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ABSTRACT

Pressure drag of obstacles in the atmospheric boundary layer is computed with a mesoscale numerical model
of the troposphere. Different parts of the drag can be separated from the numerical results: total pressure drag
is determined from the surface pressure distribution, hydrostatic drag from the temperature distribution in the
atmosphere, and form drag as a residual. The dependence of the different parts of the drag on the main influencing
parameters, such as geometric parameters, dynamical and thermal parameters, and the surface roughness, is
given. The influencing parameters are deduced from a scale analysis of the equation of motion. Wave drag due
to gravity waves and flow separation will not be considered in this paper.

The study shows among other points that there is a surface Rossby number similarity for form drag on
smooth obstacles, that there may be wave drag due to inertial waves even for neutral or unstable stratification
due to inertial waves, and that there is Reynolds number similarity for form drag only with respect to molecular
viscosity and not with respect to turbulent viscosity of the air. The results suggest the separation of form drag
into two parts: a viscous form drag due to turbulent viscosity of the air, and a turbulent form drag due to
additional production of turbulence in the vicinity ( mainly in the lee) of the obstacle. The distinction of different
drag producing mechanisms will help in the task of parameterization.

Parameterization using similarity theories is meaningful only for ensembles of obstacles. Here, isolated obstacles
are considered for simplicity, therefore, only the prerequisites for the parameterization are discussed in this
paper. The main result is that parameterization of pressure drag in terms of an effective roughness length using
Rossby number similarity theory will be possible only for the two parts of the form drag. All other parts of the
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drag have no corresponding mechanisms in the homogenous boundary layer.

1. Introduction
a. Previous work

Pressure drag (mountain drag) is one of the two sinks
in the atmospheric momentum budget. If this drag is
a subgridscale phenomenon in a numerical model (this
depends on the horizontal scale of the model) it has
to be parameterized. In order to do this the dependence
of the drag on gridscale parameters must be known.
In a recent paper (Emeis 1987, called E87 hereafter)
the author has computed with a numerical model the
pressure drag with neutral stratification over complex
terrain and presented an attempt to express this drag
by means of an effective roughness length. In order to
compare these results to experimental studies the length
scale L of the obstacles had been chosen in the order
of the boundary layer height 6, and the roughness length
Zo on the surface of the obstacles was kept fixed at a
rather high value typical for an area partly covered by
trees and forests. Furthermore, the shape of the obsta-
cles was sinusoidal and symmetrical. Under these as-
sumptions the height H of the obstacles and their spatial
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density 1/D were varied. Using the resistance law of
the Rossby number similarity theory a parameteriza-
tion of the effective roughness length was found de-
pending only on the mean slope H/L of the terrain
and the initial roughness length zy. The parameteriza-
tion was valid for closely spaced sinusoidal obstacles
with small to moderate slopes (H/L < 0.2) and fit
quite well to some observations over complex terrain.
The main input for this parameterization was the
dependence of the pressure drag on the mean slope H/
L of a single sinusoidal obstacle computed with a two-
dimensional numerical model. But there are other pa-
rameters that influence the drag on such an obstacle
too. Remembering the results of Nikuradse and Prandtl
(see Prandtl et al. 1984) of measurements of the drag
on smooth and rough plates and in pipes in a turbulent
flow, the drag coeflicient should depend on the Reyn-
olds number (decrease with increasing Re) and on the
surface roughness (increase with increasing zp) as long
as the obstacle surface can be considered aerodynam-
ically rough. For smooth plates and pipes the drag de-
pends only on the Reynolds number. This is equivalent
to the statement made by the Rossby number similarity
theory for the homogeneous boundary layer that for
small roughness lengths (i.e., high Rossby numbers
formed with the surface roughness length z,) the drag
coeflicient does not depend on the Rossby number.
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Varying the Reynolds number to smaller values than
in E87, a problem will be encountered if the geostrophic
wind is used as a scaling velocity. This scaling velocity
is desirable because it is an external parameter that can
easily be determined in larger-scale models when par-
ameterizing drag over inhomogeneous terrain as a
subgridscale phenomenon. The drag is proportional to
about the square of the incident velocity. As an incident
velocity the velocity at the height L above ground in
the undisturbed flow upstream has to be taken (Jackson
and Hunt 1975). The height L had been found by
Jackson and Hunt using analytical considerations. It
takes into account the vertical shear of boundary layer
flow. This is the reason why the ratio L/§ (4 is the
height of the boundary layer) becomes important here.
If L/4 is greater than unity the scaling velocity is always
the geostrophic wind (which is assumed to be vertically
constant for simplicity in the numerical model). For
L /6 smalier than unity the scaling velocity is from in-
side the boundary layer and thus nearly always smaller
than the geostrophic wind. Therefore, the drag coefhi-
cient formed with the geostrophic wind will decrease
more and more, the shorter the length scale of the ob-
stacle.

Simulations of the drag at much higher Reynolds
numbers than in E87 incorporate another parameter
that has been neglected so far, the Coriolis parameter

f. For increasing Reynolds numbers the Rossby num-
ber formed with the length scale of the obstacle de-
creases. If the Rossby number is below the order of
unity (neglecting a factor =), waves can be generated
even under neutral stratification. These are inertial
waves that produce a wave drag in addition to the form
drag considered up to this point.

This wave drag is not in contradiction to the findings
of Smith (1979) who found a lift force acting perpen-
dicular to the direction of the geostrophic flow at elon-
gated mountains but no drag. Because his calculations
were made under the assumption of quasi-geostrophy
(L < ug/f) on a f-plane, there was no disturbance of
the pressure field due to the presence of the mountain
and no inertial waves were excited. Waves and a re-
spective wave drag were produced only when he intro-
duced a B-plane. The present numerical model is not
quasi-geostrophic, so we have a pressure perturbation
and a wave drag due to inertial waves also on the f-
plane.

Neutral stratification has been considered thus far.
Thus the drag discussed so far has been (with the ex-
ception of the inertial waves) pure form drag due to
the production of turbulence in the direct vicinity of
the obstacle and the viscosity of the air. Generally the
atmosphere will be stratified, so the dependence of the
drag on the stratification has to be taken into account.
This may be easy for small deviations from neutral
stability and small obstacles. But for stronger stable
stratifications and larger obstacles things become much
more complicated. The drag will then be composed
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out of three contributions: the form drag that will be
the main topic in the following, the wave drag due to
gravity waves (that is fairly well understood from linear
and nonlinear analytic and numerical models, at least
for homogeneously stratified media with no shear and
no wavebreaking), and a hydrostatic drag that is due
to the blockage of colder air by the obstacle.

The term hydrostatic in this context should not be
mixed with the term hydrostatic in the approximation
of the Navier-Stokes equations. We use a nonhycro-
static numerical model here, and hydrostatic means
that this drag contribution is determined only from the
temperature distribution across the obstacle. Following
the five drag mechanisms (a to e) of Smith (1978),
form drag corresponds to mechanism a, wave drag to
b and c, and hydrostatic drag to d. Smith’s mechanism
e is not considered here.

Measurements of the total pressure drag of the Alps
for different synoptic situations are reported in Hafner
and Smith (1985). A list of various drag measurements
on different mountains and a list of several theoretical
and laboratory studies of the different drag mechanisms
can be found in Davies and Phillips (1985). They
found from ALPEX-SOP data (from March to April
1982) over the Alps along the Gotthard cross section
that blockage of colder air on the upstream side was
the prevalent drag mechanism and that wave drag was
only a sporadically significant contributor to the drag
during that period. Also Hafner (1987) made a de-
composition of the total drag into several components
from ALPEX-data and found that wave drag is more -
than one magnitude smaller than the total drag from
the surface pressure distribution.

