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Abstract:

The purpose of our system MOSES is the recognition of objects in aerial images. It is a knowledge based

system in which semantic networks are used as a repository for models. The models are automatically

re�ned by using knowledge gained from topographical maps or GIS data. The analysis process is

formulated as an optimization problem. After presenting the object models and the process model of

our system we address the recognition of structured and compound objects in aerial images by using

context information. Results are presented and performance aspects are discussed.

1 Introduction

Due to its complexity the interpretation of scenes in aerial images is one of the challenging prob-

lems in computer vision. Various applications like change detection, environmental monitoring,

site modeling or map updating would greatly bene�t from reliable automatic or semi-automatic

procedures for aerial image interpretation. In this spirit, since several years the international

community supports big e�orts for developing e�cient and reliable aerial image understanding

procedures (see e.g. [10], [11], [12]). Recent research has mainly been focused on the analysis

of urban scenes (man-made objects) from aerial images ([2], [3], [4], [5], [8], [14], [19], [21]).

Our research work aims at the determination of soil sealing in an urban environment. The

degree of soil sealing has implications on the regeneration of ground water and on the micro-

climate. This work is part of a research project [22] in cooperation with the Forschungsinstitut

f�ur Informationsverarbeitung und Mustererkennung (FGAN-FIM) Ettlingen and is funded by



the Deutsche Forschungsgemeinschaft (DFG).

To achieve our goal we are analyzing color aerial images digitized to a pixel size of 30cm �

30cm on the ground. Aerial image analysis is based on knowledge gained from the large scale

topographical map DGK 1:5000.

Our paper is organized as follows: after a short introduction to semantic networks we describe

our system MOSES. Firstly the di�erent object models involved in the representation of the

knowledge are presented. In the following chapter we describe the process model of our system.

The recognition of structured and compound objects in aerial images by using context infor-

mation is demonstrated for the example of buildings and parking places. We �nish our paper

with a discussion of results.

2 Semantic Networks

The analysis of aerial images is performed in MOSES (Map Oriented SEmantic image un-

derS tanding) [1],[16] as a model based, structural approach. For representing the models we

use semantic networks as implemented by the shell ERNEST [6].

In semantic networks knowledge is represented using nodes and links. ERNEST provides three

types of nodes: concepts, instances and modi�ed concepts. Classes of objects, events or abstract

conceptions are represented by concepts (for example: parkPlace represents parking places).

Extensions of concepts found in the sensor data are represented by instances. Modi�ed concepts

are intermediate results representing constraints to concepts yet uninstantiated. Data structures

called attributes are used to further describe the nodes. They enable us to specify and store

properties of concepts, modi�ed concepts or instances.

Links are used to represent relations between nodes. Specialization links and part and concrete

links are of particular importance. Specialization links connect a concept with a more general

concept (for example: sceneObject
spec

��! parkPlace). Along this link type properties of the

more general concept are inherited to the special concept, unless these properties are explicitly

modi�ed.

Part links represent the relations between a concept and its components (for example: parkPlace
part

��! carRow). Concrete links connect concepts in di�erent conceptional systems. For example,

the roof of a building may belong to the conceptional system of objects. Its concretization in

the geometrical conceptional system may be a parallelogram. These links induce a hierarchy

over the concepts in a model, each hierarchical level representing a di�erent degree of abstrac-

tion from the available visual information [9]. Part and concrete links may be multiple. One

can specify for the parts and concretizations of a concept if they are obligatory, optional or

inherent.



generative model

generic model generic model

scene description

scene description

specific model

MAP IMAGE

+

+ +

Figure 1: Architecture of MOSES

3 Object Models

To pro�t in our image understanding process from the general, common sense knowledge the

system developer has about his environment as well as from the scene speci�c knowledge gained

from the analysis of maps we are using a model hierarchy as presented in Fig. 1.

3.1 Generative Model

The most general object model used in MOSES is the generative model. This model contains

general, common sense knowledge we have about our environment. Objects which may occur

in a scene are described by specifying their parts and/or concretizations, their properties and

their relations with other objects from the scene. For example the concepts roof and hood

are speci�ed as parts of a car. Attributes (properties) of the car are for example its position,

its length and width and its color. For a car on a parking place we specify the relation of

parallelism with other cars in the same parking row. By describing an object with help of its

parts we construct a hierarchical, structural model. This model also has a parametric part,

which is provided by the attributes of the concepts. If possible, we specify domains of validity

for the attributes: e.g. the length of a car may vary between 3 and 7 meters.

