly describe our experiment and its main results.

You will �nd an extensive description and evaluation of the experiment in [4].

1



2 Our Experiment

2.1 Hypothesis and Approach

The purpose of the experiment was to test whether well-documented programs could bene�t (during

program evolution) from additional documentation of the design patterns used.

We presented each subject with two programs and asked them to outline how certain extensions to

these programs could be made. One program had its design patterns documented, the other had not.

We asked the subjects to provide not the �rst solution they found, but the one that would result in

the cleanest software structure, and to take as much time as they wished.

2.2 Subjects and Environment

The 74 subjects were male Informatics students working towards the Diplom (M.Sc. in CS), 64 of

them already had a Vordiplom (B.Sc. in CS). They had taken a 6-week lecture and lab course on

Java, AWT (the Java GUI library), and design patterns just before the experiment (5 lectures of 90

minutes and about 50 hours of lab exercise). On average, their previous programming experience was

7.5 years using 4.6 di�erent languages with a largest program of 3510 LOC. Before the course, 69%

had previous nontrivial experience with object-oriented programming, 58% with programming GUIs.

The experiment was performed on January 25, 1997, in a single session of 2 to 4 hours. The programs

were available to the subjects as pretty-printed listings. The subjects had to write their solutions on

paper.

2.3 Programs Used

Both programs were written in Java using design patterns and were thoroughly commented. Program 1

(Element) was a library for handling And/Or-trees of strings and a toy application of it. It had

7 classes, spanned 7 printed pages (362 source lines, 133 of which were comments), and used the

Composite and the Visitor design pattern [3].

Program 2 (Tuple) was a GUI program for reading tuples

(name, �rst name, phone number) entered by the user and

showing them in di�erent views on the screen, see the screen-

shot on the right. It had 11 classes, spanned 10 printed pages

(565 source lines, 197 of which were comments), and used

the Observer and the Template Method design pattern [3].

2.4 Independent Variable and Experiment Controls

The independent variable in this experiment was the presence or absence of design pattern documen-

tation (PD) in the comments of the source programs. One of the programs given to each subject had

its design patterns documented in addition to the normal comments (31 lines of PD added to Element ,

20 lines added to Tuple), the other had no such additional documentation.

We balanced across the subjects the order of the two programs, the order of having and not having PD,

2



and the combination of both, i.e., we used a counterbalanced experiment design [2].1 Furthermore,

we also balanced the four resulting groups for expected subject ability, measured by the number of

points each subject received in the lab course, using strati�ed random sampling. The experiment was

conducted semi-blindly, i.e., the subjects did not know in advance whether a program would contain

PD or not, but there was no placebo.

2.5 Tasks

For Tuple each subject had to perform the following 5 subtasks: (1,2) Finding two spots for small

program changes (output format change, window size change), (3) creating an additional Observer

class similar to an already existing one using a Template Method2, (4) creating and installing such an

Observer similar to the two existing Observers, (5) creating an additional observer class similar to an

already existing one not using a Template Method.

For Element each subject had to perform the following 4 subtasks: (1) Finding the right spot for a

particular output format change, (2) giving an expression to compute the number of variants repre-

sented by a tree, (3) creating an additional Visitor class for computing the number of variants more

cheaply, similar to an already existing class computing depth information, (4) creating such a Visitor

and printing its result.

Subtasks 1 and 2 of both Tuple and Element are independent of PD; for the other subtasks, PD is

expected to help. For the class creation subtasks, only the interface of the class needed to be written;

the actual implementation was not required.

2.6 Measurements

For each task of each subject we measured the time taken by handing out and collecting the experiment

materials incrementally (per task). It is unclear how the time spent for general program understanding

could be distributed among the subtasks, so no subtask time information is available. For each subtask,

we graded the answers according to the degree of requirements ful�llment they provided. The grades

were expressed in points, much similar to a written exam (maxima: 2+3+8+4+6=23 points for the

subtasks of Tuple and 2+2+8+3=15 points for those of Element). Furthermore, we recorded an error

class code for each error made.

3 Results and Conclusions

The design of this experiment was extremely conservative; many design decisions biased the experiment

towards not showing any e�ects from adding PD:

1. The subjects knew they would participate in an experiment \about design patterns", so they were

very motivated to �nd patterns in the programs.

2. Furthermore, the subjects knew only few design patterns well; so even without PD they roughly

knew what they could expect.

3. The programs were rather small, so even without PD the subjects could achieve good program

understanding within a reasonable time.

1That is, group 1 (19 subjects) performed �rst Element with PD, then Tuple without PD; group 2 (18 subjects)

performed Tuple with PD, then Element without; group 3 (18 subjects): Element without, then Tuple with; group 4 (19

subjects): Tuple without, then Element with.
2Of course the task description did not explicitly mention that it was an Observer class that should be added etc.