Shao and Hantel (1986) computed from budget
studies vertical subsynoptic (i.e., subgridscale with re-
spect Ax = Ay = 63.5 km, Ap = 200 hPa and At = 1
d) momentum fluxes in the troposphere and lower
stratosphere over Europe for ALPEX-SOP. They found
no signal caused by the Alps in the upper troposphere
(400 hPa). This fits in the just mentioned results from
Davies and Phillips that blockage of colder air was more
important than the generation of lee waves. The block-
age effect is not connected to a vertical momentum
flux in the free atmosphere and therefore cannot be
detected from upper-tropospheric data.

b. Scope of this paper

The determination of the different parts of the pres-
sure drag in this paper is designed as follows: First, the
main influencing nondimensional parameters which
govern the different components of the total pressure
drag are deduced from a scale analysis of the equation
of motion. Then the numerical model is used to check
the validity of the scaling assumptions to include non-
linear processes in the drag production that do not fol-
low from the scale analysis, such as surface friction,
flow separation, and blocking, and to compute the
magnitude of the different parts of the drag. With the
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numerical results each of the different drag components
is described in terms of one or a combination of some
of the nondimensional parameters arrived at from the
scale analysis of the equation of motion. This descrip-
tion is a prerequisite for the parameterization of pres-
sure drag in larger-scale models.

The same numerical model as in E87 will be used
to investigate the aforementioned problems; it is a two-
dimensional nonhydrostatic mesoscale numerical
model of the troposphere with special resolution of the
boundary layer and a first-order turbulence closure
(Dorwarth 1986). From the output of the model after
the simulation has become more or less stationary, it
is possible to distinguish between the different parts of
the drag. The total pressure drag is computed from the
surface pressure distribution, the wave drag due to
gravity waves from the velocity correlations aloft, and
the hydrostatic drag from the temperature distribution.
The form drag with stable stratification can then be
determined as a residual.

The model is two-dimensional. Introducing a third
dimension will not add any new drag producing mech-
anisms to those already present with two dimensions.
But it is likely to change the magnitude of the different
drag components. This will especially effect the block-
ing of colder air that is assumed to be reduced consid-
erably if the flow can deviate horizontally and is not
forced to cross over the obstacle completely. For the
sake of simplicity and in order to keep the computa-
tional effort reasonable we use two dimensions. A study
by Smith (1989) shows that if the ratio of the length
scale perpendicular to the incident flow, to the length
in the direction of the flow is larger than about 5 then
the types of flow are nearly independent from this ratio.
Therefore our results can be applied to obstacles where
this ratio is greater than 5.

This study deals with obstacles smaller than the Alps
(L = 102 to 10* m), but for these scales no experi-
mental data on the different drag mechanisms are
known to the author. The aim is to clarify the nature
of the different parts of the drag, to study their depen-
dence on external parameters, and to show which parts
are important for mesoscale obstacles. This paper will
concentrate on neutral stratification and small devia-
tions from neutral stratification without flow separa-
tion. “Small” in this context will mean that the strat-
ification will not be that strong for a given length of
the obstacles that vertical propagating gravity waves
form.

Obstacles with a length scale of about 102 m are too
short to produce any gravity wave pattern under typical
atmospherically stable stratifications. This is one reason
why we exclude gravity wave drag here. Also, different
parts of the drag cannot be decomposed linearly, as is
done in this study, if wave pattern is present. Gravity
wave drag, and its influence on the other parts of the
total pressure drag, will be the subject of a separate
paper (Emeis 1990).
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Section 2 derives the different parts of pressure drag
from a scale analysis of the equation of motion and
introduces the influencing nondimensional parameters.
Section 3 describes the numerical model and shows
how the different parts of the drag are computed from
the numerical results. Sections 4 and 5 present nu-
merically calculated values for the pressure drag. Sec-
tion 4 deals with neutral stability and section 5 with
small deviations from this stability. The numerical re-
sults are displayed as functions of the nondimensional
parameters introduced in section 2. The parameteriza-
tion issue is addressed in section 6 followed by the con-
clusions in section 7.

2. Scale analysis of pressure drag

Total pressure drag is computed from the surface
pressure distribution on the obstacle contour:

a0

1
WD=—

dh _L”"_P
3L P grdx=oT | | 55 Pz

(1)

Here, h(x) is the topography, L is half of the width of
the obstacle, and p(x, z) is the deviation of the pressure
from a basic state without obstacle. The double integral
on the right is taken over the whole 2 D domain. The
drag is normalized with the length of the sloped ter-
rain 2.

From the horizontal equation of motion we get for
stationarity:

ff % dxdz = —f puwdx — f pu'w'dx
ax

+ [ [ oz + [ [ [ 0% vasayaz. - @)

Here u, v, and w are deviations of the wind components
due to the presence of the obstacle from the basic state
without obstacle; 1’ and w' are fluctuations due to
subgridscale, turbulent motions. The last term appears
only if a B-plane is introduced (8 = df/3dy). The first
two terms on the right-hand side emerge from the ver-
tical advection. Horizontal advection has been ne-
glected because we are interested in the vertical trans-
port of momentum down to the surface, and because
we assume that the effects of the obstacle on the flow
have vanished at the domain boundaries.

The variables are nondimensionalized using the
horizontal and vertical length scales L and H of the
obstacle and three velocity scales (incident motion: U,
a turbulent velocity scale: 2.466 - (v, U?/L)'/3, and a
buoyant velocity scale: ¢'/2L). Each velocity is mul-
tiplied by H/L in order to have only the contribution
that is due to the presence of the obstacle.
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u=UH/Lu* u' = 2.466(»,U*/L)"*H/Lu'*
v = UH/Lv* w' = 2.466 (v, U?/L)'>H/Lw'*

w= ¢ 2LH/Lw* p=pU?H/Lp*
X = Lx*
y=Ly*
z = Hz*

The star denotes nondimensional quantities; o is a
stability parameter (=g/6-086/9z). The bouyant ve-
locity scale makes sense only for stable conditions, then
o = N? (N is the Brunt-Viisild frequency), and 4 is
potential temperature.

Here, v, is a turbulent viscosity introduced in analogy
to the molecular viscosity. In contrast to the molecular
viscosity which is a property of the fluid, the turbulent
viscosity is a field variable that describes the interaction
between different layers of the fluid due to turbulent
velocity fluctuations. Therefore, », is not an external
variable, and a scaling using this variable becomes a
local scaling. In order to return to external variables,
which is necessary for a parameterization scheme for
larger-scale models, », has been kept constant (=5 m?

s™') when it is used as a scaling parameter. The value

has been chosen as a mean value of the exchange coef-
ficient computed by the numerical model for the flow
domain. The numerical results will show that this pro-
cedure is justified in principle. With a constant », we
now have a complete analogy to the molecular vis-
cosity.

The turbulent velocity scale comes from dimensional
arguments. The pressure drag due to turbulent fluc-
tuations arises when an obstacle of length L has to be
passed. The deformation of the velocity field necessary
for this passing over is counteracted by the turbulent
viscosity. This results in dissipation . We put for the
turbulent velocity fluctuations '

u' =e3L'V3, (3)
The most simple process of dissipation is isotropic tur-
bulent dissipation which can be written as

a 2
¢= 15u,(—£) .

p (4)

Dimensional arguments lead to

2
€= 151’1 F . (5)
Putting this into the expression for #’ results in the
velocity scale for the turbulent fluctuations:
u' = 2.466-v 30373, (6)

Defining a nondimensional stability parameter
o*'/2 = g2 /U, an obstacle Rossby number Ro,
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= U/ fL, a planetary Rossby number Ro, = U/ BL2,
and a turbulent Reynolds number Re, = UL/, [Ten-
nekes (1973) calls it a Townsend number] we get for
the pressure drag

! 2H2 1/2
WD=‘2-pU —L—z —g*!/ u*wrdx *

6.082 1
~Re7’ WEW R * + = ff v*dx*dz*
t o

+R+)p”f v*dx*dy*dz*). (7

Forming a drag coefficient by normalizing with the ki-
netic energy of the incident velocity yields

2
Cw= %(—«*”zf wrwrdx*

6.082 1
~ o | wrwdxt 4 o f f v*dx*dz*
1 o

+ %% fff v*dx*dy*dz*)‘ (8)

The term with ¢*!/2 is present only if we have waves
that transport momentum downward. For neutral sta-
bility and no rotation (8) reduces to

H? 6.082

Coyn=——S5=—73 | u'*w*dx*. (8a)

For stably stratified, irrotational, inviscid flow using
o*!/2 = Fr (Froude number) we get:

2

Cws = —%fu*w*dx* (8b)
which equals the linear solution for hydrostatic irro-
tational mountain waves if the integral turns out to be
—m /2. Wave drag has been kept in this scaling analysis
for the sake of completeness but it is not considered
further in this paper.