The knowledge contained in the generative model is of declarative nature exclusively. The

model is independent of a particular scene to be analyzed and the description is performed in

the scene domain. This means that the scene is described as perceived by a human, independent

from the representation of the scene in an image or a map. However, in order to save e�ort,

the model is goal oriented. Since its goal �nally is the recognition of objects in aerial images,

we will not describe for example the engine of a car and all of the engine's parts.
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Figure 3: Detail of the speci�c model for a parking place

3.2 Generic Models

The knowledge of the generative model is further re�ned by constructing the generic model

in the map domain and the generic model in the image domain. These models describe the

projection of the scene in a topographic map and in an aerial image, respectively.

The concepts in the generic models are specializations of the corresponding concepts in the

generative model. Due to the inheritance mechanism of the semantic network it is not necessary

to specify again all the parts, relations and properties of a concept. However, particularities of

the projection of the scene in the map and in the image are represented by the generic models.

For example, since cars are not represented in maps, all the part links in the generic model in

the map domain pointing towards concepts car are marked as deleted.

In addition, procedural knowledge is added to this step of model re�ning. This comprises

methods for feature extraction, for the calculation of the attribute values from the image data

or from the map data and functions for evaluating the preliminary and the �nal analysis results.

These methods are called during the analysis process by the control algorithm.



A detail of the generic model in the image domain representing the part- and concrete-hierarchy

for a parking place is given in Fig. 2. Concepts are represented in boxes and links are represented

as arcs between two concepts. The links in the generic model are multiple links since it is not

yet known for example, how many rows of parking cars there are in a parking place. The actual

multiplicity count of such links will be determinated only in the analysis phase. Some of the

links are optional links: for example the part link connecting the concepts im parkPlace and

i carRow. The multiplicity of a link and whether it is optional or not are not represented in

Fig. 2.

The generative model and both generic models are build by the system developer. They are

independent of a particular scene to be analysed.

3.3 Speci�c Model

The speci�c model is automatically generated by the system. This model is speci�c for the

current scene to be analysed; it is generated by combining the scene description obtained after

the map analysis with the generic model in the image domain.

The concepts of the speci�c model are specializations of the concepts of the generic model in

the image domain. Thus, they inherit the procedural knowledge speci�ed in the generic model.

The attributes of these concepts are modi�ed in order to re
ect the knowledge gained after map

analysis. In particular, after map analysis, expectations for the location and the ground-plan

of the objects contained in the map are known and are incorporated automatically into the

speci�c model.

In Fig. 3(a) a detail of the speci�c model representing a parking place is shown. This parking

place now represents not just any parking place in a scene, as it is the case in the generic model,

but a particular parking place which is depicted in the map. Having the ground-plan and the

location of the object gained after map analysis, we can transform these data into the image

domain and represent that speci�c object and its parts as overlays to the aerial image. This is

shown in Fig. 3(b).

As long as it can be done automatically (and this is the case in our procedure to incorporate

map information), one must specialize the model as much as possible when starting from a

generic model. This will dramatically reduce the necessary e�ort to interpret the image and

will lead to more reliable results.

In conclusion, an approximative characterization of the models used in MOSES is given by: the

generative model contains the structural information, in the generic models the domain speci�c

analysis procedures are added and �nally the speci�c model is re�ned by adding constraints

(see Fig. 1).



4 Process Model

At the beginning of an analysis task the system consists of the generative model and the two

generic models. On the way to a scene description gained by the analysis of an aerial image,

several steps are performed automatically:

� structural analysis of the map,

� generation of the speci�c model,

� extraction of image primitives,

� structural analysis of the image.

4.1 Structural Analysis of the Map

Digital maps are used as input data for this step. Therefore a feature extraction process is not

necessary for the map; the digitally available line segments are used directly as primitives for

the structural analysis. This analysis process is performed similarly for the structural analysis

of the image and will be described there.

The result of this step is a structural description of the scene, as complete as far as the scene is

depicted in the map. Instances representing more and less complex structures in the map are

arranged in a graph. The arcs of the graph are part and concrete links which connect instances

being in the corresponding relation. The attribute data structures of the instances are �lled

with values calculated from the map data.

4.2 Generation of the Speci�c Model

The scene description gained after the analysis of the map is automatically combined with the

generic model in the image domain to yield the speci�c model which will be used for the image

analysis.

Each instance in the scene description is connected with an instance link to the belonging

concept. Following this link back we �nd the concept in the generic model in the map domain

for which the instance has been created. The found concept is a specialization of a concept

from the generative model. Following this specialization back, we reach the concept in the

generative model. From this concept we can follow another specialization link, which leads to

a concept in the generic model in the image domain. We have now found a correspondence

between an instance in the scene description after map analysis and a concept standing for a

similar structure, but represented in the image. We call this concept partner-concept.



