
Fast Interactive 3-D Graph Visualization

Ingo Bruß�, Arne Frick��

Universität Karlsruhe, Fakultät für Informatik, D-76128 Karlsruhe, Germany

Abstract. We present a 3-D version of GEM [6], a randomized adaptive layout
algorithm for nicely drawing undirected graphs, based on the spring-embedder
paradigm [4]. The new version, GEM-3D, contains several improvements besides
the adaptation to 3-D geometry.
The main result of this work is that for the first time, 3-D layout and presenta-
tion techniques are combined available at interactive speed. Even large real-life
graphs with hundreds of vertices can be meaningfully displayed by enhancing
the presentation with additional visual clues (color, perspective and light) and the
possibility of interactive user navigation.
In the demonstration, we interactively visualize many graphs (artificial and real-
world) of different size and complexity to support our claims. We show that GEM-
3D is capable of producing a textbook-like drawing of the PETERSEN graph, a
notoriously hard case for automatic drawing tools. To the best of our knowledge,
this has not been achieved before by automatic layout algorithms purely based on
heuristics.

1 Introduction

Visualizations of large discrete data structures are becoming increasingly more impor-
tant in the literature [11, 16, 17] due to their practical relevance. Many discrete data
structures from the real world can be modeled as (large) graphs, thus creating a need
for automatic layout strategies to display them.

This paper introduces a new 3-D graph layout algorithm based on the well-known
spring-embedder approach [4, 7, 9]. Spring-embedder algorithms have the ability to
produce graph embeddings in the plane that look like projections of 3-D layouts onto a
drawing area. It is therefore natural to extend a spring-embedder algorithm to 3-D and
explore the effects. We chose the GEM (graph embedder) algorithm [6] for this study
due to its excellent performance in terms of both layout time and the quality of the re-
sulting drawings. In addition, GEM scales well to graphs with several hundred vertices,
thus making it quite successful in practice. Despite being randomized, GEM turned
out to deliver very stable results. The GEM algorithm combines the spring-embedder
approach with ideas from simulated annealing by assigning each vertex a local temper-
ature.

The remainder of this paper is organized as follows. As a general approach, we
distinguish between the layout and presentation aspects of the discussed topics. Sec-
tion 2 reviews related work on both aspects. In Sect. 3 we present the GEM-3D layout

� EMail: bruss@wbkst10.mach.uni-karlsruhe.de
�� EMail: frick@informatik.uni-karlsruhe.de



algorithm and the presentation and interaction techniques used by the GEM3DDRAW

system. Section 4 discusses the results. We evaluated both the algorithmic performance
and the quality of the resulting drawings on the layout side. Regarding the presentation,
we state observations and experiences made with the presentation techniques employed.
The summary lists possible applications and directions for further research in this area.

2 Related work

Even more than in 2-D, the display of graphs in 3-D is actually a two-fold task, con-
sisting of a layout phase, drawing the graph æsthetically, and a presentation phase, that
applies viewing strategies, techniques and tools to present a meaningful view on the
graph to the observer.

2.1 Layout

Previous research on 3-D graph drawing algorithms has focused on restricted kinds of
drawings, e.g. tree and orthogonal drawings [2]. Recently, it has been extended to the
layout of hierarchical information [15] in 3-D. The idea of drawing arbitrary undirected
graphs in 3-D seems to have first appeared in [7]. This paper and the accompanying sys-
tem demonstration extend those ideas and show that it is now possible to draw even large
undirected graphs with several hundred vertices and possibly thousands of edges in 3-D
with interactive speed.� It extends a similar result for computing drawings of undirected
graphs in 2-D, that confirmed an earlier conjecture in [7] by using an improved adaptive
cooling schedule[6]. In the remainder of this section, we briefly recall the basic work-
ing of the underlying class of algorithms, called spring-embedder algorithms, before
we review GEM, the predecessor to the algorithm presented in this paper.