The third term on the right-hand side of (8) describes
the effect of inertial waves and the last term planetary
Rossby waves. Not included in this linear approach
(i.e., that the different parts of the drag, so far, can be
decoupled from each other) is the blockage of colder
air masses by an obstacle (this would violate the con-
dition that effects of the obstacle vanish far away from
the obstacle) and the production of additional turbu-
lence in the direct vicinity of the obstacle if the surface
of the obstacle is aerodynamically rough (this could
not be separated from the viscous form-drag by scale
analysis). These processes introduce a second Froude
number Fr, = NH/U and a surface Rossby number
Ro; = U/ fzy, respectively. Additional turbulence
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means turbulence that is produced by the presence of
the obstacle in addition to the subgridscale turbulence
(in terms of the used numerical model, see section 3)
in the homogeneous boundary layer of the incident
flow. This may be subgridscale turbulence again, which
is formed in the layer close to the obstacle contour and
in the lee of the obstacle (this turbulence is handled
by the turbulence closure scheme of the numerical
model and is mainly due to the surface roughness and
the increased wind shear over the obstacle), or gridscale
turbulence, which is resolved by the numerical model
in the form of a separation bubble in the lee of the
obstacle. The latter is not (with the exception of section
4a) considered in this study.

Thus the drag coeflicient Cj can be regarded as a
function of seven main parameters:

H
Cw =f(z— , Re,, o*, Fr;, Ro,, Ro,, Ro,,). 9)

The length and height scales L and H are defined by
the shape of the sinusoidal obstacle:

H (Ix=xal 1\
281 I 21r

| x = Xl
for ——2 <1
or L

r

h(x) =« (10)

| X~ X

0 for 2

> 1

\

where L is half of the width of the obstacle and H is
the crest height.

For the velocity scale U, as mentioned already in
the Introduction, two choices are possible. Using the
external parameter u, introduces the boundary layer
height & (for the homogeneous boundary layer we have
8 = «kuy/ f, where « is von Karman’s constant and u,
is a function of z, and u, from the Rossby number
similarity theory) as an additional parameter. Here, 6
will be normalized with the length scale L. Inserting
in (8) yield

|14
c, V) = 22

1
3PS’
H )
=f(l)('z s Re,, o'*, Fl‘h, ROO, ROS, ROI,, z)

(11)

The other possibility is to use the internal parameter
u(z = a+ L), which is the scaling velocity for the inner
layer in two-layer and three-layer analytical models
(e.g., Jackson and Hunt 1975). The present numerical
simulations with sinusoidal obstacles have shown that
the influence of the boundary layer height & is removed
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almost completely if « is chosen to equal 0.3. Inserting
this velocity scale in (8) defines

Wp

Cw® = 1
3 pu?(0.3L)

H
_ f(z)(__L , Re,, o*, Fry, Ro,, Ro,, Ro,,).
(12)

The parameters Re,, Ro,, Ros, Ro,, ¢*!/2 and Fr,,
will all be formed with U = u,. The length scale will
be chosen short enough that Ro, is larger than 1 and
Ro, is much larger than 1.

3. Numerical model

The two-dimensional version of the mesoscale nu-
merical model KAMM (Karlsruhe atmospheric me-
soscale model) developed at the Institut fiir Meteorol-
ogie und Klimaforschung has been used for this study.
The model is a prognostic, nonhydrostatic, primitive-
equation gridpoint-model with a constant horizontal
and a variable vertical gridwidth (Dorwarth 1986;
Emeis 1987). In the following the vertical gridwidth
varies from 14 m in the lower boundary layer to some
hundred meters in the upper troposphere, and the hor-
izontal gridwidth is between 500 and 10 000 m. The
length of the time step is controlled by the model in
order to obey the CFL-criterion. It is usually between
3 and 10 seconds. The number of gridpoints is 122
and 30 in the horizontal and vertical directions re-
spectively. The height of the model domain is 8000 m.

Turbulence closure is done by computing an ex-
change coefficient from a two-equation model for eddy
viscosity (Mellor and Yamada 1982). There are two
equations, one for the turbulent kinetic energy and one
for the mixing length. The latter had been changed
from a diagnostic to a prognostic equation by Dorwarth
(1986). This turbulence model is a “first-order clo-
sure.”

Boundary conditions are a no-slip condition at the
lower boundary, which is identical to the topography
(the coordinate system follows topography ), radiation
conditions at the lateral boundaries, and a damping
layer at the top of the model domain. Sound waves are
filtered out by forcing the wind field free of divergences.

The model is driven by an external force on the syn-
optic scale. This force is represented by a prescribed
geostrophic wind in the whole model domain. The
geostrophic wind is vertically constant in this study,
so we simulate a barotropic atmosphere. The geo-
strophic wind 1s always perpendicular to the obstacle
which is assumed to be indefinitely long in the cross-
wind direction.

The model computes nonhydrostatic deviations
from a hydrostatic horizontally homogeneous initial
state without an obstacle (basic state). The initial state
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is given by a one-dimensional model! with identical
physics, and is defined by the geostrophic wind, the
vertical temperature profile, the surface roughness, the
surface temperature, and the height of the model do-
main,

A flow with stable stratification is initialized with a
stable one-dimensional temperature profile and a sur-
face temperature that fits into the vertical temperature
gradient in order to have near-zero surface heat flux.
The stability is constant in the vertical. A flow with
unstable thermal conditions is initialized with a neutral
temperature profile and a surface temperature that is
higher than the air temperature near the ground. From
this initial state an unstable temperature profile in the
two-dimensional model forms during the simulation.
So we have no inversion at the top of the unstable
boundary layer. The temperature gradient in the lower
boundary layer (a few times the height of the obstacle)
at the end of the simulation is then used, forming the
parameter that describes the thermal stratification o.

The two-dimensional model with topography is it-
erated until the solution becomes stationary. The pres-
sure, wind, and temperature fields from this stationary
solution are then used to compute the pressure drag
and its components. For neutral stratification and me-
soscale obstacles where the Coriolis force in unimpor-
tant, a stable solution is reached after 2 to 4 hours of
simulation time. For nonneutral stratifications a stable
solutions cannot be expected a priori because the model
always looses or gains energy at the surface. Despite
this we have found a more or less stable solution after
a few hours (at least 4) from which we took the fields
necessary to compute the drag. We think that the usage
of this “quasistationarity” is justified because in real
nature the external forces and conditions are never ex-
actly constant for longer periods.

The shape of the obstacle had already be defined in
(10). It was always situated in the center of the two-
dimensional domain. Each slope of the obstacle was
represented by at least 5 gridpoints in x-direction, and
each lateral boundary of the model domain was at least
5 times half of the width of the obstacle away from the
foot of the obstacle.

