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Abstract

Object migration is usually applied to optimize distributed monolithic systems.

In this paper, the authors investigate whether object migration can also be utilized

in cooperative systems which consist of autonomous components.

We show that object migration policies will not always optimize system perfor-

mance. Rather they can reduce it drastically if di�erent components apply these

policies concurrently.

Conventional run-time support for linguistic primitives which are usually used

to express migration policies is adapted to cooperative systems. We show that

two novel approaches, place-policy and reduction of attachment-transitiveness,

can counter the degradation caused by conicting policies. In order to restrict

attachment-transitiveness we introduce dynamic relationships called alliances be-

tween objects which explicitly de�ne cooperation contexts.

The e�ects of these modi�cations are evaluated by simulation.
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1 Introduction

In most modern application areas | take o�ce or factory automation as examples |

many independent components cooperate to ful�ll a common task. They do so naturally

in a distributed environment. But most often the components are not developed from

scratch, but introduced in an evolutionary manner. Often components are applications

themselves. It is an illusion to assume that there internal structure and external behavior

is compliant because they are normally developed by independent teams or even purchased

from o�-the-shelf. However, they have to work together in one distributed system. In

addition they must cooperate, which normally means that they share a subset of common

data.

As the behavior of a distributed system is the net e�ect of the local behavior of

independent components, the simple approach to map distribution entities statically to

one node generally degrades quality-parameters like performance or fault-tolerance1. One

depends on mechanisms like replication (cf. [Jal94]), fragmentation (cf. [MGL�94]) or

object-migration (cf. [JLH�88]) to counter this degradation.

By their very nature, replication and fragmentation have always been discussed in

the context of parallel accesses from di�erent nodes. In case of object migration, parallel

accesses are conventionally only treated for the case of immutable objects. Moving a

static object simply creates a copy.

When independently developed components work together, we call the resulting sys-

tem a non-monolithic application. Now the question arises whether is is possible to use

distribution mechanisms in such applications to improve the quality of operation. The

basic e�ect of letting independent components use mechanisms in one distributed system

with shared objects basically means that there is unsynchronized concurrency. As long as

the distribution mechanisms in such systems are not tailored according to this observa-

tion, they will useless or even worse detrimental. In this paper, it is shown that this is a

particular danger if one employs object migration. Further, we will develop system-level

mechanisms to counter this phenomenon.

The paper is organized as follows. In Section 2 we introduce the common notion

1The consequence is Leslie Lamport's de�nition of a distributed system: "`You know you have one

when the crash of a computer you've never heard of stops you from getting any work done"'[Sch93]
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of object migration, show what the term migration policies means, and separate the

prerequisites that underly the conventional linguistic support for object systems that

support migration. It will become clear that those approaches fail for non-monolithic

applications. How conventional run-time support can be extended for these areas is the

subject of Section 3. We identify two simple modi�cations: the place-policy and the

reduction of attachment-transitiveness. For the latter we introduce dynamic relationships

between objects called alliances. Alliances make cooperation contexts of objects explicit.

The e�ects of these modi�cations are evaluated by simulation (Section 4). It is shown

that the policies e�ectively counter the performance degradation imposed by conventional

migration policies in non-monolithic applications. Finally, Section 5 concludes the paper

and gives a brief outlook.

2 Object Migration

2.1 Distributed Object-Oriented Systems

Objects have a well-de�ned interface consisting of set of methods which can be invoked

by clients. They hide the implementation of their methods, encapsulate their state and

have no state in common with other objects. Consequently, objects interact solely via

message exchanges.

Hence, interactions among objects map readily to communication in a distributed

system. This makes objects an ideal model on which to build distributed applications.

To distribute objects, one needs only a level of indirection to trap remote invocations

and forward them to the location of the remote object. The technical principles of such

systems are well understood [ChC91] and need no further discussion.

2.2 Controlling Migration

As objects encapsulate their internal state, they are not only the ideal entity for distri-

bution, but are also movable. This observation has lead to a wealth of systems which

support mobile objects. To get an expression of the numerous alternatives, the reader

is referred to the comparative studies of Borgho� [Bor92] and Nuttall [Nut94]. Those
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studies are also a good source for references for many other mechanisms that have been

employed to solve the numerous technical problems that come with mobile objects.