Spring-embedder algorithms use a physical model based forces that are exerted on
the vertices in order to improve their positions according to several æsthetics [4]. Once
the vertices are placed, the edges are drawn as straight lines between the vertices. The
model states that vertices repel each other, while adjacent vertices are attracted to each
other. These simple rules define a dynamic system that can be driven into a local en-
ergy minimum. The easiest strategy to do so is to use the gradient descent method, ac-
cording to which only downhill moves are allowed, until no further improvements are
possible [9]. Other strategies of achieving convergence are the use of simple cooling
schedules that restrict the allowed moves over time [7] or to apply simulated anneal-
ing [3, 13].

The resulting drawings satisfy a surprising number of æsthetic criteria commonly
used to evaluate the quality of drawings. In particular, vertices are almost evenly spaced
in the drawing area, and the deviation of the edge lengths is low. Further important
criteria believed to determine the æsthetic appearance of a drawing include edge cross-
ings and symmetries. Statistical evidence to support the former claim has recently been

� In this context, “interactive speed” means that the initial layout should not take less than a few
seconds, perhaps more if there is some sort of progress report such as animation. In the nav-
igation phase, the user must receive immediate response on his commands, which are mostly
mouse-based.



given in [14], while the data on the latter is not yet conclusive. Two important ob-
servation on spring-embedder algorithms can be made. Although the minimization of
edge crossings and the maximization is not part of their energy functions to minimize,
global symmetries are often found in the resulting drawings, if they exist in the graph.
Secondly, graphs are often embedded with few edge crossings, or appearing as a 2-D
projection of a 3-D layout. The latter property inspired us to construct 3-D layouts us-
ing the spring-embedder model. The objective has been to achieve æsthetic layouts of
general undirected graphs and their presentation with interactive speed.

As the performance of annealing-based approaches is not very promising in terms of
interactive speed [3, 13], we chose to base our research on the GEM algorithm presented
in [6], a randomized adaptive algorithm. Based on the spring-embedder paradigm, sev-
eral key factors contribute to its outstanding performance, among them a gravitational
force and several heuristics to speed up convergence. Surprisingly, the resulting algo-
rithm is very robust under several types of randomization. For example, vertex positions
are updated one at a time according to a random permutation chosen initially.

Vertex updates are grouped into rounds, in which each vertex is updated exactly
once. The direction of a position update is computed from the force resulting from the
attractive, repulsive and gravitational force, while the length of the update move de-
pends on the last update and an adaptive component called the local temperature of the
vertex. Local temperatures are high initially and adapt to the movements of the respec-
tive vertex. Once GEM detects an oscillation of a vertex (see Fig. 1a) or a rotation of a
subgraph (see Fig. 1b) during a vertex update step, the corresponding local temperature
is lowered, thus further approaching the desired energy minimum. On the other hand,
if a vertex keeps going in the same direction (cf. Fig. 1c), this is interpreted as a signal
to accelerate it for further moves by increasing its local temperature.

(a) (b) (c)

Fig. 1. Examples of vertex oscillation (a), rotation (b), and acceleration (c).

2.2 Presentation

There exist many techniques to display large graphs, e.g.



1. All information associated with the vertices and edges of the graph is displayed.
The obvious drawback is that the details quickly become too small.

2. All information is drawn into a virtual drawing area, only part of which is visible
at any given time. The user may browse the drawing by scrolling and arc traversal.
This approach, however, tends to obscure the global structure of the underlying
graph [8].

3. Several views are displayed at once: a global overview map preserving the overall
structure, and one or more zoom-in maps displaying local information with details
not present in the overview.

4. Distorting views such as the fish-eye lens approach [17] are useful to preserve the
overall structure. The area within a focal region will be visible in detail, while
other areas will be displayed distorted, i.e. smaller or with less detail. The rate of
distortion rises with the distance from the focal region.

Another kind of distorting view is defined by arranging the objects under display in 3-D
space, and to use a perspective projection onto the view plane. This leaves the details
closest to the view plane unchanged, while objects further away are displayed smaller
according to their distance to the view plane. We believe that 3-D views are more natural
and therefore more intuitive than fisheye views, because they are closer to the human
visual perception, although statistical evidence to support this belief is still missing.