The total pressure drag is computed from (1). For
the computation of the hydrostatic pressure drag due
to the blockage of colder air masses at the upwind side
of the obstacle, a hydrostatic surface pressure deviation
is found by vertical integration of the deviation of the
temperature from the basic state. This pressure devia-
tion is then inserted into (1) to yield the hydrostatic
part of the total pressure drag. The form drag and the
wave drag due to inertial waves are found as a residual
from the total pressure drag and the hydrostatic pres-
sure drag. This linear decomposition is thought to be
valid as long as no waves occur. The nonlinear inter-
action between form drag and wave drag and between
hydrostatic drag and wave drag will be dealt with in
another paper (Emeis 1990).
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4. Numerical results for neutral stratification

a. Dependence of the drag on the geometric parameter
H/L

For neutral conditions, neglecting Ro,, we should
have from (12)

H
CP neutral = ,‘é\’m(z-,Re,, Ro,, RQ,). (13)

The dependence of the drag on H/L for neutral con-
ditions, no rotation, Re, ~ 5103, Ro, ~ 2+ 10°, and
L/é ~ 2 was presented in E87. The main result was
the drag coefficient for a single sinusoidal mountain
(001 <H/L =~ 0.6):

H 2.17
Cy = 0.358 (Z) ,

and a similar expression for a single valley (H < 0).
Equation (14 ) also includes cases with flow separation.
For H/L = 0.3 flow separation sets in and the drag is
enhanced due to the production of the wake circulation.
Therefore, the dependence of C W)O on H/L is some-
what larger than with the second power. For small H/
L with no flow separation, Cp:/)o could be written as
~0.2-(H/L)?, now having the squared dependence
on the slope, as expected from (8a). Here, 6.082/
Re,?/3 is about 0.02 which means that the integral over
the dimensionless wind fluctuations in (8a) has to come
out at about 10, which is one order of magnitude too
large for a term containing only quantities scaled to
an order of one. This indicates that the scaling is not
completely correct. We will come back to this point at
the end of section 4b.

The drag coefficient for closely spaced sinusoidal
obstacles (0.1 =~ H/L ~ 0.3) was found to be

H 1.48
z) -

Here, there is no longer any difference between moun-
tains and valleys. This result was the basis for the es-
timation of the effective roughness length zg.q:

(14)

cw'! = 0074( (15)

1n(z°°“) 205 (16)
20
Assuming that the dependence of Cw'? ,i=1,20n

H/L is independent of the other parameters (a state-
ment that can only be proven by experiments) we can
normalize Cy"” with Cyn:

(17)

b. Dependence of the drag on the length scale and the
surface roughness

As already discussed in the introduction the effective
roughness length in E87 had been derived for a fixed
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length scale L in the order of the boundary layer height
6. In order to find the dependence of the drag on Re,,
Ro,, and Ro;, the length scale L and the roughness
length z, (this also leads to a variation of the boundary
layer height ) have been varied in the following, keep-
ing the slope H/L constant and the stratification neu-
tral.

A typical result is presented in Fig. 1. For H/L = 0.1
the normalized drag coefficient C(p:/ & from (17) is plot-
ted here against the logarithms of the obstacle Rossby
number Ro, and the surface Rossby number Ro;.

This plot can be divided into several parts bounded
by two nearly vertical and one horizontal line. The
nearly vertical line to the right is the line L/ = 0.9
that separates small obstacles inside the boundary layer
(region C) and larger obstacles whose influence reaches
higher up than the boundary layer height (region B).
The nearly vertical line to the left separates the larger
mountains from those where the Coriolis force is im-
portant to the flow and the resulting drag, (region A)
and those where the Coriolis force is negligible (region
B). The horizontal line at about Ro, = 5 X 10° divides
smooth (subregion 1) and rough obstacles (subregion
2) from each other.

It was already mentioned in the Introduction that
principally we want to keep the geostrophic wind as a
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FIG. 1. Drag coefficient C'WWk [see (11) and (17)] for slope H/L
= 0.1 as function of obstacle Rossby number and surface Rossby
number from numerical simulations. Thick lines separate different
regions Al, BI, ... (see text).
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scaling parameter because it is an external parameter.
But the effects of the surface roughness and the Coriolis
force on the drag can be made clearer by skipping this
demand. Therefore, Fig. 2 shows C 2R

Now the line L/ = 0.9 is no longer of any impor-
tance and the figure is divided in four subregions only.
In region B the Coriolis force has no effect on the drag
whereas in region A the rotation of the earth is im-
portant. Again a horizontal line at Ro, = 5 X 107 is
separating smooth and rough obstacles. From the nu-
merical results it seems that for rough obstacles the
line between the subregions A2 and B2 is vertical (con-
stant Ro, = 3 X 1072), but that for smooth obstacles
the trough line of minimal drag is slightly dependent
on the surface roughness length. This fact will be looked
at again when discussing the role of the Coriolis force
further below.

We will start the physical explanation of Fig. 2 with
subregion B1. In this region the obstacle has a smooth
surface, the surface roughness had no influence on the
magnitude of the drag, and no additional turbulence
is produced in the direct vicinity of the obstacle. The
Coriolis force is negligible here and therefore the drag
cannot depend on the obstacle Rossby number Ro,.
But we still find a variation with Ro,,. As 1, is constant
and f is unimportant here this is a varition with 1/L.
The remaining drag mechanism that varies with length
scale L is the term due to the viscosity of the air
streaming over the obstacle. As the usual Reynolds
number formed with the length scale L and the mo-
lecular viscosity is clearly beyond the critical value for
the transition to turbulence, the airflow over the ob-
stacle is a turbulent flow and thus cannot depend on
this Reynolds number. Therefore, the drag must be
proportional to the turbulent viscosity of the air and
to the displacement of the flow by the obstacle. It is
not the slope of the obstacle contour but its curvature
that is important to the displacement. For fixed slope
the curvature decreases with increasing length scale L.

Thus the drag decreases with increasing turbulent
Reynolds number Re,. We will find the influence of
the turbulent viscosity again in section 5 when we in-
troduce stratification.

By a simple consideration it is shown that pure tur-
bulent viscosity without surface friction can produce
drag. The most ideal type of flow over an obstacle is
potential streamflow that produces no drag. The surface
pressure distribution is characterized by a pressure
minimum exactly over the crest of the obstacle. For a
symmetric obstacle the pressure distribution is also
symmetric to the crest line, so that Eq. (1) always gives
exactly zero. Potential flow theory assumes that the air
has no viscosity. Introducing viscosity now (a turbulent
viscosity in our case represented by turbulent velocity
fluctuations u/?) changes the surface pressure distri-
bution. It is assumed that the incident turbulent airflow
upstream of the obstacle is in equilibrium with the sur-
face having turbulent velocity fluctuations #/3.When



468

this airflow hits the obstacle the flow is forced to be
vertically convergent over the upwind slope and ver-
tically divergent over the downwind slope of the ob-
stacle. On the other hand, convergence suppresses tur-
bulence and divergence supports turbulence, i.e.

uf —ul <0 for %>O
(18)
u? —ul>0 for %<0.

For the pressure distribution on the surface in a tur-
bulent flow the following relation holds (Prandtl et al.
1984, p. 195):

o8 _dm_ w?
ax oOx ”ax

where P is the pressure at the surface or in boundary
layerzs at the edge of the turbulent zone and w'?
= uy.

This implies that surface pressure increases from the
value of potential flow theory on the upwind slope of
the obstacle and decreases on the downwind slope
leading to a resulting pressure drag. The pressure min-
imum is shifted towards the leeward slope.

This consideration again leads to the conclusion that
the pressure drag should be proportional to (H/L)? as

(19)
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FIG. 2. As Fig. 1, but for drag coefficient Cr,
see (12) and (17).
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shown in (8). With the pressure having a component
proportional to the slope [(18) and (19)] the integral
in (1) is proportional to the square of the slope.

The aforementioned process has been proven by an-
alytical calculations by Sykes (1980). He presented a
triple-layer model for the flow over a gentle hill, In the
outer layer he introduced turbulent viscosity with a
second-order closure. As this outer layer does not feel
the surface roughness this calculation can be compared
to the situation in subregion B1 in Fig. 2. He also found
an asymmetric pressure distribution for a symmetrical
obstacle at the lower boundary of the outer layer and
a resulting pressure drag proportional to the square of
the slope.

In summary, the drag coefficient Cy in subregion
B1 on a smooth single obstacle in neutral stratification
depends only on H/L and Re, and does not depend
on Ro;. This behavior corresponds to the Rossby
number similarity of the homogeneous boundary layer
where the drag coefficient becomes independent of the
surface roughness for large values of the Rossby
number.