Basically, object migration is nothing else than a dumb tool. Bene�ts could only be

drawn from this tool if it is used in a way compliant to the very goal one intends to achieve.

Hence, not the tool, but the policy with which the tool is controlled is the central issue.

To justify this observation, look at the applications for which mobile objects could be

exploited in a distributed world2:

� load-sharing | by moving objects around the system, one can take advantage of

lightly used computers;

� communication performance | objects that interact intensively can be moved to the

same node to reduce the communication cost for the duration of their interaction;

and

� availability | objects can be moved to di�erent nodes to provide better failure

coverage.

Although, the list is a very small selection of the potential bene�ts, one can see that the

di�erent goals are not compatible in general. Note, for example, that availability calls for

distributing objects, while performance calls for collocating them. What goal is followed,

is subject to the stated policy. Most often, communication performance is the target to

be achieved. Hence, we will also take this as the goal that should be achieved through

migrating objects.

To separate mechanism from policy, systems that support object migration normally

only comprise a small set of primitives as building blocks for more complex mechanisms for

speci�c applications. This basic linguistic support for mobile objects normally comprises

of the following primitives.

� Fixing objects |Some objects should not be able to migrate at all. This could either

be a permanent or a transient property. In the former case, the property is often

expressed as a type attribute in order to force all of its instances to be sedentary.

2The list is a subset of the more complete discussion of [JLH�88]. We selected the points which are

commonly regarded as being of general importance.
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The latter is mostly the consequence of run-time decisions, e.g., to avoid thrashing.

Linguistic primitives normally contain means to �x(), un�x() and re�x() objects.

� Moving objects | The basic building block to demand collocations or dislocations

is some variant of the migrate(O, target) primitive. The target either names a

node or another object. In the latter case the objects are collocated. To decide

whether it is sensible to migrate objects, their location could be interfered through

primitives, like location of() or is resident().

� Keeping objects together | Explicit migration only moves the speci�ed objects

without giving the system a clue about the reason for the move. For example, the

system cannot infer whether collocation is permanent or temporary, i.e. whether it

should latch the migrated objects to the target object speci�ed in the migrate()-

primitive or not. Instead, this must be expressed by the application based on

predicted usage patterns. Consequently, the linguistic support for migration often

contains some means to attach() objects and to detach() them. The system

guarantees that attached objects are kept together until they are explicitly detached

again. Attachment is transitive. A prominent example for the use of this technique

is to simply keep an object together with all the objects it references through its

attributes.

2.3 Migration Policies

The primitives presented above can be used as building blocks for arbitrary control poli-

cies. In addition many languages contain primitives that imply standard policies which

are simple enough to be of general use. Two prominent examples are themove() and the

visit() primitives. A move is a purposeful migration that is associated with some other

primitive of the language. A visit is the combination of a move and a migrate back.

Normally those primitives could be used in operation declarations to force parame-

ter objects to come to the callee (and to go back after the operation completed in the

visit case). An example for this so called call-by-move or call-by-visit policy is given in

Figure 13.

3The syntax is taken from GOM (Generic Object Model) [KeM94], the language used in our project.
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type tool supertype ANY is

body [ : : : ]

operations

declare assign: visit job, move schedule ! bool;

: : :

implementation : : :

end type tool;

Figure 1: Conventional Call-By-Move.

var l: [element]

: : :

begin

visit(l,self); !! Move the list to the local node

forall o in l do

: : :

endfor !! Processing completed

end !! List migrates back

Figure 2: Conventional way to control migration.

An example of a more sophisticated use of the visit policy is given in Figure 2 which

is an adaption of an example of [Ach93]. A list of objects (written as [obj]) is processed

inside a loop. As there may be many accesses to an individual object in the list, the

loop is enclosed in a block (begin/end) at whose beginning the list is forced to visit the

processing node, and is kept there until the block has been completed.

Those primitive policies have one advantage compared to the basic migrate()-

primitive: they carry semantics. A migrate(Ox,N1) only tells the system that the

application wants to have object Ox at node N1 for some reason. Conversely, a move()

always has a time during which is valid. In case of the call-by-move this is the time

needed to process the remote call, in case of the block it it the time the system spends

in processing the instructions inside this block. The semantics of the move primitive is

related to this time span | the programmer tells the system that the cost to migrate the

named object is less than the cost to use the object remotely during the validity of the

To take a look at the classic call-by-move syntax, the reader is once more referred to [JLH�88]
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move primitive.