There are several techniques to display 3-D pictures on a 2-D computer screen,
among which animation is probably the simplest. Based on a single picture, the illusion
of depth is created by having pictures differ slightly over time. Stereopsis requires two
different pictures at any time, one for each eye. It may be realized by e.g. polarizing
filters or holography. For simplicity reasons, we based the presentation of our layout re-
sults only on animation, although nothing prohibits the use of other techniques. Depth
perception may be supported by graphical depth cues such as color and light to im-
prove user understanding. Interaction techniques, such as rotation, zoom, translation
of the structure as a whole, and the selection of artifacts within the structure further
contribute [5, 16] to this objective.

3 The GEM3DDRAW system

3.1 Layout

Dependent parameters In contrast to previously known spring-embedder algorithms,
GEM-3D allows for vertices of different shape and extent. This information is used in
the layout algorithm to determine a lower bound for the minimum vertex separation

Vmin � vavg size�

which is given by the average vertex size vavg size. The minimum vertex separation also
influences another parameter, the so-called optimal or desired edge length, previously
defined as a constant that would usually depend on the size of the drawing area [9]. In
GEM-3D, the desired edge length is computed as

Edes � vavg size � v�deg�



where v�deg is the average edge degree of the vertex set. This serves the purpose of
avoiding tightly packed layouts for highly connected graphs.

We shall now describe the GEM-3D algorithm in more detail. In doing so, we shall
especially mention the differences regarding the 2-D version. The transformation of
GEM from 2-D to 3-D was mostly straight forward, as the algorithm contains nothing
inherently two-dimensional. Of course, the computation of Euclidean distances had to
be adapted. The notion of opening angles was extended to opening cones. The most
difficult part was the adaptation of the convergence-speedup heuristics. Figure 2 shows
the algorithm at an abstract level. As convergence to a local minimum has not yet been
formally proven, we ensure termination by using the constant Rmax as an “emergency
exit”.

-- Input: 1
-- G � �V�E� graph where 2
-- V � set of record 3
-- s -- shape type and size information 4
-- � -- current position 5
-- p -- last impulse 6
-- t -- local temperature 7
-- d -- skewness gauge (see text) 8
-- E � set of record 9
-- v� -- adjacent vertex 1 10
-- v� -- adjacent vertex 2 11
-- d -- [optional:] directedness flag 12
-- Rmax maximal number of rounds 13
-- Output: for each v � V , a position is computed 14

15
compute Tmin, the desired minimal temperature 16
compute Edes, the optimal edge length 17
compute Emin, the minimal edge length 18
forall v � V do 19

initialize v; 20
nrounds := �; 21
while

P
i
v�t � Tmin and nrounds� Rmax do 22

forall v � V do 23
compute v�p; 24
update v�� and v�t; 25

nrounds := nrounds��; 26

Fig. 2. Main loop of the GEM-3D algorithm.

Initialization and vertex choice remain the same as in the 2-D version. Vertices may
be positioned randomly initially, and vertices are chosen for updates according to a



random permutation.

Impulse computation We consider the computation of a new impulse for a given
vertex u. The attractive, repulsive and gravitational forces Fa�Fr and Fg are added
up and smeared a little by adding a Brownian motion component consisting of a small
random vector � with expectation �:�

p �
X

v�V

Fr�u�v� �
X

�u�v��E

Fa�u�v� � Fg�u� � �� (1)

resulting in the current impulse of the vertex, that is further scaled by the local temper-
ature v�t and then applied to v as movement relative to its current position.�

Position and temperature update Figure 3 shows the abstract algorithm for updating
the position and temperature of a vertex v. The position of v is updated by the current
impulse, which is scaled with the current temperature of v. Afterwards, the temperature
of a vertex is updated according to the rotation and oscillation detection heuristics. As
shown in Fig. 1, a vertex is accelerated (decelerated) if it moves into the same (opposite)
direction twice in a row, which can be detected by storing the impulse computed at the
last update. As in the 2-D case, the definition of “same” and “opposite” depend on the
opening angle �o. The influence of oscillation detection is determined by a constant
�o � �.

