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Abstract. Inertial convection is a two-dimensional flow mechanism effectively
transporting heat. It was predicted theoretically to exist in Rayleigh-Bénard
convection in liquid metals at Rayleigh numbers above 104. In numerical simula-
tions it was found in this range and at smaller Rayleigh numbers. Here, the
method of direct numerical simulation is used to study the details of inertial
convection in the fully turbulent regime in liquid sodium, Pr = 0.006, at Ra =
24,000. Application of a semi-implicit time integration scheme and of a fast el-
liptic solver make such simulations possible. The results show the inertial con-
vection still exists in this range of Ra, but it occurs only locally and over certain
time intervals in that areas in which the flow is roughly two-dimensional at
large scales. In an aperiodic oscillation this flow mechanism is in competition to
a more irregular, three-dimensional flow state. The Nusselt numbers at both
walls oscillate with the changing flow structure. They show larger values during
the occurrence of the inertial convection and smaller ones with the irregular
flow.

Introduction

In new designs of liquid metal cooled nuclear reactors the removal of decay
heat in accident situations is achieved by pure natural convection. Experiments
are performed in scaled reactor models with water to analyse the correspond-
ing flow phenomena and temperature transients [1]. The interpretation of the
experiments and the transfer of the results to real reactor conditions is mainly
done by computer codes [1,2]. The turbulence models used in such codes have
to be adapted to be applicable to purely buoyant flows and to liquid metals.
One effort in this context is to determine turbulence data in simple flows to
calibrate existing models, e.g. from experiments with jets [3] and heated
spheres [4], or from direct numerical simulations for Rayleigh-Bénard convec-
tion [5,6]. From those simulation results it is deduced that common transport
equation models are incomplete in a sense that terms are neglected which turn
out to be dominant in pure natural convection. For some of the missing terms
no models are known. Therefore, a complementary effort is to gain a better un-



derstanding of the physical mechanisms in natural convection of liquid metals
to form a basis for the development of improved turbulence models.

Rayleigh-Bénard convection is the upward directed convective heat
transfer through a large horizontal fluid layer enclosed between two plane
walls. For common fluids with Prandtl numbers Pr = v/k (v = viscous diffusivity,
k = thermal diffusivity) around one the flow development and the mechanisms
are well known [7]. The flow develops from no motion at small heating rates,
that is at small Rayleigh numbers (Ra < Ra, = 1,708, with Ra = g B ATy,
D3/(v/k), g = gravity, B = volume expansion coefficient, AT,, = temperature
difference between both walls, D = distance between walls), through steady
two-dimensional and three-dimensional flows, through time-dependent
three-dimensional flows, to a fully turbulent flow at large heating rates. Some
uncertainty exists regarding the turbulent regime. This was subdivided in a re-
gime with soft and hard turbulence, each one showing its own statistical fea-
tures [8], but recent simulation results showed that the differences between
hard and soft turbulence occur only as a consequence of different aspect ratios
of the channels used [9]. Rayleigh-Bénard convection is per definition the heat
transfer through an infinite horizontal fluid layer, and therefore a kind of hard
turbulence found at small aspect ratios is not a separate flow status of this flow.

Liquid metals have very small Prandtl numbers; their thermal diffusivity
is much larger than their viscous diffusivity. Therefore, the heat transfer by mo-
lecular conduction is dominant up to much larger heating rates than in fluids
with small thermal diffusivity. The transition from no motion to irregular flow
extends in experiments only over a range of Rayleigh numbers being apart less
than a factor of two [7]. This very different behaviour was also predicted theo-
retically [10]. Thus one finds in liquid metals already at small Ra very irregular or
turbulent convection, but the heat transfer rate only shows considerable con-
vective contributions at much larger Ra (Ra > 104), see e.g. the experiments of
[11,12]. In this range a fly-wheel type of convection, called inertial convection,
is predicted by two-dimensional methods to occur [13], but experimentally in-
dications for the inertial convection are found even at smaller Rayleigh num-
bers [14]. With three-dimensional simulations of Rayleigh-Bénard convection in
liquid sodium, which gave the first field data on the velocity field in this type of
flow, we could show that inertial convection definitely exists at Ra = 3,000 and
6,000 and that the flow becomes more irregular with increasing Rayleigh num-
ber [6,15]. Indicators for the inertial convection seem to be small secondary vor-
tices near the walls between the larger rolls and a more regular, roughly two-
dimensional arrangement of the rolls.