There is a fixed relation between Re; and Ro, if 1,
£, and », are kept constant as done in this paper:

1

— =144
500 Ro.

(20)

Neglecting the term with Ro,, from (8) neutral con-
ditions are,

6.082

H2
T2\ T pAL2/3
Re?

2
C(VV) neutral — L2 (

u'*w *dx *

1
*Jx* (
Ro. ffv dx dz). (21)

Inserting (20) into this expression yields

co _H( 6082
W neutral — Lz Re,2/3

Re, ff * Jy- % ] % ‘
+144500 v¥dx*dz* ). (22)

This shows that the drag coefficient for neutral con-
ditions, no flow separation, and aerodynamically
smooth obstacles (no influence of Ro;) can be written
as a function of H/L and Re, only.

Figure 3 displays the drag coefficient C Wmfrom {13)
versus the turbulent Reynolds number. The parameters
varied in Fig. 3 are the surface roughness (solid lines)
and the Coriolis parameter (broken lines). Thus the
solid lines are cross sections through Fig. 2 for constant
Ro,. Figure 3 is plotted for H/L = 1072 but shows the
same structural behavior as Fig. 2. This is to show that
the effects discussed here do not depend on the slope
of the obstacle (at least when no flow separation takes
place).

+

u'*w'*dx*
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FIG. 3. Drag coefficient Cwm for siope H/L = 0.01 as function
of turbulent Reynolds number. The plot is valid for different surface
Rossby numbers (open symbols for different roughness lengths, full
circles indicate that more than two symbols fall together) and for
different values of the Coriolis parameter f.

Figure 3 reminds one of the well-known figures of
Nikuradse and Prandtl (see Prandtl et al. 1984). There
the drag on a plate also decreased with increasing
Reynolds number in a turbulent flow and increased
with increasing surface roughness. These features are
prominent here again, with the only exception that with
increasing length scale L the drag is finally rising again.

STEFAN EMEIS

469

This is due to inertial gravity waves that are excited by
the obstacle. Thus we find a wave drag with neutral
stratification.

This fact is elucidated in Fig. 4, which shows the
dispersion relation of vertical wavenumber / of verti-
cally propagating waves that depend on the stability
parameter o, the incident flow speed U, and the hor-
izontal wave number k of the obstacle:

o — k*U?

/ 2= m k 2; (23)
see €.8., Klemp and Lilly (1980, p. 120). Here ¢ is the
stability parameter defined in section 2 (for stable
stratification is ¢ = N?). For this figure the flow speed
had been kept constant at 10 m s~! and the Coriolis
parameter was set to f = 10™% s, Areas with /? less
than zero have been shaded. Here vertically propagat-
ing waves do not form and there is no wave drag. In
the upper left we find the gravity waves. This area is
bounded for long horizontal wavelengths at the line 2
= k2U?, and for smaller deviations from neutral strat-
ification by the ¢ = kK2U?.

The inner region of this area where /> ~ ¢/U? is
the region of hydrostatic mountain waves, Approaching
the line ¢ = k2U? we enter the nonhydrostatic regime,
and approaching /2 = k2U? the rotation of the earth
becomes important. The influence of stratification on
the pressure drag is dealt with in section 5.

In the lower right corner of Fig. 4 we find inertial
waves. This area is bounded for shorter horizontal
wavelengths by line /2 = k*U? and for stronger stable
stratification by ¢ = k?U?. These waves are vertically
propagating for weakly stable, neutral, and unstable
stratifications. We see that the possibility for wave drag

o - ku?
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og,q * = log,o( UL f2
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F1G. 4. Logarithm of the square of vertical wavenumber / as function of stratification (logs,
o negative for unstable conditions) and horizontal wavenumber k multiplied by wind speed

U, f=10*s"and U= 10ms~".
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is not restricted to stable stratification. The breakdown
of these waves under unstable conditions may initiate
convection (He and Wu 1988, personal communica-
tion).

For unstable conditions the vertical wavenumber is
approximately /2 = -- ok?/ % (o negative ). For neutral
stratification the vertical wavenumber converges to /2
= k*U?/f? for decreasing k, which means it is de-
creasing very rapidly. Here (f2 » k?U?), we reach the
regime of quasi-geostrophic motion where the pressure
field is balanced by the Coriolis force and is changed
by obstacles only in the manner that potential vorticity
is conserved. This is the case that is dealt with in Smith
(1979) who found a lift force on the mountain per-
pendicular to the incident flow but no drag force for
f = const. Using Smith as an example, a drag force
was possible only if the condition f = const. was relaxed
and a $-plane was introduced. Now Rossby waves can
form, which again produces a real drag force on the
obstacle. This mountain torque is important in the
global atmospheric angular momentum budget as a
result of the long, north-south-oriented mountain
ridges [see e.g., White (1949) and Lorenz (1967)].
These waves form for U%k? < U?B2/f? = 10712572
with 8= 10" m™~!s!

Rossby waves are far outside the scope of the present
numerical mesoscale model. In the right half of Fig. 3
we see just the beginning of the inertial wave regime
where U%k? is some 107", The broken lines for different
values of f in Fig. 3 show that the rise in drag with
increasing Reynolds number really depends on the Co-
" riolis parameter. The increase of the irrotational drag
is proportional to Re, %3,

Comparing the numerical results with (22) shows
that the first integral with nondimensional quantities
is of the order of 10 (as already found in section 4.1)
and the second one is of the order of 1. The increase
of the irrotational drag proportional to Re, ®% corre-
sponds nearly exactly to Re,?/3 in (22), and the increase
of the drag with Ro,™! can also be found from the
numerical simulations presented in Fig. 3.

Thus the numerical results prove the functional de-
pendencies of the drag on Re, /3 and Ro, ™!, as found
from scaling considerations in section 2, to be right.
Merely the viscous form drag comes out one order of
magnitude larger than expected from the scale analysis.
We think that the main reason for this is that a value
too low for », has been assumed and that the defor-
mation of the velocity field takes place on a shorter
length scale than L (this was input in (5) when we
derived the turbulent velocity scale in section 2).

Also, the influence of the surface roughness can be
studied from Fig. 3. For small roughness (surface
Rossby number greater than about 5 - 10°) the curves
in the plot are nearly indistinguishable. For greater
roughness the drag is increasing. This separation of
smooth and rough obstacles is the same as for the drag
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coefficient for smooth and rough plates in the figures
by Nikuradse and Prandtl.

Businger (1973) in reviewing Nikuradse’s work gives
the following values for smooth and rough surfaces of
the parameter u,z,/v (this can be regarded as the
Reynolds number of the smallest eddies in the flow):
the surface is smooth for u,zy/v < 0.13 and is com-
pletely rough for u,zo/v > 2.5. This ratio compares a
viscous length scale at the surfae v/ u, with the surface
roughness z,.

In our case we have to compare the turbulent length
scale v,/ Ugesr (Userr = (U2+ Wp/p)'/?) with the surface
roughness

UxeffZ0
1 43 )

(24)

Taking tyeq =~ 0.5 m s~ and v, = 5 m? s™! we have
smooth obstacles for uy.gzo/v; < 1072 and completely
rough obstacles for uyegzo/v, > 107}, -

The only separation between the curves for smooth
obstacles occurs in the vicinity of the drag minimum.
This minimum is shifted to greater Reynolds numbers
(i.e., smaller obstacle Rossby numbers) for smaller
surface roughness. This means that the onset of the
formation of inertial waves is slightly dependent on
surface roughness. This was already deduced from Fig.
2 where the separating line between the subregion Al
and B1 was not exactly vertical. The smooth obstacles
correspond to the subregions Al and B1 in Fig. 2, the
rough obstacles to A2 and B2.