For each instance of the scene description we create a new concept in the speci�c model as

a specialization of the partner-concept. Starting with the top-most concept this can be done

recursively over the part- and concrete-hierarchy of the model. Constraints are derived for the

attributes of the newly created concepts by using the attribute values of the corresponding

instances.

The newly created concepts of the speci�c model form a structure which mirrors the structure of

the scene description after map analysis. Therefore, the instantiation of this part of the speci�c

model in the image analysis process is equivalent to a veri�cation of the map contents in the

image. To be able to recognize in the image also objects which are not depicted in the map, the

concepts of the generic model in the image domain are copied into the speci�c model. However,

the structural analysis of the image will start with the newly created concepts of the speci�c

model. Thus, when attacking the problem of recognition of objects which are not depicted in

the map one can bene�t from the context assembled by the objects already instantiated.

4.3 Extraction of Image Primitives

Before the structural analysis of the image using the speci�c model is started, primitives are

calculated from the image data. We are currently using line segments and regions as primitives.

The line segments are gained by detecting contour points with a Canny-like operator and

approximating the collected contour point chains with straight line segments. The line segments

are additionally attributed with features like the mean magnitude and the mean angle of the

gray value gradient along the line and with a measure for the goodness of approximation of the

contour point chain by a line segment.

To gain the regions we are using a segmentation procedure based on a Bayesian homogene-

ity predicate [15]. To describe the shape of the regions we are using moment invariants [7].

Furthermore the chromatic information and the list of neighbors is calculated for each region.

To support perceptual grouping we arrange the primitives in a parametrized graph. The nodes

of the graph are attributed with regions. Nodes containing neighbouring regions are connected

with arcs. The arcs are attributed with those line segments which form the border between

neighbouring regions.

4.4 Structural Analysis of the Image

The image primitives serve as input data for the structural analysis of the aerial images with the

speci�c model. The analysis process is conducted by a task independent control algorithm and is

essentially model driven. Performing the analysis with our model stored in a semantic network
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Figure 4: Intermediate analysis result at node #16

means to �nd correspondences between the concepts in the model and single primitives or groups

of primitives from the database. Establishing these correspondences is called instantiation.

Analysis starts by creating a modi�ed concept for the top-most concept in the hierarchy of the

semantic network. This modi�ed concept is used to re
ect the constraints which will be acquired

during the instantiation of concepts on lower hierarchical levels. It can also be regarded as a

hypothesis for the existence in the data of the object or structure represented by this concept.

Thereafter, analysis moves down in the part- and concrete-hierarchy of the semantic network

and creates modi�ed concepts, until it reaches a minimal concept. A minimal concept is a

concept without parts and concretizations. This concept is "close" to the signal and can be

instantiated. After this instantiation the acquired knowledge is propagated bottom-up into

the modi�ed concepts on higher hierarchical levels. As a next step, this knowledge is also

propagated top-down. To store this knowledge, a new modi�ed concept on the low hierarchical

level will be created, preparing a new instantiation.

A snapshot of such a situation is shown in Fig. 4(a). The concept on the lowest hierarchical

level is i segment, representing a primitive from the database. One instance (instance #4) for

i segment has already been created; it is highlighted in Fig. 4(b). The modi�ed concept #31 is

the next one to be instantiated. The location of instance #4 known so far has been propagated
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Figure 5: Intermediate analysis result at node #54

to the modi�ed concept #31 and provides an expected location for the next instance to be

created.

When all the obligatory parts of a concept are created, the concept itself can be instantiated:

the analysis moves one step upwards in the hierarchy. An example for this is shown in Fig. 5(a).

After creation of all the parts of the concept im line002, the instantiation of this concept has

been completed. Analysis moved one step upwards to the modi�ed concept for im conto0035

and than again downwards to instantiate the next part of this concept, namely im line0010.

This process continues in a similar way for all concepts of the model and it is usually �nished

as soon as an instance for the top-most concept can be created. In this case the goal of the

analysis has been reached.

In conclusion one can say that in our case analysis is an active construction of complex structures

by composing less complex structures. Step by step interim results of increasing degree of

abstraction are generated. The further the analysis proceeds, the more the structure of the

interim results resembles the speci�c model. Generation of the analysis results follows the

hypothesize and test paradigm.

Each time a new instantiation or concept modi�cation takes place, analysis reaches a new state.