2.4 Underlying Premises

Although, the presented primitives are a powerful tool to express control policies their

use relies on two implicit assumptions:

� Objects know their future communication patterns | If this assumption does not

hold, there is no base for any migration decision. Hence, an object should at least

know the set of its communication partners, if it wants to interfere the actual pat-

terns. Better though, the object should know exactly how the cooperation with its

partners will develop.

� All objects are trusted | Any object may call for arbitrary attachments or �xings.

Hence, no object can exert control over what other objects it is attached to or

whether it is �xed at the moment. In order to make sure that all policies expressed

by individual objects sum up to a sensible overall behavior, all objects are assumed

to behave in a reasonable fair way.

These assumptions are appropriate for monolithic distributed applications that are

set up by a single programmer or a small, closely-knit design team. In a world of au-

tonomously developed objects or subsystems that live together and share some common

objects which are service providers, these assumptions generally do not hold. For exam-

ple, an object does not know about all its (transitive) attached partners, as any object

may invoke the attach()-primitive with arbitrary arguments. Consequently, it may con-

tinuously underestimate the e�ect of an issued migrate()-primitive by assuming that

fewer objects are clustered together than actually result from following all transitive at-

tachments. Additionally, some implementors may behave completely egoistic to tilt the

system towards good behavior for their own application that only accounts for a small

subset of the overall activity in the system.
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3 Run-Time-Support for Migration in Non-

Monolithic Applications

In this section we present remedies for the discussed shortcomings of conventional migra-

tion support in non-monolithic environments. First we present how system support for

non-monolithic environments could be integrated in a distributed object oriented system.

The cornerstone is the use of the conventional linguistic support for object migration, but

to reinterpret the primitives in case of conicts. We present two approaches. The �rst

one, the substitution of migration by transient placement, is completely transparent for

the programmer. The second one relies on means to de�ne cooperative subpopulation

of objects. This is treated as an add-on to existing object systems that can be included

without changing the operations of objects.

3.1 System Model

In distributed object-oriented systems, calls to objects are trapped, linearized and for-

warded to the current location of callee. There they are delinearized to enable a conven-

tional invocation. One common mechanism for this is the use of proxy-objects that serve

as placeholders for remote objects and perform the discussed linearization and forwarding.

(cf. [Ach93, ScM93]).

This procedure is followed for conventional calls and for migration calls. The latter are

not transformed in an invocation, but interpreted by the run-time system at the node of

the callee. This is the place that has to be modi�ed to include support for non-monolithic

environments. This is done instead of simply executing the request and transforming the

object to its new place. The procedure for proxies is depicted in Figure 3. Note that this

basic model normally does not introduce additional remote operations, as everything is

performed locally at the callee.

3.2 Substituting Migration by Transient Placement

Placement is a simple policy to cope with concurrent move()-requests from di�erent

nodes. A move() request is as usual forwarded to current location of the object. When
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Figure 4: Successful and Unsuccessful placement.

no concurrent move is operating on the object, the primitive is executed as in conventional

systems and the object is transferred to the caller. As soon as it arrives, the object is

locked. A locked object is sedentary as long as the block or operation completes to which

the move()-primitive is tied to. This is indicated to the run-time system with an end-

request.

The resulting behavior is contrasted to conventional moves in Figure 4. Instead of

transferring the object twice it is only moved once. Note that no additional remote

operations are required to realize the new policy. The end-request is always a local
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operation. In case the move was successful, the lock is removed. When the object is

locked, the conicting move-request returns an indication, the further calls at this node

are forwarded to the object and the end-request is simply ignored, as nothing has to be

done.

To see why this is approach is superior to the conventional one, let C denote the cost

of a remote invocation message, N the number of calls to the object inside the move-block,

and M the cost of a migration. The latter depends on the size of the object. But naturally

M > C. We assume that the programmer used the move()-primitive in a sensible way,

which means that N*C > M. In the depicted example for concurrency, the overall cost

for the place-policy is M + (2*N + 1)*C, as a invocations comprise of a call and a result

message. The worst case for the conventional policy occurs, when the second move()-

request arrives before the invoker of the �rst request has performed any calls. The overall

cost 2*M + (2*N + 2) is worse than the cost of the place-policy.