Unfortunately, the definition of “rotation” cannot be naturally extended from 2-D to
3-D. In GEM, there is a skewness gauge indicating trends towards rotations by adding
� for each approximate right angle movement to the left and �� for each approximate
right angle movement to the right. If the absolute value of the resulting counter becomes
larger than a threshold � , then the local temperature is reduced. The objective is to
dampen vertex movements in situations such as rotating subgraphs.

The extension of this mechanism would obviously require an infinite number of
skewness gauges, as there are infinitely many planes of rotation. Therefore, three alter-
natives were considered.

1. three counters, one for each of the coordinate planes x�y� x� z, and y� z. The
counters would be used to detect rotations in the projections of the last and current
impulse vector onto the coordinate planes.

2. a single counter to count the number of approximate ��� angles.
3. a global cooling schedule instead of rotation detection. In fact, a rotation detection

scheme with large opening angle �r and small sensitivity �r is very similar to a
cooling schedule, because it will almost always fire.

� The gravitational force draws vertices towards the barycenter of the current layout in order
to keep disconnected components from drifting apart. However, we found that the constants
should be lower than in the 2-D case. Otherwise, the graph will be embedded too tight into
the drawing space. In addition, a low gravitational force effects smoother embeddings than a
higher.

� In equation 1, the summation goes over all vertices for the repulsive force and all adjacent
vertices for the attractive force.



-- Input: 1
-- v vertex to be updated 2
-- p current impulse of v 3
-- Output: 4
-- v with updated �� t� d�p 5

6
scale p by v�t 7
v�� := v�� � p; 8
�:=�p� v�p; 9
case � of 10

Acceleration then Increase v�t 11
Oscillation then Decrease v�t 12
Rotation then small decrease of v�t 13

esac 14
v�p:=p; 15

Fig. 3. Position and temperature update algorithm.

3.2 Presentation

User support for navigation is available by user-controlled rotation, translation and
zooming. In addition, a vertex may be selected by its name, using a pop-up menu or
an entry widget in the user interface. The selected vertex will subsequently be rotated
to the front of the display to also show its context.

In order to support depth perception of a 3-D image from a 2-D picture, we used
several of the techniques mentioned in Sect 2.2. Perspective contributes to the percep-
tion of depth in the drawing by changing the size of vertices depending on their distance
from the view plane. Colors can effectively help to reveal structure. In addition, a new
technique called artificial fog was introduced. It modulates the color of objects depend-
ing on their distance from the view plane, e.g. by adding more and more of a dark color
to make distant objects not only smaller, but also darker.

4 Results

In this section we summarize the results achieved so far with our prototype of GEM-
3D. Again, algorithmic results are distinguished from results based on the presentation
techniques. For obvious reasons, the pictures shown below cannot convey the same
information as a self-guided, animated exploration of the graphs. Therefore, we have
made our implementation publicly available for major platforms.�

� URL: http://i44www.info.uni-karlsruhe.de/�frick.



4.1 Layout

In this section, we consider both the quality and the performance of the layout algo-
rithm.

Quality As for the quality of the resulting layouts, we observed that

– Like all spring-embedder algorithms, GEM-3D is good at separating vertices as
much as possible in the drawing space (see Fig. 4 and 6).

– Vertices do not touch each other in general. No overlaps have been encountered yet.
– Although the focus of the algorithm is on fast convergence, symmetries are still

often found (see Fig. 4 and 7).
– The 3-D topology of 3-D graphs is displayed (see Fig. 4 and Fig. 5).
– A textbook-like embedding of the PETERSEN graph can be produced (see Fig. 8

and Fig. 9) with an observed chance of 1 in 3–4 tries.

Fig. 4. The buckminsterfullerene molecule
C��. These examples shows the 3-D dis-
play, symmetry detection and vertex separa-
tion properties of GEM-3D.

Fig. 5. Torus with jV j � ���� jEj � ���.
This figure took 6 seconds to be generated.