In this paper we use the method of direct numerical simulation to
analyse Rayleigh-Bénard convection in liquid sodium, Pr = 0.006, at a Rayleigh
number of 24,000. The simulation model TURBIT [16] had to be extended by a
semi-implicit time-integration scheme for the energy equation to allow for
these simulations [6,17]. The simulation results are analysed regarding the large
scale features of the flow, especially regarding the existence of the inertial con-
vection when three-dimensional methods are used in this range of Rayleigh
numbers, and regarding the dynamics of the flow. The mechanisms of the spe-



cial flow features found are explained and their influences on the heat transfer
capabilities are investigated.
Simulation Method

The simulation model used is the TURBIT code [16]. It is based on the
complete three-dimensional time-dependent conservation equations for mass,

momentum, and energy for a Newtonian fluid. The fluid is considered to be in- -

compressible; for the buoyancy term the validity of the Boussinesq approxima-
tion is assumed. The equations are made dimensionless by the length scale D, by
the velocity scale (g B AT D)'/2, and by the temperature scale AT = Ty - Tw2.
The code uses a finite volume scheme on a staggered grid. The pressure is cal-
culated by Chorin’s projection method. The resulting Poisson equation can be
solved efficiently in simple geometries like in infinite plane channels by direct
methods [18].

The time integration scheme used originally in the code is the second
order explicit Euler-leapfrog scheme. Application of this scheme to natural con-
vection in liquid metals leads to enormous CPU-time requirements. The stability
criterion of this explicit scheme can be written by using Einstein’s summation
convention [19]:

lui Imax Max (v, k) N
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where u;,i = 1, 2, 3, denotes the components of the velocity vector and

Ax; denotes the grid widths. The temperature field in natural convection of lig-
uid metals is governed by the large thermal conductivity allowing only for large
scale structures in the temperature field and for thick thermal boundary layers.
In contrast, the velocity field has not only large scales but also very small spatial
structures and very thin viscous boundary layers near walls. For direct numerical
simulations of turbulence it is essential to choose grids which resolve all rel-
evant length scales of the flow. Therefore, the velocity field requires very fine
grid widths. Thus, the diffusion terms become dominant in the stability crite-
rion (1) and liquid metals require very small time steps for numerical stability of
the thermal diffusion. These time steps are much smaller than those required to
ensure stability of even the highest frequencies in the convective time scales.
Substantially larger time steps can be achieved by time integration schemes
which do not have the thermal diffusivity in the stability criterion. Thus, the dif-
fusive terms of the energy equation have to be treated implicitly, whereas all
other terms may still be treated explicitly.

Recently the code was extended by two semi-implicit time integration
schemes [6,17] which can be used alternatively. They were selected to be suit-
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able for diffusion dominated problems and to be consistent with the explicit
scheme used for the velocity field. Both semi-implicit schemes treat the diffu-
sive terms L = k V2T by the implicit Crank-Nicolson method, CN, whereas for
the non-linear convective terms N = u VT the explicit Adams-Bashforth, AB, eq.
(2), or the Leapfrog scheme, LF, eq. (3), is used, respectively:
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Here n denotes the time level. In the code both schemes are realized in a
way that, like the fully explicit scheme, both are started by an Euler step, and
after about 40 to 60 time steps an averaging step is used to damp spurious os-
cillations which might develop in the solution.

A von Neumann stability analysis for the linearized problem indicates
the LFCN scheme should be stable for Courant numbers C = Upax At / AXmin < 1
and for any value of the diffusion number D = k At/ (Axmin2), Whereas the sta-
bility criterion of the ABCN scheme depends on the diffusion number and al-
ways needs some diffusion for stability. Practical tests showed that both
schemes become unstable in some applications for diffusion numbers of about
six and greater. To avoid these stability problems a maximum value for the dif-
fusion number was chosen, Dmax = 4. This gives an upper limit for the time step
width calculated from eq. (1) with k = 0.