We compare the two approaches in detail in Section 4.2, using a simulation model.

3.3 Exploiting Dynamic Information

The conventional move-policy is an aggressive migration-policy. On the other hand, place-

ment can be seen as an conservative policy. Both operations do not exploit information

about the set of users of an object, besides the information that an object is still in use

by a move-block.

Those two policies are extremes of a continuum. Between them are policies that record

information about the set of the current users of an object. To manage this, two additional

requirements arise.

1. The run-time system has to collect additional data about the users. As this infor-

mation has to be collocated with the object to enable its evaluation, the size of data

that has to be transferred when migrating an object increases. Hence, such policies

are clearly unpromising for small objects, because the additional information might

grow to the multiple size of the object itself.

2. The information has to be kept up to date. Hence, all move- and end-primitives

have to be forwarded to the location of the object. Thus, the advantage that the
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place-policy of Section 3.2 does not increase the number of remote operations does

not hold any longer.

Both requirements impose additional run-time overhead compared to the two simple

policies. On the other hand, more intelligence can be coded into those policies. Take as

an example the policy to locate an object at the node that issued the most concurrent

move()-primitives. Whether the bene�t of such policies outweighs their overhead is

discussed in Section 4.3. There only the bene�ts are measured to keep the results clearly

comparable to the simple policies. As we will see in this section, even in the absence of

their overhead, the intelligent policies only provide a marginal improvement compared to

the place-policy. Hence, situations in which they can be used are rare.

3.4 Keeping Objects Together

In the following, we use the attach()-primitive of Section 2.2 as the linguistic support to

keep objects together. Attachments issued from di�erent applications in a non-monolithic

environment are harmless, as long as the same set of objects are kept together. This

is certainly true when the applications have similar usage patterns. As discussed in

Section 2.4 di�erent usage patterns may impose considerable overhead, as the applications

base their decision to issue an attach()-primitive on incomplete information and thus

underestimate the cost of migrations.

The e�ect of di�erent usage-patterns is that each application attaches together a set

of objects with which it will work. This set is called its working set. Migration decisions

are based on the knowledge of the own working set. But in case of diverging usage

patterns, the working sets of di�erent applications overlap and are grouped together by

the attach()-primitives. Actually those clustered working sets are moved when one of

the applications demands a migration.

To keep the migration decisions of applications sensible, the working set that is actually

moved has to be the same as the one, the migration decision is based on. To achieve this,

we introduced in [LW94, KLM95] the notion of an alliance. In a nutshell an alliance de�nes

a dynamic relationship between a set of cooperative objects. It restricts the interaction

between the objects to those that contribute to the target of the cooperation de�ned
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Figure 5: The Alliance Abstraction.

in the alliance. Thus, an alliance de�nes a cooperation-policy between a set of objects.

Additionally, an alliance can de�ne a distribution policy. We implemented a prototype to

test the cooperation policies on top of Objectstore [LLO�] and a second one for distribution

policies on top of DC++ [ScM93]. The resulting communication abstraction is depicted

in Figure 5.

Some other authors recently proposed, too, to separate aspects of object cooperation

either into a separate construct as, e.g., [YS94, HHG90, AFK+93], or by introducing spe-

cial adapter- and mediator objects as, e.g., proposed in [GHJV94] which can be compared

with alliances. But these approaches are mainly intended to support integration of ob-

jects with incompatible interfaces or to restrict method invocations in order to synchronize

concurrent clients of a server object. None of them investigates the consequences of their

approaches for distributed systems and only [AFK+93] treats concurrency.

The only detail of importance for the following discussion is that objects can be mem-

bers of di�erent alliances and that a primitive that controls migration can unanimously be

related to one alliance. This can be exploited to let the actual working set that is migrated

be the same as the one, migration decisions are based on. This is achieved in restricting

the transitiveness of attachments to the ones de�ned by one alliance. Thus, attachments

are A-transitive. Implicit migrations that result from attachments are restricted to the

attachments of the alliance, the migration primitive was invoked in.

Another approach to restrict the moved working set to sensible dimensions, that does

not rely on an additional construct like alliances, can be formed along the basic ideas of
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the place-policy for movements of Section 3.2: exclusive attachments. An object is only

allowed to be attached to one other object. All additional attachments for this object

are ignored. When di�erent applications have compliant usage patterns they will issue

conforming attachments. Hence, the e�ect is the same as for conventional attachment.

