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Operator Exponentials on Hilbert Spaces

Christoph Schmoeger

Abstract

Let H be a complex Hilbert space and let L(H) be the Banach algebra of all

bounded linear operators on H. In this paper we consider the following class of

operators:

�̂(H) = fS 2 L(H): S is a scalar type operator and

�(S) \ �(S + 2k�i) � fk�ig for k = 1; 2; : : :g.

The main results of this paper read as follows:

1. If T; S 2 �̂(H) and eT eS = eSeT then T 2S2 = S2T 2.

2. If S 2 �̂(H), T 2 L(H) and eT = eS then TS2 = S2T .

Math. Subject Classi�cation: 47A10, 47A60
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1 Terminology and results

Throughout this paper letH denote a complex Hilbert space and L(H) the Banach algebra

of all bounded linear operators on H. For A 2 L(H) the spectrum and the spectral radius

of A are denoted by �(A) and r(A), respectively. The set of eigenvalues of A is denoted

by �p(A). For the resolvent set of A we write �(A). We use N(A) and A(H) to denote the

kernel and the range of A, respectively.

An operator S 2 L(H) is called a scalar type operator if S admits a representation

S =

Z
�(S)

�E(d�);

where E(d�) denotes integration with respect to a spectral measure E(�) on H. See [1],

[2] and [14] for properties of spectral measures and scalar type operators.

If A 2 L(H) is normal (AA� = A�A) then A is a scalar type operator and the values of

the spectral measure of A are selfadjoint projections (see [1], Theorem 7.18).

J. Wermer [14] has shown that the scalar type operators on H are those operators which

are similar to normal operators. More precisely, Wermer has shown that for every �nite

set S1; : : : ; Sn of commuting scalar type operators on H there is a selfadjoint operator

1



B 2 L(H) with a bounded everywhere de�ned inverse such that the operators BSiB
�1,

i = 1; : : : ; n, are all normal.

We write �(H) for the class of all scalar type operators on H. In the present paper we

consider the following class of operators:

�̂(H) = fS 2 �(H) : �(S) \ �(S + 2k�i) � fk�ig for k = 1; 2; : : :g:

Now we state the main results. Proofs will be given in Section 3, in Section 4 we present

some corollaries.

Theorem 1.1 If T 2 �̂(H), S 2 L(H) and eT eS = eSeT then eST 2 = T 2eS. If in addition

�p(T ) \ fk�i : k = 1; 2; : : :g = ; then eST = TeS.

Theorem 1.2 If T; S 2 �̂(H) and eT eS = eSeT then T 2S2 = S2T 2.

Theorem 1.3 Suppose that T; S 2 �̂(H) and that eT eS = eSeT .

(a) If �p(T ) \ fk�i : k = 1; 2; : : :g = ; then TS2 = S2T .

(b) If �p(T ) \ fk�i : k = 1; 2; : : :g = �p(S) \ fk�i : k = 1; 2; : : :g = ; then TS = ST .

For related results concerning the equation eAeB = eBeA see [10], [11], [12] and [15].

Theorem 1.4 Suppose that T; S 2 L(H), T + S 2 �̂(H) and that

eT+S = eT eS = eSeT :

If �p(T + S) \ fk�i : k = 1; 2; : : :g = ; then TS = ST .

Theorem 1.5 If S 2 �̂(H), T 2 L(H) and eT = eS then TS2 = S2T .

If in addition �p(S) \ fk�i : k = 1; 2; : : :g = ; then TS = ST .

For related results concerning the equation eA = eB see [3], [9] and [11].

2 Preparations

In this section we collect some results which we need for the proofs of the theorems in

Section 1.

Proposition 2.1 Suppose that A 2 L(H) is normal.

(a) If � 2 C then (A� �)(H) = (A� � �)(H).
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(b) If B 2 L(H) then

E(�(A) \ �(B))(H) =
\

�2�(B)

(A� �)(H);

where E(�) denotes the spectral measure of A.

Proof. (a) Since A is normal, A� � is normal. Exercise 12.36 in [8] gives the result.