Performance All measurements were done on an SGI Indy workstation with a MIPS
R4600 processor in normal daily use. Whenever times are given, we shall also provide
the number of rounds necessary to compute the respective layout, as the inner loop
computing the forces depends only on the graph size, while the outer loop appears
to convey the complexity of the graph in terms of the number of rounds necessary to
converge.



Fig. 6. Complete binary tree of height 7. This
is another example of the vertex separation
property.

Fig. 7. The highly symmetric graph in Fig.
26 of [7]. Although appearing to be a 2-D
drawing, the third coordinate dimension is
used to separate vertices, as the color differ-
ences indicate.

It turns out that the larger the graph gets, the faster is GEM-3D over its predecessor:
The layout of the graph in Fig. 10 took only 65 rounds on the average, using 5 seconds
of user time, an 80% increase over GEM, which required more than 100 rounds on the
average. The 20x10 torus from Fig. 5 required a total user time of 6 seconds for the
layout and then another 2 seconds to bring up the view. We determined empirically that
the number of rounds required for convergence is usually sublinear in the number of
vertices. For the worst case, the choice of Rmax � � guarantees a linear number of
rounds, resulting in a total complexity of O�jV j�� vertex updates. Even in this rarely
occuring worst case, the resulting drawings are usually quite acceptable.

Rotation and oscillation detection both continue to contribute to the overall perfor-
mance. The continuously good performance over a wide range of parameters and heavy
use of randomization renders GEM-3D a very good candidate as a 3-D layout algorithm
for undirected graphs.

4.2 Presentation

Experiments with GEM-3D support the initial hypothesis that depth cues help to convey
much information in little screen space. On the other hand, graphs like the K��� can-
not be recognized by non-expert users without a coloring of the vertices hinting at the
partition (see the right side of Fig. 11). This is an example of a more general problem
with displaying information as graphs: Edges only convey neighborhood information,
but sometimes the data structure contains information not being displayed by edges.

The selection mechanism proved to be useful to instantly focus on selected vertices,
which may be hidden inside a large conglomerate of vertices and edges.



Fig. 8. Text-book drawing of the PETERSEN

graph produced by GEM-3D. There is a
fairly good chance to find such a drawing.

Fig. 9. Typical drawing produced by 2-D
spring-embedder algorithms.

5 Conclusions

In this paper, we have shown how to extend the GEM algorithm to 3-D coordinate
dimensions while significantly improving the layout speed and introducing new pre-
sentation techniques. The overall objective of drawing and presenting large graphs with
interactive speed has been achieved.

We applied GEM-3D to real-world graphs, as well as to artificial ones. The results
show that the algorithm draws 3-D structures as such, providing the viewer with helpful
insights into their topology. For large, not too dense graphs, the resulting drawings are
of high quality. In this case, the algorithm positions highly interconnected connected
vertices into well-separated clusters. This is especially useful if combined with user
interaction and depth cues (color and size of vertices).

3-D drawings may help to reveal structure in graphs unaccessible to known auto-
matic 2-D graph layout algorithms. A good example, that may also be of some theo-
retical interest, is the fact that GEM-3D is able to produce a textbook-like drawing of
the PETERSEN graph. Until now, it was impossible to achieve this result using spring-
embedder algorithms, probably due to the fact that the textbook drawing violates the
æsthetic criteria coded into the forces (spacing of vertices, minimization of edge length
deviation).

Due to its potential to visualize even large structures in a very intuitive way, GEM-
3D is now used in CAKETOOL, a large AI software system, to visualize Bayesian
networks [1]. This provides evidence that the time has come for interactive 3-D graph
visualization combined with automatically generated layouts. Other possible applica-
tions include the display of social networks [12] and the use as component in multime-
dia applications for displaying large hypertext-like structures.

Depth cues will be even more helpful if supported by light sources placed outside



Fig. 10. Example of a large real-world graph
(jV j � ��	� jEj � 
�	), defined in [10] as
miles(128,0,0,0,0,10,4711).