In case of diverging usage patterns, a �st-comes-�rst-served policy results that can be

enhanced through exploiting dynamic information, similar to the extensions to the place-

policy discussed in Section 3.3

No matter what policy is taken, the e�ect are disjunctive working-sets for applications.

These e�ects are analyzed in Section 4.4. All in all, reducing attachments into cooperative

subparts counters the negative e�ects of conicting migration control in non-monolithic

environments. The best performance is achieved when one combines the place-policy

with attachment-reduction. Once again dynamic extensions to the place-policy have only

negligible e�ects that are not worth their price.

4 Evaluation

The above discussed policies to control migration have been analyzed inside a simulation

model. In the following the model is discussed and the key results for all policies are

presented.

4.1 The Simulation Model

The communication structure among distributed objects is in general an arbitrary graph.

The same is true for the network topology that interconnects the di�erent nodes physically.

Although it is merely a matter of complexity to model such complex structures into a

simulation scenario, the obtained results would be hard to interpret. So we decided to

use a simpli�ed model to get clean results for the e�ects of our policies.

All the results that are presented in the next sections assume a fully connected network.

We also performed simulations for other structures. But this had no e�ects on the results.

In addition, the object system is assumed to run concurrently with other applications.

Hence the network load imposed by the communication of objects does only contribute

a small part to the overall load. Hence, saturation e�ects of networks like Ethernet
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could be neglected. All in all, these assumptions result in a network model in which

communication between objects is distributed around the same mean value for all nodes.

In addition, we neglected the e�ects of di�erent policies for object location, like name-

server lookup [ChC91], forward addressing [JLH�88], broadcast [DLA�91] or immediate

update [Dec86]. Hence, the time could be normalized so that a remote object invocation

has an exponentially distributed duration of 1. This duration is valid for systems that do

not support migration, because an object that is linearized and transferred over the net

can not perform any operation until it is reinstalled at the target node. Hence migrations

increase the mean duration, but in a way that cannot be �xed outside the simulation.

Hence, a remote invocation in the simulation has a mean duration of 1 only when the

callee currently resides on some node. When the object migrates at the moment of the

invocation, the call is blocked until the object is operational once again. This increases

the mean time of the communication. Local actions have been neglected, as they are

normally about 4 orders of magnitude below the duration of a remote action [Ach93].

Because we are only interested into the e�ects our policy has for applications that

use migrations, we only modeled the inter-object communication that occurs inside a

move-block. The rest of the inter-object communication is part of the background load

just as the other application in the net. Note that this decision strengthens our decision

to neglect saturation e�ects of the network, as the relevant inter-object communication

is only a subset of the overall inter-object communication. Further, we assumed that

move-blocks are set up by the programmer in a sensible way. This means that a move

block begins with a migration request and the net duration of all object invocations inside

the block is bigger than the migration duration. Let N denote the number of invocations

inside a move block and M the duration to migrate an object. As we normalized the mean

duration for an object invocation to 1, a migration block is set up sensibly, when N >

M. When a move block only uses one object, a move block is de�ned by the following

parameters:

� the duration M to migrate the object,

� the number N of invocations to that object,

� the time ti between two invocations of the object in the block, and

14
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Attachments.

� the time tm between the end of one move block and the start of the next one inside

the same application.

All four parameters are assumed to be exponentially distributed. To keep the move

block sensible, the mean value for the distribution of N has to be bigger than M. All

times are given in multiples of the duration of an invocation. As a move block that uses

multiple objects can be decomposed into multiple collocated move blocks that use only

one object each, a move block in our model only uses a single object.

To keep the results interpretable, we assume a very simple inter-object communication

structure: a client-server approach. Because each synchronous object invocation dynami-

cally crates a client-server relationship between the two involved objects we simulated the

basic building block of distributed applications. The resulting inter-object communica-

tion structure is depicted in Figure 6. Because clients are not invoked from other objects,

there is no point in migrating them. Hence, they are sedentary. Only servers move during

the simulation. Each client can communicate with each server. The move blocks operate

inside the clients. Hence, concurrency and the rate of conicting move-policies between

di�erent clients is incremented through two parameters: in incrementing the number of

clients N or in decrementing the time between the move-blocks inside each client tm.