The sets of linear equations resulting from the implicitly treated diffu-
sion terms are those from a Helmholtz equation. Thus, in principle these sets
can be solved with general Helmholtz (or most Poisson) solvers. With direct nu-
merical simulations, the coefficients of the Helmholtz equation are space de-
pendent, but their space dependence can be separated; therefore very efficient
direct Poisson solvers, like from [18], can be used. More serious difficulties are
due to the manifold of combinations of wall conditions used in the thermal dif-
fusion term (von Neumann and/ or Dirichlet conditions), which are usually not
all available with common fast solvers. Correspondingly, the boundary condi-
tions of the package from [18] were extended. As a result of using modified di-
rect Poisson solvers to solve the set of equations resulting from the semi-implicit
time integration scheme, the additional CPU-time is only 10 - 20 % of that of
the fully explicit scheme. The storage requirement is about the same as that of
the fully explicit scheme. As the time step can be increased, e.g. for sodium at
least by one order of magnitude, this method provides the efficiency required
to make these simulations possible.



Case Specifications and Initial Data

For simulation of Rayleigh-Bénard convection a plane channel should
be considered which is infinite in both horizontal directions. This is achieved in
the simulation by using periodic boundary conditions in both horizontal direc-
tions. The periodicity lengths are X;, with i=1,2, Fig.1. They have to be chosen
large enough to resolve all large scale phenomena. In earlier simulations for
common fluids with Prandtl numbers around Pr = 1 these lengths turned out to
have a strong influence on the heat transfer through the fluid layer [9,20]. Even
our recent simulations with X;/D = 7.92 [15,21] seem not to fulfil all require-
ments of a complete statistical decoupling in the horizontal directions. In liquid
metals the large thermal diffusivity is responsible for an even farer horizontal
coupling and therefore for larger scales, but there are no data available from
experiments to select adequate periodicity lengths. From simulations on a
coarse grid for Ra = 6,000 using horizontal extensions X;/D from 4 to 16 we
found, that the large scale features of the flow simulated for aspect ratios of 8
and greater are almost independent on the aspect ratio [6]. Therefore we used
X; = 8 for the convection in sodium also at the Rayleigh number considered
here, Ra = 24,000, which is in the fully turbulent regime.
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Fig.1: Geometry and definitions for the Rayleigh-Bénard problem.

In direct numerical simulations not only the large scales have to be re-
solved adequately, but also the small scales. The smallest scales in liquid metals
occur in the velocity field. The size of these can be calculated on several ways
[20], e.g. by means of the Kolmogorov length scale and by the Grashof analogy
[22]. The latter means the statistical features of the small scales in the velocity
field were found to be similar in different fluids for comparable Grashof num-
bers, Gr = Ra / Pr, and therefore the mean dissipation profile needed to calcu-
late the Kolmogorov length is similar. The profile can be taken from simulations
or experiments for other fluids. The finest grids using N7 = N3 = 250 mesh cells
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in each horizontal direction, Tab. 1, are finer than the Kolmogorov scale at any
position in the channel.

Tab.1: Case specifications and simulation times on a SIEMENS/FUJITSU
VP400-EX. Each case is started from that one on the line above.