Fig. 11. Example of how color, vertex shapes
and labels help to reveal the structure of a
graph, in this case a K���. Vertices are col-
ored, shaped and labeled according to their
layer.

the drawing space. Experiments to this end are promising. Another promising approach
is to substitute the rotation detection part by a simple global cooling schedule, as out-
lined in Sect. 3.1.

The current version of GEM-3D can draw directed graphs by displaying appropriate
arrows on the edges. However, this does not imply that the forces between the connected
vertices are treated as unidirectional. Therefore, the layout presently remains the same
for the directed and undirected version of the graph. In the future, we plan to study the
effect of one-way forces exerted by directed edges. Of course, this will lead us further
away from the original physical interpretation of the state equations involved.

GEM3DDRAW was designed to be extensible. This allowed for the addition of fur-
ther node shapes and visualization techniques (fog, perspective). Further research will
explore the use of constraints to accommodate other æsthetic criteria and user knowl-
edge about the data structure.

In conclusion, the GEM family of algorithms remains an attractive choice for the
practitioner, while at the same time posing a challenge to theoreticians to actually prove
the run-time and convergence behavior we observe so consistently, even under heavy
randomization.

References

1. Ingo W. Bruß. Konzeption und Realisierung einer Visualisierungskomponente für komplexe
Datenstrukturen unter dem Werkzeug CAKETool. Master' s thesis, Universität Karlsruhe,
1995.



2. R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three–dimensional graph drawing. In Pro-
ceedings of Graph Drawing'94, volume 894 of LNCS, pages 1–11. Springer, 1994.

3. R. Davidson and David Harel. Drawing graphs nicely using simulated annealing. Technical
Report CS89-13, Department of Applied Mathematics and Computer Science, The Weiz-
mann Institute of Science, Rehovot, Israel, 1989. revised July 1993, to appear in Communi-
cations of the ACM.

4. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.
5. Kim M. Fairchild, Steven E. Poltrock, and George W. Furnas. SemNet: Three-Dimensional

Graphic Representations of Large Knowledge Bases, chapter 5. Lawrence Erlbaum asso-
ciates, 1988.

6. Arne K. Frick, Heiko Mehldau, and Andreas Ludwig. A fast adaptive layout algorithm for
undirected graphs. In Proceedings of Graph Drawing'94, volume 894 of LNCS, pages 388–
403. Springer, 1994.

7. T.M.J. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement.
Software–Practice and Experience, 21, 1991.

8. J.G. Hollands, T.T. Carey, M.L. Matthews, and C.A. McCann. Presenting a graphical net-
work: A comparison of performance using fisheye and scrolling views. In Proceedings of the
3rd International Conference on Human-Computer Interaction, pages 313–320, September
1989.

9. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31, 1989.

10. Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
ACM Press, New York, 1993.

11. J.D. Mackinlay, George G. Robertson, and S.K. Card. The perspective wall: Detail and
context smoothly integrated. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 173–179. ACM, 1991.

12. Cathleen McGrath, Jim Blythe, and David Krackhardt. The effect of graph layout on infer-
ence from social network data. In Proceedings of GD'95, 1995.

13. Burkhard Monien, Friedhelm Ramme, and Helmut Salmen. A parallel simulated annealing
algorithm for generating 3D layouts of undirected graphs. In Proceedings of GD'95, 1995.

14. Helen C. Purchase, Robert F. Cohen, and Murray I. James. Validating graph drawing æs-
thetics. In Proceedings of GD'95, 1995.

15. S.P. Reiss. 3-D Visualization of Program Information. In R. Tamassia and I. Tollis, editors,
Graph Drawing DIMACS International Workshop GD '94, number 894 in LNCS, pages 12–
24. Springer Verlag, 1994.

16. George G. Robertson, J.D. Mackinlay, and S.K. Card. Cone trees: Animated 3-D visualiza-
tions of hierarchical information. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1991.

17. Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. Comm. of the ACM,
37(12):73–84, December 1994.

This article was processed using the LATEXmacro package with LLNCS style