3



mean means di�erence signi�-

with PD w/o PD (90% con�d.) cance

Variable P+ P� I p

Tuple:

time (minutes) 51.5 57.9 �22% : : :+ 0:3% 0.055

points 20.8 21.1 �6:0% : : : + 3:3% 0.35

relevant points 16.1 16.3 �8:0% : : : + 4:0% 0.35

points per hour 27.6 24.7 �6:1% : : : + 29% 0.14

Element:

time (minutes) 58.0 52.2 �3:0% : : : + 24% 0.094

points 11.1 10.4 �8:2% : : : + 22% 0.23

relevant points 8.5 7.8 �7:7% : : : + 23% 0.20

points per hour 12.8 14.7 �34% : : :+ 7:2% 0.14

time, correct solutions 46.9 45.4 �22% : : : + 27% 0.41

Table 1: (left to right:) Name of variable, arithmetic average P+ of sample of subjects provided with design
pattern information, ditto without, 90% con�dence interval I for di�erence P+ � P� (measured in percent of P�),
signi�cance p of the di�erence. \relevant points" are points excluding subtasks 1 and 2. As neither the time nor the
point distributions were normal, I and p were computed using resampling statistics with 10000 trials [5].

4. Due to the small program size, the pattern density in the programs was quite large. Therefore

one could �nd the patterns quickly even if they were not documented.

5. The programs were thoroughly commented, not only on the statement level, but also on the

method, class, and program levels. Thus, the subjects had su�cient documentation available for

program understanding even without PD.

6. All pattern-relevant tasks required adding functionality similar to existing functionality. So even

without PD, the new parts could be derived from analogous classes or statements.

Given these circumstances, we expect performance advantages from having PD to be much more

pronounced in real situations than in our experiment. Therefore, any signi�cant result found in the

experiment is a strong sign that PD in program documentation is really useful.

We found the following signi�cant results (summarized in Table 1):

Program Tuple: Subjects with and without PD solved the tasks similarly well, but the former were

signi�cantly faster (p = 0:055). With respect to pattern-relevant error classes, subjects with PD forgot

to register their new Observer more often in subtask 4 (�2 = 1:18, p = 0:14), while subjects without

PD more often made inheritance errors in subtask 5 (�2 = 1:16, p = 0:14). Other di�erences in

performance were not signi�cant.

Interpretation: In the given context, the tasks were simple enough that they were solved rather well

even without the PD. However, PD allowed subjects to �nd their way through the 11 classes more

quickly.

Program Element : Subjects with PD took signi�cantly longer to solve the tasks (p = 0:094), yet still

overall they had no signi�cantly better solutions, i.e., more points (p = 0:23) or \relevant points"

(p = 0:20). However, the size of the subgroups with completely correct solutions was 15 with PD

and only 7 without; this di�erence is signi�cant (�2 = 3:55, p = 0:03). The task time di�erence is

completely insigni�cant (p = 0:41) for the best 7 subjects (according to lab course performance) of

each group that had completely correct solutions.

Interpretation: For this smaller program, PD increased the time required for �nding a correct solution;

probably because the problem could more easily be solved by imitating a class already present in the

4



program than by understanding the design patterns used and constructing a solution: 42% of Element

subjects without PD said they did not search for patterns at all and 42%/47% did not recognize the

Visitor/Composite (Tuple: 32% non-searching and 32%/24% missed Observer/Template Method).

However, the imitation approach had one pitfall and promptly signi�cantly more subjects with PD

found a completely correct solution than without.

As we see, PD helped to improve either task completion time or solution quality, depending on the

kind of task and program. In a quantitative sense, these results are not dramatic. But given the

conservative design of our experiment, they indicate that documenting design patterns in software can

improve program maintenance.

Interestingly, according to our postmortem questionnaire, the presence or absence of PD inuenced

neither the perceived task di�culty nor the subjects' perceived ability for concentration on the task

| although on average the subjects reported to concentrate less well on their second task than on

their �rst.

It is unclear how these results will scale to more experienced software engineers and to programs of

industrial size and complexity, but we believe that in situations where design patterns are relevant

during maintenance, one would see bene�ts from PD that are at least as large as in the experiment.

Therefore, we recommend that when design patterns are used they should be explicitly documented

in the program code.

References

[1] K. Beck, J.O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch, and J. Vlissides.

Industrial experience with design patterns. In 18th Intl. Conf. on Software Engineering, pages

103{114, Berlin, March 1996. IEEE CS press.

[2] Larry B. Christensen. Experimental Methodology. Allyn and Bacon, Needham Heights, MA, 6th

edition, 1994.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[4] Lutz Prechelt. An experiment on the usefulness of design patterns: Detailed description and

evaluation. Technical Report 9/1997, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany,

April/May 1997. ftp.ira.uka.de/pub/techreports.

[5] Julien L. Simon. Resampling: The new statistics. Duxbury Press, Belmont, CA, 1992.

http://www.statistics.com.

Biography

Lutz Prechelt is a research associate with research interests in empirical software engineering (in par-

ticular design patterns and personal process improvement), benchmarking and quantitative methods,

and compiler construction for parallel processing.

Barbara Unger is a Ph.D. student whose interests are in empirical software engineering.

Michael Philippsen is a research associate with interests in compiler construction, in particular opti-

mizations for object-oriented parallel and distributed programming, and in software engineering, in

particular design patterns.

5


