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A note on logarithms of self-adjoint operators

Christoph Schmoeger

Throughout this note H will denote a complex Hilbert space, L(H) the set of all bounded

linear operators on H, endowed with the usual structure of a Banach space, �(T ) and

r(T ) will denote the spectrum of T 2 L(H) and the spectral radius of T , respectively.

In [4], C.R. Putnam has proved that if A is a positive self-adjoint operator in L(H),

T 2 L(H) and e
T = A, then kTk � 2 log 2 implies that T is self-adjoint. In [2], S. Kurepa

has shown that it is suÆcient to assume that kTk < 2� in order that T be self-adjoint.

This condition, already in the set of complex numbers, cannot be replaced by kTk � 2�

without changing the conclusion.

The object of the present note is to give a new proof of Kurepa's result. Furthermore we

will generalize some of the results in [2]. To this end we will use the following propositions.

Proposition 1 Suppose that T 2 L(H) is normal. Then:

(a) r(T ) = kTk,

(b) T is self-adjoint if and only if �(T ) � R.

Proof. (a) is shown in [3, Lemma 4.3.11] and (b) is shown in [3, Proposition 4.4.7].

A set 
 � C is called 2�i-congruence-free, if �1; �2 2 
 and �1 � �2 (mod 2�i) imply that

�1 = �2.

The following result is due to E. Hille, [1].

Proposition 2 Let T; S 2 L(H), let �(T ) be 2�i-congruence-free and let

e
T = e

S
:

Then TS = ST .

Theorem 1 If A and T are operators in L(H), A is positive and self-adjoint,

e
T = A and r(T ) < 2�;

then T is self-adjoint.
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Proof. Since A is positive and self-adjoint and A = e
T , we have �(A) � (0;1). Now take

� 2 �(T ). Then e
� 2 �(A), thus e� 2 (0;1). Hence there is � 2 R and k 2 Z such that

� = � + 2k�i. It follows that j�j2 = �
2 + 4k2

�
2
< 4�2, so that k = 0, thus � = � 2 R.

This shows that �(T ) � R and therefore �(T ) is 2�i-congruence-free. From

e
T �

= (eT )� = A
� = A = e

T

and Proposition 2 we get that T is normal. Proposition 1(b) shows now that T is self-

adjoint.

As mentioned in the introduction, the condition r(T ) < 2� cannot be replaced by r(T ) �

2�. But we have

Theorem 2 Suppose that A; T 2 L(H), A is positive and self-adjoint,

e
T = A; r(T ) � 2� and 2�i;�2�i 62 �(T );

then T is self-adjoint.

Proof. Take � 2 �(T ). As in the proof of Theorem 1, � = � + 2k�i for some � 2 R and

some k 2 Z. From j�j2 = �
2 + 4k2

�
2 � 4�2, we see that k 2 f0; 1;�1g. If k = �1 then

� = 0 and therefore � = �2�i. But this is a contradiction, since �2�i 62 �(T ). It follows

that �(T ) � R. As in the proof of Theorem 1 we see that T is self-adjoint.

Corollary 1 If T and S are operators in L(H), S is self-adjoint,

e
T = e

S and r(T ) < 2�;

then T = S.

Proof. Put A = e
S. Then A is self-adjoint. By (�j�) we denote the inner product on H.

Since

(Axjx) = (eS=2eS=2xjx) = (eS=2xjeS=2x) = keS=2xk2 � 0

for each x 2 H, A is positive. From Theorem 1 we conclude that T is self-adjoint. Propo-

sition 2 gives TS = ST , thus eT�S = I. Now take � 2 �(T �S). Then e
� = 1. Since T �S

is self-adjoint, � 2 R. Hence � = 0. Therefore �(T � S) = f0g. Use Proposition 1(a) to

derive kT � Sk = r(T � S) = 0. Hence T = S, as desired.

Corollary 2 If T; S 2 L(H), S is self-adjoint,

e
T = e

S
; r(T ) � 2� and 2�i;�2�i 62 �(T );

then T = S.

Proof. Argue as in the proof of Corollary 1. Use Theorem 2 to see that T is self-adjoint.

The following corollary can be found in [2]. We will give a slightly di�erent proof.

Corollary 3 Let T;A 2 L(H) and � 2 [0; 2�]. Suppose that A is positive and self-

adjoint and that eT = e
i�
A.
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(a) If � 2 [0; �], then r(T ) � �.

(b) If � 2 [�; 2�], then r(T ) � 2� � �.

Proof. (a) Suppose that r(T ) < �. Then

r(T � i�I) � r(T ) + � < 2� < 2�:

From e
T�i�I = e

T
e
�i�

I = A and Theorem 1, we see that T � i�I is self-adjoint, thus T is

normal and T � T
� = 2i�. Since T and T

� commute, r(T � T
�) � r(T ) + r(T �) (see [3,

Exercise 4.1.12]). Thus

2� = r(T � T
�) � r(T ) + r(T �) = 2r(T ) < 2�;

a contradiction.

(b) Put � = 2�� �. Then e
T �

= e
�i�

A = e
i(2���)

A = e
i�
A. Since � 2 [0; �], (a) shows that

r(T �) � � . Thus r(T ) � 2� � �.

As an immediate consequence of Corollary 3 we have:

Corollary 4 Suppose that T;A 2 L(H) and that A is positive and self-adjoint.

(a) If eT = �A, then r(T ) � �.

(b) If eT = iA, then r(T ) � �
2
.

(c) If eT = �iA, then r(T ) � �
2
.

We close this paper with results concerning logarithms of unitary operators.

Theorem 3 Suppose that U 2 L(H) is unitary, T 2 L(H), r(T ) � � and e
iT = U . If

� 62 �(T ) or �� 62 �(T ), then T is self-adjoint.

Proof. Take � 2 �(iT ). Then e
� 2 �(U), thus je�j = 1. Hence � = i� for some � 2 R.

From j�j = j�j � r(T ) � � we see that

�(iT ) � fi� : � 2 [��; �]g:

Since � 62 �(T ) or �� 62 �(T ), �(iT ) is 2�i-congruence-free. From

e
�iT �

= (eiT )� = U
� = U

�1 = e
�iT

and Proposition 2 we derive TT
� = T

�

T . Hence T is normal. Furthermore we have

�(T ) � [��; �]. It follows from Proposition 1(b) that T is self-adjoint.

Corollary 5 If T 2 L(H), r(T ) < � and e
iT is unitary, then T is self-adjoint.
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