All of these states are valid intermediate results and are logically consistent. Since the preceding
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states are known, in each state of the analysis it is possible to explain which decisions have

been taken to reach the current state and one can determine the subset of image primitives

which form the (intermediate) analysis result in this state.

We can graphically represent an analysis state by a node and can connect a state with its

preceding state by an arc. Thus, the progress of the analysis process is graphically represented

by a tree, the search tree. A detail of a search tree is presented in Fig. 6.

As explained, instantiation means establishing a correspondence between a primitive from the

database and a concept of the model. In a given analysis state, situations may occur where



Object Qual. Object Qual. Object Qual. Object Qual.

i house0067 0.98 i house0106 0.36 i house0145 0.97 i house0184 0.93

i house0223 0.84 i house0290 0.88 i house0343 0.98 i house0410 0.86

i house0449 0.95 i house0530 0.87 i house0569 0.90 i house0636 0.64

i house0703 0.95 i house0742 0.94 i house0809 0.88 i house0848 0.85

i house0887 0.98 i block0940 0.79 i block0979 0.90

Table 1: Model �delity for the buildings of the scene in Fig. 7

several correspondences seem to be possible (e.g. in state #22 of the tree in Fig. 6), but only one

of them being the correct one. In such a case one has to account for all these correspondences.

Thus, a given analysis state may have several successors and the search tree is splitted.

From this point of view, analysis in our context is nothing else than search for an optimal

path in the tree of the analysis states. There exist several well known graph-search methods.

In our system we are using the A
�-algorithm [13]. To construct the merit function needed by

this algorithm we evaluate the instances and modi�ed concepts in an analysis state [17]. The

valuations are computed on the basis of the Dempster-Shafer theory of evidence [20]. Using

an extension to this theory [18], the valuations are propagated through the hierarchy of the

semantic network and are combined to result in a merit function for the A
�-algorithm.

The valuations for the instances are not only used to calculate the merit function of an analysis

state, but they are also used as a quality measure for the veri�cation and recognition of objects.

An example for this is given in Figure 7 and Table 1. After calculation of the image primitives

near 5000 line segments have been detected. These are displayed as dark lines in the image.

The line segments which have been selected by the analysis to compose the buildings of the

scene are drawn in white color. For each building a label is printed in black color at its location

in the image. The computed quality measures are listed in Table 1. In a veri�cation task one

would apply a threshold on these quality measures to decide if the veri�cation was successful.

Choosing for example this threshold to be 0:5, in the presented scene all buildings except the

one labeled i house0106 (situated in the lower left corner of the image) have been veri�ed

successfully.

5 Recognition of Parking Places

There are several reasons why a parking place is interesting to be addressed in an object

recognition task. Parking places are composites containing objects of di�erent classes (e.g. cars,

vegetation). As opposed to other man-made objects like for example buildings, the borders of

the parking area are not always visible in the image. Parking places can often be recognized as

such only in the context of parking cars.



Our approach for the recognition of parking places di�ers from the approach used to recognize

other objects as for example buildings. The contours of a parking place as predicted by the map

are less reliable than the contours of a building. This is considered in the evaluation functions,

where the valuations for the contours of a parking place contribute in a smaller amount to the

total valuation of the instance than this would be the case for buildings. Nevertheless, as a

�rst step an attempt is made to detect the contour of the parking place in the image. In this

step we also identify the image regions which may be part of the parking place. The predicted

location serves now as a region of interest to search for typical con�gurations of cars.

Since the image primitives (regions and line segments) are stored in a neighbourhood graph,

we can easily �nd the regions which are enclosed by or are near to the regions predicted to be

part of the parking place. The regions selected in this step of the process are candidates for

the detection of cars. Cars may be formed by one, two or more regions. The evaluation of the

car-hypothesis is performed considering the dimensions of cars as speci�ed in the generative

model, the shape of the regions, their relative position and the similarity in color of the regions.

After the detection of one car, hypotheses for rows of cars can be established. Further cars

�tting into these predicted rows are now searched. The evaluation functions for car-hypothesis

inside a row are dynamic: with growing size of the car rows, the stringency of the evaluation

is gradually released. However, it is again drastically enforced as soon as the car rows reach a

maximum size, which is calculated from the dimensions of the parking place in context.

6 Results and Discussion

An example for the recognition of buildings and parking places in an aerial image is given in

Fig. 8. After the calculation of the primitives, more than 6300 line segments and 1640 regions

are stored in the neighbourhood graph and are presented to the structural analysis process.

These primitives are not displayed in Fig. 8. The white lines displayed in the Figure are the

representations of the instances to concepts im line which form the contours of the objects.