(b) is shown in [7, Theorem 1], see also [6].

Let A 2 L(H). The map ÆA : L(H)! L(H), de�ned by

ÆA(C) = CA� AC (C 2 L(H))

is called the inner derivation determined by A. It is clear that ÆA is a bounded linear

operator on L(H) with kÆAk � 2kAk.

Throughout this paper let f denote the entire function f : C ! C given by

f(z) =

(
z�1(ez � 1); if z 6= 0;

1; if z = 0:

Let MA = f� 2 �(ÆA) : f(�) = 0g.

Proposition 2.2 Let A 2 L(H).

(a) If MA = ;, then f(ÆA) is an invertible operator on L(H).

(b) If � 2 MA then � is a simple zero of f and there is j 2 Z n f0g with � = 2j�i.

(c) MA is a �nite set, MA � f�2�i;�4�i; : : :g.

(d) If MA 6= ; and MA = f�1; : : : ; �pg with �j 6= �k for j 6= k then

N(f(ÆA)) = N(ÆA � �1)� : : :�N(ÆA � �p):

(e) �(ÆA) = f�� � : �; � 2 �(A)g.

(f) eÆA(C) = e�ACeA for all C 2 L(H).

(g) f(ÆA)(ÆA(C)) = e�ACeA � C for all C 2 L(H).

Proof. (a) If MA = ;, then f(�) 6= 0 for all � 2 �(ÆA), thus f(ÆA) is invertible.

(b), (c) and (d) are shown in [11].

(e) follows from [4], and Proposition 6.4.8 in [5] shows that (f) holds.

(g) follows from (f) and zf(z) = f(z)z = ez � 1.
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Proposition 2.3 Let A be a normal operator in L(H) and let E(�) be its spectral measure.

If �0 2 C , C 2 N(ÆA � �0), D 2 N(ÆA + �0) then

C(H) � E(�(A) \ �(A� �0))(H)

and

D�(H) � E(�(A) \ �(A� �0))(H):

Proof. From CA � AC = �0C we get AC = C(A � �0). Put B = A � �0. Now take

� 2 �(B). Then

(A� �)C(B � �)�1 = AC(B � �)�1 � �C(B � �)�1

= CB(B � �)�1 � �C(B � �)�1

= C(B � �)(B � �)�1 = C;

thus C(H) � (A� �)(H). Since � 2 �(B) was arbitrary, we derive

C(H) �
\

�2�(B)

(A� �)(H):

Proposition 2.1(b) implies now that

C(H) � E(�(A) \ �(B))(H) = E(�(A) \ �(A� �0))(H):

Now suppose that D 2 N(ÆA + �0), hence DA = (A � �0)D = BD. Therefore D�B� =

A�D�. A similar computation as above shows that for � 2 �(B�) we have

(A� � �)D�(B� � �)�1 = D�;

thus

D�(H) �
\

�2�(B�)

(A� � �)(H):

Since �(B�) = f� : � 2 �(B)g, we get from Proposition 2.1 that

D�(H) �
\

�2�(B)

(A� �)�(H) =
\

�2�(B)

(A� �)(H)

= E(�(A) \ �(B))(H) = E(�(A) \ �(A� �0))(H):

The following propositions are of central importance for our investigations.
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Proposition 2.4 Let A be a normal operator in L(H) and suppose that

�(A) \ �(A+ 2k�i) � fk�ig for k = 1; 2; : : : :

If k 2 N n f0g, C 2 N(ÆA + 2k�i) and D 2 N(ÆA � 2k�i) then

AC = k�iC = �CA

and

DA = k�iD = �AD:

Proof. Put �0 = �2k�i. From C 2 N(ÆA � �0) we get from Proposition 2.3 that

C(H) � E(�(A) \ �(A+ 2k�i))(H):

Since �(A) \ �(A+ 2k�i) � fk�ig,

E(�(A) \ �(A+ 2k�i))(H) � E(fk�ig):

From Theorem 12.29 in [8] it follows that E(fk�ig) = N(A� k�i). Thus

C(H) � N(A� k�i);

hence AC = k�iC. From CA� AC = �2k�iC we conclude that CA = �k�iC = �AC.