The dependence of the form drag on the surface
roughness, in the manner shown in Figs. 2 and 3, leads
to the conclusion that the form drag can be partitioned
into two parts: a part due to the viscosity of the air and
a part due to the production of additional turbulence
in the vicinity of the obstacles. The first (called viscous
form drag) is independent of the surface Rossby num-
ber, the latter (called turbulent form drag) is nearly
independent of the turbulent Reynolds number and is
only present for rough obstacles.

5. Dependence of the drag on tﬁe stratification

The most prominent feature of nonneutral stratifi-
cation, the wave drag with stable stratification, will not
be discussed here. Our main focus is on form drag,
with some consideration given to the influence of the
hydrostatic contribution to the drag. Again as in section
4, we will see that turbulent viscosity of air will play
an important role in form drag.

The main parameter determining the drag coefficient
CW(Z), except the slope, will be the nondimensional
stability parameter o* = ¢L%/u,”. For stable conditions
o* is identical to Fr2. For o* < 0 the stratification is
unstable. For 0 < ¢* < =2 the stratification is stable
but no vertically propagating waves are excited. For
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FIG. 5. Drag coefficient Cwm for slope H/L = 0.1 and Ro,
= 1.7 - 10? as function of the stability parameter o*. The plot is valid
for different surface Rossby numbers (open symbols for different
roughness lengths, full circles indicate that more than two symbols
fall together). Thick curves show total pressure drag, thin curves
viscous plus turbulent form drag, and dashed—-dotted curves the hy-
drostatic part of the drag.

o* > w2 waves are excited and the wave drag becomes
important. Here, we will consider only ¢* < w2.

Because form drag comes from turbulent viscosity
of the air and turbulence production in the vicinity of
the obstacle a clear dependence on stratification can
be expected. Under stable stratification turbulence is
suppressed and thus form drag should be lowered; un-
der unstable conditions turbulence is enhanced and
form drag should be increased compared to neutral
stratification.

Figure 5 shows Cwm from (12) for an obstacle 50
m high and with slope H/L = 0.1 plotted against the
stability parameter o*. The range of the stability pa-
rameter is restricted to values where gravity wave drag
does not occur. For ¢* > 0 the stability parameter has
been determined from the mean vertical temperature
gradient, which is constant for the whole model domain
(it is therefore an external parameter). For o* < 0 the
local temperature gradient between 15 m and 160 m
in the undisturbed flow upstream of the obstacle has
been taken (see section 3 how the model has been in-
itialized for the different stratifications). Three different
measures for the pressure drag are plotted in Fig. 5—
the total pressure drag calculated from the surface
pressure distribution, viscous plus turbulent form drag
(stable stratification only), and hydrostatic drag.

The following features are obvious from these results:

1) Minimum total pressure drag is found for slightly
stable stratifications. This is because form drag is de-
creasing more rapidly with ¢* than the hydrostatic drag
is increasing for weakly stable situations.

2) Again, as in Fig. 3, a distinction between smooth
and rough obstacles can be made. For z; < 0.1 m the
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obstacles are smooth and the drag does not depend on
surface roughness. For z, > 2 m the obstacles are rough
at least for unstable and netural conditions.

3) For stable stratification the difference in the form
drag between rough and smooth obstacles is vanishing
with increasing stability. This means that the produc-
tion of additional turbulence in the vicinity of the ob-
stacles is suppressed.

4) The turbulent viscosity of the air (expressed by
the exchange coefficient for momentum) is changing
with stratification. Therefore the variation of ¢* in Fig.
5 can be seen as a variation of the turbulent Reynolds
number because #, and L had been kept constant. As
the form drag increases with increasing turbulent vis-
cosity {(more unstable) we again have as in Fig. 3 an
inverse proportionality between drag and turbulent
Reynolds number.

Taking the variation of the exchange coefficient for
momentum with stratification at about 160 m above
ground from the numerical model and using it as a
measure for the variation of the turbulent viscosity and
thus for the variation of Re, with stability, we find that
Cw'® for small deviations from neutral conditions is
roughly proportional to Re, %, which is quite close to
the value found for neutral stratification (Re,%%).

We can describe the pressure drag for small devia-
tions from neutral conditions, no flow separation, and
aerodynamically smooth obstacles by (21) if we allow
for the variation of », (and the Re,) with stratification.
This implies that we have Re, = Re,(¢*) for nonneutral
stratification. Therefore we cannot express Ro, in terms
of Re, as we have done in (22).

The results for the form drag for nonneutral strati-
fication in Fig. 5 can be compared to experimental
data from Graf et al. (1984). They collected data at a
fixed platform in Lake Geneva using a 12-meter-high
mast and computed from these measurements the drag
coeflicient for the surface of the lake at different strat-
ifications. Their results are compared with our findings
in Fig. 6.

The stability parameter z/L, has been determined
here in the same manner as Grafet al. (1984). For this
procedure the Richardson number is formed

. du\?
Ri=o¢ (az)

where the velocity u is again taken at 15 m and 160 m
height above ground in the undisturbed flow upstream
of the obstacle. Then an empirical relation between Ri
and z/L, is used:

z _[7.6Ri for Ri<O0

L, |60Ri for Ri>O0.

(25)

(26)

It can be seen in Fig. 6 that form drag from gentle
obstacles behaves similarly to the drag of a rough (lake)
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FIG. 6. Drag coefficient for form drag normalized with drag coef-
ficient for form drag under neutral stability (C(ﬁ)N) as function of z/
L,. Thin curve; fitted by eye through numerical results (different
symbols); thick curve: experimental data from Graf et al. (1984).

surface under varying stratification. For larger devia-
tions from neutral stability the scatter becomes con-
siderable, probably due to the crude estimation
ofz/L,. ’

6. Parameterization of pressure drag

In large-scale numerical models like operational
forecast models and global climate models pressure
drag on obstacles with horizontal scales less than a few
10° m is a subgridscale phenomenon which has to be
parameterized. Drag due to Rossby waves, quasi-geo-
strophic lift forces, and in regional models (Ax ~ 10°
m), inertial waves, can be resolved. Therefore,
subgridscale processes that have to be dealt with are
both parts of the form drag, the wave drag due to gravity
waves, and the hydrostatic drag due to the blockage of
colder air masses.

One possibility for including such subgridscale effects
is to consider them as an additional surface roughness.
Attempts to parameterize subgridscale drag in the same
way as friction have been made by Fielder and Panofsky
(1972), Kustas and Brutsaert (1986), and others who
computed an effective roughness length under neutral
to unstable conditions from aircraft and radiosonde
data.

In E87 the Rossby number similarity theory has been
used to compute an effective roughness length from
numerical model output for neutral stratification. We
want to investigate now if this concept can be extended
to nonneutral stratification.

The resistance law (Blackadar and Tennekes 1968)

2

K 1/2
In Ro=A—1nCD+(—2——Bz) (27)
Cp

u =46/L, (L, Monin~-Obukhov length ) is known from
experimental and theoretical studies. Using (27) (Fig.
7) shows the drag coefficient Cp as a function of the
surface Rossby number (Ro = Roy) for different strat-
ifications u. The values for 4(x) and B(u) have been
taken from Fiedler (1972). Figure 7 is an extension of
a similar figure from Wippermann (1972) to smaller
surface Rossby numbers which ended at Ro = 10°,
This extension has been done to include effective
roughness length greater than about 1 m in the figure
(f =1X10*s7" and v, = 8.5 m s™! have been used
to compute the scale on the left ordinate). The curve
labeled u = O has been used to determine the effective
roughness length in E87 from an effective drag coefli-
cient
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FG. 7. Surface Rossby number (effective roughness length ) as
function of geostrophic drag coefficient Cp and stratification u
= §/L, (L, Monin-Obukhov length). The dashed-dotted line
indicates the height of the boundary layer for neutral stratification
for different values of Cp. 1, = 8.5 ms™'.
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Cpetr (30)
with Wp, from (1).