There is no point in introducing attachments to the basic inter-object communication

structures, as the clients directly use each server. Attachments lead to implicit migra-

tions of a working set. To model this, we extended the basic inter-object communication

15



Parameter Description Distribution

D Number of Nodes �xed

C Number of clients �xed

S1 Number of 1st layer servers �xed

S2 Number of 2nd layer servers �xed

M Migration duration for servers �xed

N Number of calls in a move-block exp.

ti Time between two calls in a block exp.

tm Time between two move blocks exp.

| Duration of a remote call exp. (1)

Table 1: Relevant Simulation Parameters

topology to the one depicted in Figure 7 for our simulative evaluation of the attachment-

policies. The model comprises of two layers of server objects. The �rst one is directly

used by the clients. Those servers use exactly the servers of the second layer belonging to

the working set of this server. All server objects in one working set are attached together.

We assume that these attachments are sensible. The e�ects discussed in Section 2.4 and

3.2 occur, when the working sets of servers partially overlap. The most important of

these e�ects is that applications underestimate the cost of their migration decision, as

their attachments are complemented by the ones of other applications.

To sum up, all relevant parameters for the simulation are given in table 1. All simula-

tions have been run as long, as a con�dence interval of 1% was reached with probability

p=0.99.

4.2 Substituting Migration by Transient Placement

The place-policy was compared to the conventional migrate-policy and to a system that

only consists of sedentary objects. Our claim is that we counter the performance degra-

dation imposed by non-synchronized concurrent migration requests from di�erent (parts

of an) applications. We measured the performance variation that results from increasing
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concurrency. Along the lines of our simulation model, two di�erent sets of simulation

have been performed.

1. A set with a �xed number of client and server objects where concurrency is increased

by increasing the usage-frequency of objects inside the client.

2. A set with a �xed number of server objects, a �xed usage-frequency of each client,

and an increasing number of clients.

One representative result from each set is presented in the next two subsections.

4.2.1 Increasing the Usage-Frequency

The e�ect of increasing the usage frequency while using a �xed set of clients is depicted in

Figure 8 that shows duration of invocations relative to the current usage-frequency. The

duration is computed as the mean duration of an invocation plus the migration cost evenly

distributed to the invocations belonging to that migration. Those numbers are separately

displayed in Figure 10 and 11. The parameters of Figure 9 have been used. Note that

only three clients have been active concurrently. Thus the mean duration of a call for

sedentary nodes is 4/3, because it consists of a call and a result message and the change

that the callee is local with respect to the caller is 1/C = 1/3. The results show clearly

that the migration can improve the performance in distributed systems. Furthermore,

it can be seen that the place-policy performs better than the simple migration-policy in

systems with unsynchronized access to a common set of objects from di�erent clients.

The duration of invocations generally increase with concurrency. But Figure 8 shows

that the duration decreases again, when concurrency approaches its maximumvalue. The

answer for this behavior can be derived from the two detailed �gures. Figure 10 shows

that the duration of calls increases with concurrency, since the changes to migrate an

object to the place of the caller and to perform all invocations locally decreases. On the

other hand, the migration duration per invocation decreases at high concurrency levels,

as shown in Figure 11. The reason is that the chance of �nding that the callee is already

collocated with the caller increase with concurrency.
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Figure 8: Increasing the Usage frequency.
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Figure 9: Parameters.
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Figure 10: Duration of Invocations.
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Figure 11: Migration-Load.

4.2.2 Increasing the Number of Callers

The results discussed above have been obtained with a small �xed number of clients.

Concurrency can also be increased in increasing the number of clients. This models the

situation of hot-spot objects that are used by many clients. The common knowledge that

it is better not to migrate such objects can clearly been interfered from Figure 12 (which

was obtained with the parameters of Figure 13). The duration of calls linearly increases

in the number of concurrent callers. The break-even point where migration gets worse

than using �xed objects are 6 clients. Once again the place-policy is able to cope with the

increased concurrency. The break even rises to 20 concurrent clients. It will be even bigger

when the relation of object invocations inside a move-block to the migration duration (i.e.
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Figure 12: Increasing the Number of Clients.
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Figure 13: Parameters.
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Figure 14: Increasing the Number of Clients.
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Figure 15: Parameters.