For D 2 N(ÆA � 2k�i) = N(ÆA + �0) we get from Proposition 2.3 that

D�(H) � E(�(A) \ �(A + 2k�i))(H) � N(A� k�i):

Thus AD� = k�iD�. Therefore AD�x = k�iD�x for each x 2 H. The normality of A gives

A�D�x = �k�iD�x, hence A�D� = �k�iD�, thus DA = k�iD. From DA � AD = 2k�i

we derive

AD = DA� 2k�i = �k�iD = �DA:

Proposition 2.5 Suppose that S 2 �̂(H) and k 2 N n f0g.

(a) If C 2 N(ÆS + 2k�i) then SC = k�iC = �CS.

(b) If D 2 N(ÆS � 2k�i) then DS = k�iD = �SD.

(c) If U 2 N(f(ÆS)) then SU + US = 0.

(d) If �p(S) \ fn�i : n = 1; 2; : : :g = ; then N(f(ÆS)) = f0g.
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Proof. We know that there are operators X and A in L(H) such that X is invertible in

L(H), A is normal and

S = X�1AX:

Therefore we have S�� = X�1(A��)X for each � 2 C and �(S) = �(A) and �(S��) =

�(A� �). Since S 2 �̂(H), we derive that

(�) �(A) \ �(A+ 2n�i) � fn�ig

for n = 1; 2; : : :.

(a) From CS � SC = �2k�iC, we get

CX�1AX �X�1AXC = �2k�iC;

therefore (XCX�1)A � A(XCX�1) = �2k�i(XCX�1). This shows that XCX�1 2

N(ÆA + 2k�i). From (�) and Proposition 2.4 we see that

AXCX�1 = k�iXCX�1 = �XCX�1A;

hence SC = k�iC = �CS.

(b) Similar.

(c) Follows from (a), (b) and Proposition 2.2(d).

(d) Let n 2 Nnf0g. Since n�i 62 �p(S), we see from (a) that N(ÆS+2n�i) = f0g. In view of

Proposition 2.2(d) it remains to show that N(ÆS � 2n�i) = f0g. Take D 2 N(ÆS � 2n�i)

and put ~D = XDX�1. As in the proof of (a) we see that ~D 2 N(ÆA � 2n�i). From

Proposition 2.3 it follows that

~D�(H) � E(�(A) \ �(A+ 2n�i))(H):

By (�) we get ~D�(H) � E(fn�ig) = N(A� n�i). Since �p(A) = �p(S) and n�i 62 �p(S),

it follows that N(A� n�i) = f0g. Thus ~D� = 0, hence D = 0.

3 Proofs

Proof of Theorem 1.1. Use Proposition 2.2(g) to see that

f(ÆT )(ÆT (e
S)) = e�T eSeT � eS = 0;

hence V = ÆT (e
S) = eST � TeS 2 N(f(ÆT )). Proposition 2.5(c) shows that

0 = TV + V T = TeST � T 2eS + eST 2 � TeST = eST 2 � T 2eS:

If �p(T ) \ fk�i : k = 1; 2; : : :g = ;, then by Proposition 2.5(d), V = 0, thus eST = TeS.
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Proof of Theorem 1.2. It follows from Theorem 1.1 that T 2eS = eST 2. By Propositi-

on 2.2(g) we derive

f(ÆS)(ÆS(T
2)) = e�ST 2eS � T 2 = 0;

hence U = ÆS(T
2) = T 2S � ST 2 2 N(f(ÆS)). Proposition 2.5(c) gives now

0 = SU + US = ST 2 � S2T 2 + T 2S2 � ST 2 = T 2S2 � S2T 2:

Proof of Theorem 1.3.