CPU/

Ra Gr N1=N3 N3 AV Tmax N¢ VP400

12,000 2*106 128 19 0.03 358.8 | 16,000

12,000 2*106 160 25 0.02 400.1 | 19,040
12,000 2*106 160 31 0.01 410.1 | 22,000
12,000 2*106 200 35 | 0.008 | 411.5 | 22,640
12,000 2*106 250 39 | 0.005 444.4 | 61,440 55h
24,000 4*106 250 39 | 0.005 471.5 | 84,000 60 h

Linear wall approximations are applied for the diffusive terms in the
mesh cells next to the walls. Therefore, the viscous and thermal boundary layers
have to be resolved sufficiently by the grid. In liquid metals the viscous layer is
the finer one. The Grashof analogy is used to specify the vertical resolution by
the vertical grid width Axs,, near the wall. The criterion of [20] to use at least 2
to 3 cells inside the boundary layer is sufficient from an engineering point of
view, e.g. to get sufficient accuracy in the global energy balance or in the
Nusselt number, but in studying terms from turbulence models based on second
order transport equations, a much finer resolution is required near the walls for
analysing purposes. In using a non-equidistant vertical distribution the number
of vertical nodes can be limited to N3 = 39, Tab.1.

Initial conditions are gained from the last run of a series of simulations
for Ra = 12,000, Tab. 1. The first case used a coarse grid, zero velocities, and
random temperature fluctuations superimposed to a schematic piecewise linear
vertical profile of the mean temperature which roughly represents a realistic
initial vertical mean energy distribution. The other simulations on the finer
grids for Ra = 12,000 are started from the simulation results for the same
Rayleigh number gained from the next coarser grid using parabolic spatial in-
terpolation.The interpolated data on the fine grid show increased fluctuation
amplitudes at small scales, Fig. 2, but after integration over a time period be-
tween 0.1 and 1 dimensionless time units the spectrum is as steep again as the
theoretically expected k-7 slope. For Ra = 24,000 the simulation results for the
smaller Rayleigh number on the finest grid are used as initial data; this is possi-
ble without any transformation of the data because with the scaling, especially
of the velocities, chosen here the dimensionless velocity values do not change



with Ra at large Rayleigh numbers. Both latter methods of creating initial con-
ditions turned out to allow for reductions of CPU-times by one order of magni-
tude or more compared to runs starting from more or less random data on the
required fine grid. The CPU-times given in Table 1 are those on the finest grids
only. The number of time steps Ny is consecutively counted through the com-
plete sequence of runs.
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Fig.2: One-dimensional energy spectra of temperature fluctuations over wave
number ki at channel mid plane, x3=0.5, for Ra = 12,000, a) coarse
grid, 200%*35, t=411.5, b) same result interpolated to fine grid,
250%*39, ¢) fine grid, 250%*39, after integration to t=412.5.

RESULTS
Verification

Problems in verifying these simulation results occur due to the complete
lack of detailed turbulence data on the velocity field in Rayleigh-Bénard con-
vection of liquid metals and due to the existence of only very few data on the
temperature fields. In [6,23] all available data are used to perform a verifica-
tion. As the uncertainties of the experimental results are rather large, addi-
tional recalculations of experiments for air [22] and the recalculation of GAMM
benchmarks [17] were used to verify the implementation of the semi-implicit
time integration scheme.

A very crude verification, especially of the periodicity lengths chosen,
can be deduced from horizontal cuts through the instantaneous temperature
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Fig.3: Contourlines of instantaneous temperature fields at Ra = 24,000;
isoline increment 0.1, top vertical cuts at x,=6.816, bottom horizontal
cuts at x3=0.5, left t=478.7, right t=488.3.

fields, Fig.3. Despite a fully turbulent state these figures show band-like struc-
tures. According to [24] this indicates the existence of remainders of regular
vortex systems. The wavelength of this structure is about 2.7. This is, as to be ex-
pected, above the value at the critical Rayleigh number [10] and it shows that
the periodicity lengths chosen can represent about 3 vortex pairs. This resolu-
tion for large scale structures is better than in other published simulations for
other fluids, e.g. in [9,25]. From the vertical cuts it gets obvious that convection
only weakly contributes to the heat transfer. Accordingly, the Nusselt number
analysed is with 1.36 near one. This is in reasonable agreement with experi-
ments[11,12].