N/M) increases. As the plot for the place-policy grows sublinearly in the number of clients

and the growing rate decreases, an increase in N/M will have an over-proportional e�ect

on the break even-point, contrasting to the basic migration policy.

4.3 Exploiting Dynamic Information

Figure 14 shows the mean communication-time per call using the conservative placement

policy without any additional run-time information and the e�ects of two intelligent place-
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ment strategies in relation to the number of concurrent clients. The used parameters are

given in Figure 15.

The �rst strategy | comparing the nodes | bases its decision whether to migrate an

object or not on the number of move-requests at one node. It tries to keep objects always

at those nodes from where the most move-requests have been issued. For this it records

move- and end-requests and the nodes where they have occurred. Now the situation

may arise that a conicting move-request has initially no e�ect on the location of the

requested object but may lead to a migration at some point later if furthermove-requests

are issued at the same node.

The second strategy | comparing and reinstantiation | treats move-requests in the

same way than comparing the nodes. In addition objects may not only be migrated on

move-requests but also on end-requests if an end-request leads to a situation that some

other node holds a clear majority on open move-requests.

Figure 14 con�rms our expectations from Section 3.3. Both strategies lead only to

minor performance gains. Note that the necessary overhead to collect the dynamic infor-

mation has been completely neglected in our simulation model. Hence, the improvement

would be even smaller in real applications.

4.4 Keeping Objects Together

Figure 16 shows the e�ects of A-transitive attachments in combination with migration and

transient placement. The underlying premise was that each alliance uses its associated

objects in a distinct way. Thus, we considered only the worst-case. The parameters of

this experiment are given in Figure 17.

We see that applying conventional migration together with unrestricted attachments

has a devastating e�ect in non-monolithic environments. The more concurrent clients

there are the more often they steal common servers from each other. This does not only

leads to the migration of single objects but also to the migration of the transitive closure

of all attached objects (servers of the second layer).

Transient placement combined with unrestricted attachment is a �rst improvement.

The result is comparable to that shown in Figure 13. It can be explained by the conser-

vative character of the policy: conicting move-requests will not lead to the migration
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Figure 17: Parameters.

of the requested object and, consequently, also not to the migration of objects attached

to it.

The results of applying A-transitive attachment in combination with conventional

migration and transient placement show that it can be worthwhile to attach objects which

are in some way related by their predicted usage in non-monolithic systems, too. But this

mechanism should only be applied if attachment is restricted to the context of an alliance

if the usage-patterns for objects vary in di�erent alliances. Remember hat the positive

e�ect depends on the sensible usage of placement and attachment inside alliances.

5 Conclusion and Outlook

In this paper it has been shown that conventional object migration which has been proven

a useful mechanism for monolithic systems can have negative e�ects in non-monolithic sys-

tems where autonomous components concurrently and cooperatively perform their tasks.

The degradation mainly arises from conicting policies which are applied by di�erent

objects which do not know what their colleagues in the system are doing.

Modi�cations of the semantics of common traditional linguistic support for object

migration to adapt them to non-monolithic systems were proposed. We replaced the

move-statement which normally leads to immediate migration of the speci�ed object by
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so-called transient placement which will only lead to migration if no other object has

requested a move on this object before. In order to tell the system when an object is not

needed any longer at a certain location an object additionally can issue an end-request. A

simulation model con�rmed the usefulness of transient placement. The simulation further

indicated that even more intelligent policies to deal with conicting move-requests which

exploit run-time information will not be worth the overhead they cause and the additional

implementation e�ort they require.

As a second modi�cation to conventional mechanisms we proposed to restrict attach-

ment to well-de�ned cooperation contexts. As an abstraction for these contexts we used

alliances and restricted transitiveness of attachment to the set of their members. Re-

striction of alliance transitiveness leads to disjunctive working sets of applications. This

prevents the costs for migration of being underestimated, because some other autonomous

and concurrently active components have added elements to the transitive closure of a

certain attachment. Again simulation con�rmed our thesis.

In this paper we were concerned with object migration. But object migration is only

one mechanism which can be used to enhance certain quality parameters of distributed

systems. It seems worthwhile to investigate whether similar negative e�ects as we have

shown for object migration arise for other mechanisms like replication and fragmentation

if they are applied in non-monolithic systems, and if this is the case, how these mechanisms

can be adapted to meet the special requirements of non-monolithic systems.
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