(a) We know from Theorem 1.1 that eST = TeS, thus

f(ÆS)(ÆS(T )) = e�STeS � T = 0;

therefore TS � ST 2 N(f(ÆS)). Use again Proposition 2.5(c) to see that

0 = S(TS � ST ) + (TS � ST )S = TS2 � S2T

(b) Proposition 2.5(d) gives N(f(ÆS)) = f0g. Hence TS = ST .

Proof of Theorem 1.4. Proposition 2.2(g) shows that

f(ÆT+S)(ÆT+S(e
T )) = e�(T+S)eT eT+S � eT

= e�Se�T eT eT+S � eT

= e�SeSeT � eT = 0;

therefore U = eT (T+S)�(T +S)eT = eTS�SeT 2 N(f(ÆT+S)). Since N(f(ÆT+S)) = f0g

(Proposition 2.5(d)), it follows that U = 0, hence eTS = SeT , therefore

f(ÆT+S)(ÆT+S(S)) = e�(T+S)SeT+S � S

= e�Se�TSeT eS � S

= 0:

Hence we see that S(T + S)� (T + S)S = ST � TS 2 N(f(ÆT+S)) = f0g.

Proof of Theorem 1.5. Since

f(ÆS)(ÆS(T )) = e�STeS � T = e�TTeT � T = 0;

we have TS � ST 2 N(f(ÆS)), thus, by Proposition 2.5(c)

0 = S(TS � ST ) + (TS � ST )S = TS2 � S2T;

hence TS2 = S2T .

If �p(S) \ fk�i : k = 1; 2; : : :g = ;, we see from Proposition 2.5(d) that N(f(ÆS)) = f0g,

thus TS = ST .

7



4 Corollaries

Corollary 4.1 If A 2 L(H) then

A is normal , eAeA
�

= eA+A
�

= eA
�

eA:

Proof. The implication
"
)\ is clear.

"
(\: Since A+A� is selfadjoint, �(A+A�) � R. Thus A+A� 2 �̂(H) and �p(A+A�)\

fk�i : k = 1; 2; : : :g = ;. Theorem 1.4 shows now that AA� = A�A.

Corollary 4.2 If A;B 2 L(H) are selfadjoint then

A = B , eA = eB:

Proof. The implication
"
)\ is clear.

"
(\: Since A 2 �̂(H) and �p(A) \ fk�i : k = 1; 2; : : :g we see from Theorem 1.5 that

AB = BA. Thus A�B is selfadjoint and eA�B = I. Take � 2 �(A�B). Thus � 2 R and

e� = 1, hence � = 0. This gives �(A� B) = f0g. From kA� Bk = r(A� B) = 0 we get

A = B.

Corollary 4.3 Suppose that A and B are normal operators in L(H) and that eA = eB.

Then

A + A� = B +B�:

Proof. Use Corollary 4.1 to see that eA+A
�

= eB+B�

. By Corollary 4.2, A+A� = B +B�.

Corollary 4.4 If A 2 L(H) is normal then

A = �A� , eA is unitary.

Proof. The implication
"
)\ is clear.

"
(\: Since A is normal,

eA+A
�

= eAeA
�

= eA(eA)� = I = e0:

Now use Corollary 4.2 to derive A+ A� = 0.

For our next result we need the following lemma (see also [8, Theorem 12.37]).
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Lemma 4.1 If T 2 L(H) is invertible then there are selfadjoint operators A and B in

L(H) such that

T = eiAeB; �(A) � [��; �] and � 62 �p(A):

Proof. If T is invertible, so are T � and T �T . Theorem 12.33 in [8] shows that the positive

square root (T �T )1=2 is also invertible. By [8, Theorem 12.35] there is a unitary U 2 L(H)

with T = U(T �T )1=2. Since �((T �T )1=2) � (0;1), log is a continuous real function on

�((T �T )1=2). Thus the symbolic calculus for selfadjoint operators shows that there is a

selfadjoint B 2 L(H) such that (T �T )1=2 = eB. A. Wintner has shown in [16] that there

is a selfadjoint A 2 L(H) such that U = eiA, �(A) � [��; �] and � 62 �p(A).