The possible effective roughness lengths that can be
computed from effective drag coeflicients using (27)
are restricted for two reasons. First, for mathematical
reasons the curves end at the indicated positions be-
cause the square root in (27) becomes imaginary.
However, second, the determination of a roughness
length is only meaningful for a logarithmic wind profile.
This logarithmic wind profile normally extends be-
tween about 10+ z; and about Yo+ 6. So Zp.q must be
smaller than about Y406 to allow for a logarithmic
profile (see also Fig. 7). Therefore zy.¢ cannot be larger
than 20 to 30 m. This is equivalent to surface Rossby
numbers not much smaller than 104, This is obvious
as the resistance law is valid only in the asymptotic
limit of large Ro;. From this consideration a value given
by Thompson (1978) is questionable. He found from
measurements over complex terrain of wind profiles
for neutral stratification an effective roughness length
of about 35 m. Presumably his winds were not in a
dynamic equilibrium with the surface and the topog-
raphy.

But another fact becomes clear from Fig. 7. For sta-
ble stratification no meaningful effective roughness
lengths can be determined from (27) using effective
drag coefficients from (30), because the drag coeflicient
is nearly independent of the Rossby number and
therefore of the roughness length too. On the other
hand, as seen from the previous section, an effective
drag coefficient would increase rather rapidly for stable
stratification once hydrostatic effects and gravity waves
become important.

Two reasons are responsible for the failure of (27).
First, the Rossby number similarity theory has been
developed for horizontal homogeneity where no hy-
drostatic drag or wave drag can evolve. Second, the
influence of obstacles under stable stratification are not
restricted to the boundary layer when gravity waves
are excited. Finally, momentum is extracted from lay-
ers far above the boundary layer. Such a process ob-
viously cannot be described by a boundary layer theory.

From the aforementioned it is clear that the total
pressure drag under stable stratification cannot be pa-
rameterized by an effective roughness length. Instead,
the pressure drag in this case can be expressed in terms
of an effective drag coefficient.

One part of the pressure drag under stable stratifi-
cation that can be parameterized using the Rossby
number similarity theory still remains—the viscous
form drag that is due to the viscosity of the air passing
over the obstacle. As seen in Fig. 5 this part of the drag
is rapidly decreasing when the stratification becomes
more stable. The effective drag coefficient due to this
part of the drag entering (27 ) is converging against the
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drag coeflicient over flat terrain and thus the effective
roughness length remains within reasonable values.

For unstable stratification, only form drag exits (at
least for length scales shorter than U/ f) and the Rossby
number similarity theory remains applicable. Here, the
form drag is larger than under neutral stratification
and from Fig. 7 it is clear that we need a larger increase
in the effective drag coefficient to reach the same ef-
fective roughness length than under neutral conditions,
if we assume that the roughness length itself is inde-
pendent of the stratification.

The introduction of an effective roughness length is
only meaningful for an ensemble of obstacles, not for
an isolated obstacle. The parameter study in the two
previous sections are only the first step towards a com-
plete parameterization of pressure drag. They were
mainly designed to clarify the nature of the different
parts of the drag.

The findings from sections 4 and 5 can be applied
to CW(z). Assuming that the different parameters are
independent of each other we will have, for the form
drag without flow separation for an isolated obstacle
(mountain),

H\*> [6.082 1
(2) = — . .
Cw (L) (Re,2/3 10 + Ro,

. 1) + 2(Roy).
30

The second term (f;) is a correction of the turbulent
form drag on rough obstacles. Both terms together are
S@ from (12) for Fr, = 0 and Ro, approaching infinity.
The dependence on ¢* is contained in Re,(o*).

7. Conclusions

Obstacles in the atmospheric boundary layer produce
a pressure drag on the atmosphere. It can be divided
into drag and lift forces. Including viscosity of the air,
surface roughness, stratification, and rotation, drag
can be broken into six parts (see also Fig. 8, Ro,
~ 5 X 105)1

1) Form drag due to the turbulent viscosity of the
air (viscous form drag).

2) Form drag due to the production of additional
subgridscale turbulence in the vicinity of rough obsta-
cles (turbulent form drag) (also, for steeper obstacles
the production of gridscale turbulence in form of sep-
aration bubbles in the lee of the obstacles).

3) Wave drag due to gravity waves for stable strat-
ification.

4) Wave drag due to inertial waves.

5) Wave drag due to Rossby waves.

6) Hydrostatic drag due to the blockage of colder
air masses.

Wave drag due to Rossby waves is outside the scope
of this paper. It forms part of the global angular mo-
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FIG. 8. Schematic decomposition of flow resistance. Below the different parts of the drag
the main scaling parameters are listed (Ro, = 5-10°).

mentum budget and is resolved in larger-scale models;
therefore a parameterization is not necessary.

Wave drag due to inertial waves is a feature mainly
present under neutral and unstable stratifications but
is restricted to large horizontal wavelengths of the ob-
stacles (L at least 10-100 km). This scale can partly
be resolved by regional models (Ax =~ 50-100 km).
The onset of inertial wave drag was found in the present
model at about Ro, = 30. For Ro, = 10 inertial wave
drag is included in the parameterization for the drag
of a single obstacle (31).

Wave drag due to gravity waves is not addressed
here.

The two components of form drag have been the
main scope of this paper. As shown in E87 the main
parameter scaling this drag is the square of the slope
H/ L of the obstacle. The present paper deals with the
additional parameters that influence the drag, too.
Keeping the slope constant, these are surface roughness,
stratification, viscosity of the air, and length of the ob-
stacle. Normalizing the pressure drag with the kinetic
energy of the geostrophic flow introduces another pa-
rameter, the height of the boundary layer 6. As the
scaling velocity has to be taken from a height above
ground, which is a function of the length scale of the
obstacle (Jackson and Hunt (1975)), L/é is an im-
portant parameter for the drag.

Removing the effects of H/L and L /§ the following
statements can be made about the form drag of this
study:

1) The turbulent form drag due to additional pro-
duction of subgridscale turbulence in the vicinity of
the obstacle (mainly on the lee side) depends strongly
on surface roughness. For small surface roughness the
obstacle can be regarded as aerodynamically smooth
and this part of the form drag vanishes. The remaining
part of the form drag is independent of surface rough-
ness and we have Rossby number similarity. Thus, this
similarity theory can be extended from flat to complex
terrain in the case of pure form drag for small surface
roughness.

2) The viscous form drag is decreasing for increasing
length scale L of the obstacle and for increasing strat-
ification (from unstable to stable). The dependence of
the viscous form drag on stratification can be compared
to the variation of the surface drag coefficient u, /u(z)
with stability from experimental data over a lake. This
again shows that viscous form drag behaves like fric-
tional drag.

3) For large Ro, (=30) and fixed H/L (no flow
separation ) the form drag over an obstacle is similar
to the frictional drag of a laminar flow over a rough
plate if » is substituted by », and Re by Re,. Form drag
with flow separation is similar to turbulent flow over
a rough plate with the above mentioned substitutions.

4) “Viscosity > here is the turbulent viscosity of the
air, not molecular viscosity, because the latter should
not depend on stratification. Furthermore, the Reyn-
olds number formed with molecular viscosity is clearly
beyond the critical value for the onset of turbulent mo-
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tion. Finally, outside the thin laminar surface layer the
present numerical model knows only the turbulent
viscosity in terms of exchange coefficients computed
from the turbulent closure for the Navier-Stokes equa-
tions. Thus we have the case of a similarity with respect
to the usual Reynolds number (no dependence on the
molecular viscosity) but no similarity with respect to
the turbulent Reynolds number (dependence on the
intensity of subgridscale turbulent motion).

5) This dependence of the viscous form drag should
bring about the following possibility: from a measure-
ment of the pressure drag for an obstacle with known
geometry, it should be possible to determine the tur-
bulent viscosity of the air for different stratifications.
Unfortunately, because pressure drag is one bulk value
for the whole flow domain influenced by the obstacle,
only a mean turbulent viscosity could be computed for
the domain.