Flow Mechanisms and Dynamics

According to current knowledge the Rayleigh number Ra = 24,000 of
this simulation is in the turbulent regime. Nevertheless the instantaneous tem-
perature fields at both times give large band-like structures which indicate the
existence of irregular roll systems, Fig.3. Vortex bands are indeed found in the
velocity field, for example in uz, Fig.4. There exist three large vortex pairs which
are locally disturbed in a three-dimensional manner. In the simulations for
smaller Ra it was found that the inertial convection coexists with small secon-
dary currents near the walls [6,24]; here those parts of the secondary currents
which have positive vertical velocities are found as small clouds in the down-



draft area. Thus, there are indicators for the existence of remainders of the in-
ertial convection. Indeed, the analysis of a time sequence of such figures in the
form of a computer generated movie shows there is always a competition be-
tween the formation of two-dimensional structures, which are necessary to
form inertial convection [13], and their destruction by meandering into more ir-
regular, three-dimensional ones.

Fig.4: Isosurface for a small positive value of the vertical velocity, u3=0.05,
colour code for the temperature. Ra = 24,000, t=488.3. Inside the
isosurface the flow is upward, outside it is mainly downward.

A more detailed search for the inertial convection is performed in that
areas and at that times in which a pronounced two-dimensional character of
the flow field is found. Scanning through the velocity data for t = 488.3 shows
nearly everywhere a highly irregular, turbulent flow field, Fig. 5. However, only
near {x1 = 2,x,= 6.8} one pair of vortices is found that shows an arrangementin
the channel which is symmetrical to the mid plane and that has a regular radial
velocity distribution. It extends from about x; = 1.2 to about x; = 3, and in the
axial direction it has a length between one and two D. The life time is only a
few time units. The corresponding profile for the vertical velocity component in
that plane confirms, this vortex pair has a velocity profile which is linear over a
larger area. That means, each of these vortices rotates at least in the inner part
like a solid body. Outside the range of these two vortices, that is below x; = 1.5
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and above x1 = 2.5, the velocity profile is highly irregular or turbulent, as it is to
be found in all other parts of the channel.
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Fig.5: Instantaneous profile of vertical velocity u3 at {x;=6.81,
x3=0.5,t=488.3},top, and vector plots for {u,us} at {x,=6.81,t=488.3},
middle, and at {x,=2.81,t=488.3}, bottom.

The corresponding temperature field shows in the horizontal sections
wide areas with roughly two-dimensional character, that is not only in the area
around {x; =2,x2=6.8}, but also in a much larger surrounding, Fig. 3. In the ver-
tical sections one finds according to the small value of the Nusselt number only
slight distortions by convection, except for t=488.3 in that area in which the in-
ertial convection was found in the velocity field. There we find stronger distor-
tions of the isolines toward the upper wall in the centre of the vortex pair and
towards the lower wall in both outer areas of the vortex pair. This means the in-
ertial convection is locally and for short times responsible for an intensive verti-
cal heat transfer by convection.

With these results the aperiodic production and destruction of the iner-
tial convection can be explained like follows: Vortices rotating like solid bodies
obey no internal dissipation. Therefore, the rotation speed grows to large val-
ues, and thus also the convective heat transfer is augmented. Increasing rota-
tion speeds lead to shear instabilities near the walls and therefore to irregular,



three-dimensional structures. These are more dissipative and do not allow for
such large velocities. The rotation speed is decreasing and the convective heat
transfer is reduced. The molecular heat transfer becomes dominant. It filters off
the small scale fluctuations produced by the irregular, turbulent flow. Thus, the
flow relaminarizes locally and starts to form regular rolls again.

Considering the small scales of the velocity field, an other phenomenon
is found in liquid metals. Thin spoke pattern like structures exist extending
across the rolls, Fig. 4. These spoke patterns were not observed at the Rayleigh
numbers 3,000 and 6,000 analysed earlier [6, 24]. They do not only exist near
the lower wall, but also near the upper wall as is indicated by a very rugged
isosurface. These structures are formed by thin bands with upward moving fluid
in the downdraft area near the lower wall and by downward moving fluid in
the updraft area near the upper wall. The spoke patterns show the flow is high-
ly three-dimensional at small scales. The patterns found here for sodium are
comparable to the spoke-pattern like structures found at the edge of the vis-
cous boundary layer in several direct simulations for air at comparable Grashof
numbers [21,24,25]. In general, the velocity field at this Rayleigh number obeys
much smaller scales as the temperature field and correspondingly it has also
smaller time scales.