Remarks.

(1) It is shown in [13] that if U 2 L(H) is unitary then there is a unique selfadjoint

operator A 2 L(H) such that

U = eiA; �(A) � [��; �] and � 62 �p(A):

For related results see [9].

(2) Lemma 4.1 shows that an invertible operator in L(H) is the product of two expo-

nentials. It is natural to ask whether every invertible operator is an exponential, rather

than merely the product of two exponentials. The answer is aÆrmative if dimH <1, as

a consequence of [8, Theorem 10.30]. But in general the answer is negative, as one can

see from [8, Theorem 12.38]. For normal and invertible operators we have the following

results.

Corollary 4.5 Suppose that T 2 L(H) is invertible. The following assertions are equiva-

lent:

(a) T is normal.

(b) There is some normal S 2 L(H) such that T = eS.

Proof. (b) ) (a): Clear.

(a) ) (b): By Lemma 4.1 there are selfadjoint operators A;B 2 L(H) such that

T = eiAeB

and

(1) �(A) � [��; �] and � 62 �p(A):

From T � = eBe�iA and the normality of T we see that

e2B = T �T = TT � = eiAe2Be�iA;

thus
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(2) e2BeiA = eiAe2B :

Use (1) to get

(3) iA 2 �̂(H) and �p(iA) \ fk�i : k = 1; 2; : : :g = ;.

Since 2B is selfadjoint, we have

(4) 2B 2 �̂(H) and �p(2B) \ fk�i : k = 1; 2; : : :g = ;:

Therefore it follows from (2), (3), (4) and Theorem 1.3(b) that AB = BA. Thus T =

eiA+B. Put S = iA +B. Then T = eS and S is normal.

Corollary 4.6 Suppose that T 2 L(H) is invertible and normal. Then there is a unique

normal operator S 2 L(H) such that

T = eS; r(S � S�) � 2� and 2�i 62 �p(S � S�):

Proof. The proof of Corollary 4.5 shows that there is a normal S 2 L(H) with T = eS,

S = iA + B, where A and B are selfadjoint, AB = BA, �(A) � [��; �] and � 62 �p(A).

Since S � S� = 2iA, we get r(S � S�) � 2� and 2�i 62 �p(S � S�). Now suppose that

R 2 L(H) is normal, T = eR, r(R � R�) � 2� and 2�i 62 �p(R � R�). Then there are

selfadjoint operators C;D 2 L(H) with

R = iC +D and CD = DC:

From R� R� = 2iC we see that

�(C) � [��; �] and � 62 �p(C):

It follows from eS = eR that T � = eBe�iA = eDe�iC , thus e2B = T �T = e2D. Now use

Corollary 4.2 to derive B = D. From eiAeB = eiCeD we see that

eiA = eiC :

It is shown in [13] that then A = C (see Remark (1)). Hence S = T .

Our �nal result reads as follows:

Corollary 4.7 For P 2 L(H) the following assertions are equivalent:

(a) eT+P = eT for all T 2 L(H).

(b) There is some k 2 Z such that P = 2k�iI.
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Proof. (b) ) (a): Clear.

(a) ) (b): Take T 2 L(H) with r(T ) < �. Proposition 2.2(e) shows that r(ÆT ) < 2�.

Thus, by Proposition 2.2(c), MT = ;, hence N(f(ÆT )) = f0g (Proposition 2.2(a)). From

f(ÆT )(ÆT (T + P )) = e�T (T + P )eT � (T + P )

= e�(T+P )(T + P )eT+P � (T + P )

= 0

we see that (T + P )T = T (T + P ), hence TP = PT . Therefore we have shown that

(5) TP = PT for each T 2 L(H) with r(T ) < �.

Now take T 2 L(H) with r(T ) � � and put T0 =
�

2r(T )
T . Then r(T0) =

�
2
. (5) shows that

T0P = PT0. Therefore we have that TP = PT for all T 2 L(H). Thus P = �I for some

� 2 C . Since eP = I, I = e�I, hence e� = 1.
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