6) The form drag computed from the numerical
model depends on the turbulent closure of the model.
Because the production of additional turbulence in the
lee with steeper obstacles is more sensible to the tur-
bulent closure than the mean viscosity of the air (for
flat obstacles this should not differ very much from the
values for homogeneous terrain), the viscous form drag
should not depend decisively on the turbulent closure
of the numerical model.

7) The form drag calculated from the numerical
model results shows the dependence on the nondi-
mensional parameters H/L, Re,, and ¢* as expected
from the scaling of the equation of motion in section
2. The exact magnitude of the drag gives hints to im-
prove this scaling procedure. The coincidence of the
numerical results with the scaling leads to the param-
eterization of the form drag (and inertial wave drag)
for one isolated obstacle in (31).

8) The measuring of pressure drag for known strat-
ification, roughness length, and geometry of the obsta-
cle is a means by which to check the parameterization
of turbulence in a numerical model. As already men-
tioned in the Introduction no experimental data on the
different parts of the drag for mesoscale obstacles are
known to the author.

The hydrostatic drag only appears under stable
stratification. It is a function of Fr, rather than of Fr.

Parameterization of pressure drag in larger scale
models (in the same manner as surface friction ) is pos-
sible only for form drag because only this part of the
drag can be compared to the drag over homogeneous
terrain. All other parts of the drag have no correspond-
ing mechanisms in the homogeneous boundary layer.
They have to be described by additional terms in the
model equations that are not present in the equations
for the homogenous boundary layer.

Future work will extend the numerical studies to
ensembles of obstacles in order to complete the task
of parameterization. A first step towards this aim was
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presented for a very limited range of parameters in
Emeis (1987).
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APPENDIX
Symbols
A(u) stability dependent constant
B(u) stability dependent constant
Cp drag coefficient for surface friction u, /| v,|
Cw  drag coeflicient for pressure drag, see (8)

Fr Froude number NL/u,

Froude Number NH/u,

H maximum height of obstacle, see (10)

L half of width of sinusoidal obstacle, see (10)
L, Monin-Obukhov length

N Brunt-Viisild frequency

Re Reynolds number u,L/v

Re; turbulent Reynolds number u,L/v,
Ro, obstacle Rossby number u,/fL

Ro, planetary Rossby number u,/ BL?
Ro;  =Ro, surface Rossby number u,/ fzo

U velocity scale

Wp  pressure drag normalized with length of sloped
terrain, see (1)

f Coriolis parameter

h(x) topography, see (10)

k horizontal wavenumber, see (23)

/ vertical wavenumber, see (23)

p pressure, deviation from a basic state without
obstacle

B north-south gradient of Coriolis parameter

8 height of boundary layer «u,/f

€ dissipation

K van Karman’s constant (=0.4)

i stability parameter 6 /L,

v molecular viscosity of air

v turbulent viscosity of air

v stability parameter g/8 - 39/dz, = N? for stable
conditions

o* nondimensional stability parameter = Fr? for

stable conditions

REFERENCES

Blackadar, A. K., and H. Tennekes, 1968: Asymptotic similarity in
neutral barotropic planetary boundary layers. J. Atmos. Sci.,
25, 1015-1020.



476

Businger, J. A., 1973: Turbulent transfer in the atmospheric surface
layer. Workshop on Micrometeorology, D. A. Haugen, Ed.,
American Meteorological Society, 67-100.

Davies, H. C., and P. D. Phillips, 1985: Mountain drag along the
Gotthard section during ALPEX. J. Atmos. Sci., 42, 2093-2109.

Dorwarth, G., 1986: Numerische Berechnung des Druckwiderstands
typischer Gelidndeformen. Ber. Inst. Meteorol. Klimaf. Karlsruhe,
No. 6, 152+XII pp. (Available from: Institute fiir Meteorologie
und Klimaforschung, Kaiserstr. 12, D-7500 Karlsruhe 1, Fed.
Rep. of Germany.)

Emeis, S., 1987: Pressure drag and effective roughness length with
neutral stratification. Bound.-Lay. Meteor., 39, 379-401.
——, 1990: Surface pressure distribution and pressure drag on
mountains. Submitted to: Meteorol. Atmosph. Phys. (Special
issue ‘International Conference on Mountain Meteorology and

ALPEX".)

Fiedler, F., 1972: Der EinfluB3 der Baroklinitit auf das Widerstands-
gesetz in einer diabatischen Ekman Schicht. Beitr. Phys. Atl-
mosph., 45, 164-173 (in English).

——, and H. A. Panofsky, 1972: The geostrophic drag coefficient
and the “Effective Roughness Length.” Quart. J. Roy. Meteor.
Soc., 98, 213-220.

Graf, W. H., N. Merzi and C. Perrinjaquet, 1984: Aerodynamic drag:
Measured at a Nearshore Platform on Lake of Geneva. Arch.
Met. Geoph. Bioklim., A33, 151-173.

Hafner, T. A., 1987: Experimentelle Untersuchungen zum Druck-
widerstand der Alpen. Ber. Inst. Meteorol. Klimaf. Karlsruhe,
No. 9, 217 pp. (Available from: Institut fiir Meteorologie und
Klimaforschung, Kaiserstr. 12, D-7500 Karlsruhe 1, Fed. Rep.
of Germany.)

, and R. B. Smith, 1985: Pressure drag on the European Alps

in relation to synoptic events. J. Atmos. Sci., 42, 562-575.

He, H., and C. Wu, 1988: Personal communication.

Jackson P. S., and J. C. R. Hunt, 1975: Turbulent wind flow over a
low hill. Quart J. Roy. Meteor. Soc., 101, 929-955.

Klemp, J. B., and D. K. Lilly, 1980: Mountain waves and momentum

JOURNAL OF APPLIED METEOROLOGY

VOLUME 29

flux. In: Orographic Effects in Planetary Flows. GARP Publ.
Ser., 23, WMO, 115-141.

Kustas, W. P., and W. Brutsaert, 1986: Wind profile constants in a
neutral atmospheric boundary layer over complex terrain.
Bound.-Layer Meteorol., 34, 35-54.

Lorenz, E. N., 1967: The nature and theory of the general circulation
of the atmosphere. WMO No. 218, TP 115, 161 pp.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulent
closure model for geophysical fluid problems. Rev. Geophys.
Space Phys., 20, 851-875.

Prandtl, L., et al, 1984: Fiihrer durch die Stdmungslehre. Vieweg,
Braunschweig, 622 pp.

Shao, Y., and M. Hantel, 1986: Subsynoptic vertical momentum
flux in the atmosphere over Europe. Bonner Meteorol. Abhandl.,
33, 159 pp. (Available from : Meteorologisches Institut, Auf
dem Hiigel 20, D-5300 Bonn 1, Fed. Rep. of Germany.)

Smith, R. B., 1978: A measurement of mountain drag. J. Atmos.
Sci., 35, 1644-1654.

——, 1979: Some aspects of the quasi-geostrophic flow over moun-
tains. J. Atmos. Sci., 36, 2385-2393.

——, 1989: Mountain-induced stagnation points in hydrostatic flow.
Tellus, 41A, 270-274.

Sykes, R. 1., 1980: An asymptotic theory of incompressible turbulent
boundary layer flow over a small hump. J. Fluid. Mech., 101,
647-670.

Tennekes, H., 1973: Similarity laws and scale relations in planetary
boundary iayers. Workshop on Micrometeorology, D. A. Haugen,
Ed., American Meteorological Society, 177-216.

Thompson, R. S., 1978: Note on aerodynamic roughness length for
complex terrain. J. Appl. Metecr., 17, 1402-1403.

White, R. M., 1949: The role of mountains in the angular momentum
balance of the atmosphere. J. Meteor., 6, 353-355.

Wippermann, F., 1972: Empirische Formeln fiir die universellen
Funktionen M(u) und N(u) im Widerstandsgesetz einer baro-
tropen und diabatischen planetarischen Grenzschicht. Beitr.
Phys. Atmosph., 45, 305-311 (in English).