The solid white lines have been built by aggregating image primitives. The broken white lines

are wildcards. They are inserted by the system in the case that the evidence given by the image

primitives was not su�cient to detect a contour in the image at that location.

Contour lines have not been reliably detected where they are occluded by vegetation or by the

cars (the contour on the right side of the big, L-shaped parking place) or in the case of missing

contrast in the image. This can be observed for an edge of the H-shaped building and also for

the left-side edge of the parking place in the lower left area of the image. The contours of this

parking place as given by the map are only administrative border lines and are not visible in

the image: in reality, the entire area in front of the H-shaped building is asphalted and only a

part of it is used as a parking place.The map does not provide information about the type of



Figure 8: Result of the image analysis

the surface outside the area marked as parking place.

Lane markings on the asphalt are found as upper and lower borders of this parking place. The

upper border was detected at an o�set of about 4m from its location predicted by the map. The

marking lane at the lower border �ts well to the predicted location for the border. However,

as it can be observed in Fig. 8, below this border there are also parking cars and in fact one

could regard all the area down to the stripe of vegetation as belonging to the parking place.

Due to the well �tting, the analysis state containing the lane marking as the low border has a

high valuation and thus search paths containing other competing borders are not followed. As

well, we do not yet search for cars outside the detected area of a parking place. This is the

reason why the four cars below the detected parking place are still missed. It is part of our

future work to extend our system such, that also in neighbouring areas of a parking place rows

of cars are searched and in the case of success an expansion of the parking place is performed.

The instance representing the edge on the left side of the H-shaped building is erroneously

aggregated from a mixture of line segments from the edge of the roof and from the ground-plan

of the building. This could have been avoided if 3D data would have been available.



(a) (b) (c) (d)

Figure 9: Details of the recognition results of Figure 8

In Fig. 8 the detected cars are surrounded with their bounding box in white color. A marking

in form of a circle is drawn in the middle of this bounding box. A white line connects the

markings of all cars which have been found to be in the same row. As it can be observed in

Fig. 8, the recognition has been successful for most of the cars on the parking places.

No structures other than cars have been detected as such. This is not only due to the parametric

part of our model (size of a car etc.), but it is also a merit of the structural part of the

model. Cars are optional and context dependent parts of a parking place, but not of buildings,

playgrounds or other objects in the scene (streets are not yet incorporated in the system). Thus,

the system does not even make an attempt to search for cars e.g. on the roof of a building {

although there exist regions on top of buildings which would satisfy the parametric model of a

car. This is an advantage of an essentially model driven approach over a data driven approach.

Inconsistencies as mentioned above are likely to be generated in a data driven analysis process

and have to be removed later on during a consistency checking; they are unlikely to be generated

in a model driven approach like the one we are using.

There remain some cars on the parking places which have not been detected or where some

parts have been missed. We will only focus on the problems and present them at the details

shown in Fig. 9(a)-(d).

Fig. 9(a) gives a detail of the parking place in the lower left part of the image shown in Fig. 8.

All the cars have been recognized correctly except the leftmost car in the middle row. For this

car the region representing the motor-hood has been missed. It is because the other two regions

of the car were already satisfying the parametric model and because without the motor-hood

the evaluation of the �tting inside a row together with the car nearby provided a higher evidence

than in the case the motor-hood was also considered.

The Figures 9(b) and 9(c) are details of the big L-shaped parking place. A typical example of

failed detection due to occlusion is presented in Fig. 9(b). A big part of the second car from

the lower border of the detail is occluded by trees. The remaining visible part of the car is too



small to satisfy the model requirements. The planned recognition of the vegetation should help

us to overcome this kind of problems.

A similar situation is encountered in Fig. 9(c). On this section of the parking place the cars are

arranged in rows having North-South direction in the image. Substantial occlusions occur for

four cars in the left row. Two of these cars have been completely missed. The other two cars

are close one to the other and have the same color. The roofs are the only visible part for each

of these two cars and they are interpreted by the system as being the roof and the motor-hood

of one and the same car (the vertically oriented box in the Figure).

The Figure 9(d) is a detail of the parking place in the right part of the image. Here the

requirement for a similar color of the regions belonging to a car leaded to the failure of the

detection of the four cars in the lower part of Fig. 9(d). This condition is violated because of

the spot-like re
ections of sunlight on the cars.

For a part of the presented problems it will be di�cult to develop a recognition procedure

which will solve them in any situation. However, the other part can be eliminated by enlarging

the knowledge base of our system. Already now the automated recognition of structured and

compound objects in aerial images with our system MOSES is successful in most of the cases.
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