A statistical analysis at midplane shows that the flatness of the vertical
velocity component is near 3, which indicates Gaussian distributions and there-
fore turbulent features, whereas the flatness for the temperature field is
around 1.7. Thus, it is nearer to 1.5, which is the value for a sinusoidal distribu-
tion. This means, the band-like structures are still dominant in the temperature
field, despite they can be identified in the contourline presentations of hori-
zontal cuts through the temperature field, Fig.3, only over short times and only
locally.

Heat Transfer Statistics

The integral heat transfer capabilities are analysed by means of a time
history for plane averaged Nusselt numbers at both walls, Fig.6. As these data
are not time-averaged, the consequences of the irregular oscillations found in
the flow become obvious. The Nusselt numbers change within a 10%-band. The
corresponding oscillations are very slow. Therefore, immense averaging times
are required in experiments to determine accurate results for the Nusselt num-
bers.

Correlating the time-dependent Nusselt numbers to the instantaneous
temperature fields, Fig.3, shows the wall heat fluxes always reach a larger value
at those times at which the flow field is more regular or two-dimensional. They
are large especially in those time intervals in which the inertial convection oc-
curs; compare the times used in Fig. 3 and 5. The Nusselt numbers exhibit small-
er values at times with more irregular or three-dimensional flow fields. From
Fig. 5 it can be deduced that the inertial convection is a flow with rather large
rotation velocities and that it occurs only over short times extending over small
parts of the channel. This means the inertial convection is a type of flow which



has a strong influence on the overall heat transfer in the channel. It maximises
the convective heat transfer.
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Fig.6: Time dependent Nusselt numbers at lower and upper walls averaged
horizontally. Ra = 24,000. The vertical lines mark the times for which
the temperature fields are given in Fig.3.

CONCLUSIONS

The method of direct numerical simulation is used to investigate
Rayleigh-Bénard convection in liquid metals. The large thermal conductivity of
these fluids requires an implicit treatment of the thermal diffusion term. This,
and using extended direct Helmholtz solvers, ensures efficient simulations and
make such simulations possible at all. The long time periods to be simulated
need additional measures like using not too fine grids for the development
phase of the flow and interpolation of results from coarser grids to finer grids,
on which the final time interval is simulated which is finally used for analysis.

The inertial convection was predicted by theoretical two-dimensional
methods to occur in Rayleigh-Bénard convection of liquid metals at Rayleigh
numbers above 104. With former direct simulation results it was shown that in
the expected range of Ra indications for this flow mechanism, like a locally two-
dimensional flow field and small secondary currents, are found, but that pro-
nounced forms of inertial convection exist only at smaller Rayleigh numbers.
This is in agreement with indications from experiments. Simulation results for
Ra = 24,000 are analysed here in more detail regarding the instantaneous local
velocity distributions. Small areas are found in the channel only for short times
in which large scale vortex pairs exist which rotate like a solid body. These vorti-



ces are found only in small parts of those regions in which the flow is roughly
two-dimensional and in which small counter rotating secondary vortices occur
near the walls. This means, local two-dimensionality and secondary vortices are
no sufficient indicators for the inertial convection because these indicators oc-
cur also outside those areas. The velocity field also shows the inertial convection
at these Ra is superimposed by highly three-dimensional spoke patterns. These
patterns consist of small and fast scales which clearly show the highly turbulent
nature of these flows. Thus, with increasing Rayleigh number the inertial con-
vection does not vanish abruptly, but it is still occurring locally and for short
time periods. It is in competition to three-dimensional flow structures and
forms an aperiodic oscillation. Large computational domains are required to
find such changes in flow structures. In analysing the integral heat transfer
through the fluid layer it is found, the predominantly two-dimensional vortices,
that is the inertial convection, transport heat much more efficient than those
flow structures that are at large scales more three-dimensional and irregular.
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