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Abstract� Thispaper is anapproachto automatedvericationof circuits repre�
sentedasswitchleveldesigns�Switchlevelmodels�SLM�areawellestablished
framework formodelling lowlevel properties of circuits�We usemanyvalued
propositional logic to represent a suitable variant of SLM�Logical properties of
circuits �gatelevel� canbe expressed in a standardway in the same logic� As a
resultwe canexpress soundness of switchleveldesignswrtto gatelevel speci�
cations asmanyvalueddeductionproblems�Recent advances inmanyvalued
theoremprovingindicatethatit ispossibletohandlereallifeexamples�Wereport
rst resultsobtainedwithanexperimentaltheoremprover�

Introduction

Switchlevel models� �SLM� are well�established tools for representing a circuit on
the transistor level in considerable detail� They can be used to model phenomena like
propagation and resolution of undened values� hazard detection� degradation effects�
varying capacities� pull�up transistors or depletion mode transistors� see 	
� for a very
exhaustive list� It is important to note� however� that all dimensions are symbolic values�

Traditionally� SLM have been used as a formal basis for the construction of simula�
tion tools which can be used for testing the behaviour of a circuit before it is actually
built� In this paper we present an approach to automated verication on the switch
level based on automated deduction in propositional manyvalued logics� Related work
was done by Bryant � Seger 	
� and B�uttner et al� 	��� The relationship between these
approaches and our own is discussed in the conclusion�

Propositionalmanyvalued logics are particularlywellsuited for representing SLM�
Given the fact that typical SLM of real circuits contain several hundreds of parts� there is
no sense in trying full rstorder predicate logic� Also the expressivity of full rstorder
predicate logic is not really needed� On the other hand� mere twovalued propositional
logic is not advisable� too� since one has to introduce lots of auxiliary variables that
bear no natural meaning� such that the logical representation of SLM would become
unreadable and� more important� unfeasible through its many variables� We found that
propositional manyvalued logics are just the right tool for adequate representation of

� ResearchsupportedbyIBMGermanyandDeutscheForschungsgemeinschaft�
�Switchlevelmodelswere introduced in the late�	smainlybyBryant 
�� andHayes 

	� 

�
as a formal frameworkformodellinglowlevelpropertiesofcircuits�



SLM if truth values are interpreted as different levels of voltage� Together with a logical
representation of the intended function of a circuit it becomes possible to establish its
soundness in terms of a formal proof in manyvalued logic�

Recent research showed that it is well possible to build generic satisability checkers
for propositionalmanyvalued logics that are quite efcient 	�� �� ��� The logical basis for
manyvalued deduction here is a suitable extension of analytic tableaux 	
���Moreover�
manyvalued tableaux give rise to a reduction of manyvalued deduction problems
to integer programming problems 	��� First results suggest that with this technique it
is possible to build manyvalued satisability checking programs whose performance
comes close to stateoftheart satisability checkers for classical logic�

We are condent that ultimately it is possible to prove properties of real life circuits
with our approach� In this paper we sketch the rst steps towards this task� The orga�
nization of the paper is as follows� in Section 
 we describe the variant of switchlevel
model we used for our experiments� In Section � we introduce amanyvalued deduction
framework based on analytic tableaux� Section � presents the link between SLM and
logic in terms of a translation from the former into the latter� This is illustrated by an
example� Finally� we give statistical gures from rst tests� we discuss related work and
we point out the next steps�

� The Verication Model

��� SwitchLevel Representation of Circuits

In SLM we represent a MOS circuit as a set of nodes which are interconnected by
switches �transistors�� In this paper we consider only combinational and asychronous
circuits with zerodelay elements�

Denition � SwitchLevel Network� A switchlevel network consists of a set N of
nodes fn�� � � � � nkg which are interconnected by a set T of transistors ft�� � � � � tlg� A
subset Q ofN is called the set of source nodes and the set S � N�Q is called the set
of storage nodes�

Denition � MOSTransistor� AMOS�transistor is a bidirectional switch in a switch�
level network which has three terminals called gate� source and drain�

A NMOStransistor is closed �conducting� iff the voltage at its gate terminal re�
presents a logical �� The transistor is open �nonconducting� iff the voltage at its gate
terminal represents a logical �� In all other cases� the state of the transistor is called
unknown�

For a PMOStransistor� the conditions for the gate terminal are ipped�
From now on we use the more general term value instead of voltage to describe the

state of the nodes �and the terminals of a transistor are nothing else than nodes��
We follow 	

� 
� by using a sevenvalued logic in order to model one particular

switch level phenomenon� namely degradation effects in CMOS circuits which occur
due to the fact that transistors constitute nonideal switches that degrade the strength of
the signals�



Denition� SwitchLevel Value� The set of switchlevel values �SLVs� consists of
the elements E�D��D��DU� S�� S�� SU� These are the only possible values at the nodes
of a switchlevel network� The meaning of these SLVs is as follows�

The strong values S� and S� are the values associated with the support voltage
vdd and ground gnd�
D� and D� are values which result of a degradation effect� that is� the property that
a closed transistor passes on the voltage of his drain �source� terminal diminished
to his source �drain� terminal�
SU and DU are undened values� but correspond to a certain strength�
E is the value of all nodes which are not connected to a source node via a path
through the network�

Remark�If we consider circuits in ratioed logicwe can split the degraded values further
to distinguish between depletion transistors and normal transistors�

To compute the value of a node in the network we rely on
the� operator introduced by Hayes 	
��� The semantics of the
operator � corresponds to the computation of the supremum
in a lattice if we order the SLVs as shown in Figure 
� For an
exhaustive treatment of this topic see 	
�� 

��

Compared to SLMused in real simulationtools ourmodel
seems a bit simplicistic� however� it should be clear that with
more truth values we can achieve a much more negrained
model�Tokeep this paper readable we have taken the simplest
SLM which is nontrivial�
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Fig� �� SLV lattice�

��� GateLevel Specication of Circuits

The gatelevel specication of circuits is well known and we restrict ourselves to a short
denition�

Denition� Gate� A gate is the smallest undividable switch element for the processing
of binary signals� It is an unidirectional element which computes according to n inputs
an output� Common gates are� AND� OR� NOT� NAND� NOR and XOR�

In other words� gates realize �certain� Boolean functions�

Denition� Gate�Level Network� A gatelevel network is a directed graph whose
nodes are gates�

The modelling of digital systems exclusively with gate networks is regarded as
unsufcient for several reasons�


� circuits in ratioed logic cannot be modelled properly at the gate level�
�� the analysis of circuits on the gate level is too far from the actual layout of the

circuit� Connections on the chip� for instance� the connection with vdd cannot be
represented with the gate model�



�� gates are unidirectional elements�

� a onetoone transformation of circuits described with gates to circuits constructed

with transistors does usually not result in an efcient implementation of the desired
function�

��� Vertical and Horizontal Verication

In general� the meaning of verication is the �formal� proof of a certain property� for
example� the correctness of a hardware system� Since the construction of a hardware
system is done by several design steps in which the designers lay down what the system
should do and how it should do it� we have several tasks for verication�

We call the design ofwhat the system should do the specication and the design of
how it should do it the implementation�

One possible modeof verication is the proof that a single design level �specication
or implementation� is correct in itself� for example� that a specication at the gate level
does not produce hazards or similar kinds of errors� In a switchlevel design we can
verify that only proper �dened� voltage levels occur at the output nodes provided that
the voltages at the input nodes are proper� This kind of verication we call horizontal
verication� a commonly used term for verications concerning only one design level�

In contrast we can also perform vertical verication which includes two levels of
the design hierarchy� For instance� we can prove soundness of a gatelevel specication
with respect to a switchlevel implementation�A complete stratication ranging fromthe
physical level to highlevel functional properties of complex circuits would incorporate
many other formalisms than propositional logic� The type of formal systems used is
determined by the complexity of the circuit and the kind of properties which are to be
veried� For functional verication of a CPU� for instance� rstorder or even higher
order logic may be required� The drawback of these more complicated formalisms
is that they are not amenable to full automatization� If the amount of automatization
within the whole verication task is to be maximized� it is crucial that at each level the
most adequate formalism is used� For the switch level this is manyvalued �temporal�
propositional logic�

In the eld of hardware verication several meanings of the term verication are in
common use� simulation� complete testing and formal verication� Our understanding
is formal verication which means that the verication is mathematical and not experi�
mental� Correctness is understood in this paper as a mathematical relation between two
entities� for example� a specication�implementation pair� Formal verication allows a
general proposition in contrary to simulation� where we can only prove the presence of
bugs� but never their absence� Correctness as a relation can be classied as follows�

equality� S � I

equivalence� S� I

logical implication� S � I

reverse logical implication� I � S

homomorphism�M���S�� � M�I�

We choose in the following the logical implication I � S which denotes that a
specication S is a behavioural abstraction� in other words� the formal verication that
a switchlevel network realizes the same function as a given gatelevel network�



For a more detailed survey on formal verication of hardware correctness see 	
��

� Automatic Proof Search in ManyValued Logic

In this section we give a very brief introduction into the logical formalism underlying
our verication approach� For more details we refer the reader to 	�� ���

��� ManyValued Logic

Denition� Syntax	 Truth Values� Let L be a propositional language with proposi�
tional variables L�and connectives F� Let N be the set of truth values� for deniteness

take equidistant rational numbers� i�e� N �
n
�� �

n��
� � � � � n��

n��
� 

o
and dene n to be

the cardinality of N �

Denition
 Semantics	 ManyValued Logic� Connectives F � F are interpreted as
functions with nite range and domain� in other words� if k is the arity ofF we associate
a function f � Nk � N with F which we call the interpretation of F � Let f be the
family of functions over N associated with connectives in F� Then we call f nvalued
matrix for L and the triple hL� f � N i nvalued propositional logic�

In practice we take always the same symbols for f and F �

Denition� Valuation� Let L � hL� f � N i be a nvalued propositional logic� A va�

luation for L is a function v � L� � N � As usual� v can be uniquely extended to a
homomorphism from L to N via

v�F ���� � � � � �k�� � f�v����� � � � � v��k��

where f is the interpretation of F �

Denition� SSatisable	 STautology� For S � N and a nvalued propositional
logic L call a formula � � L Ssatisable iff there is a valuation such that v��� � S�
Call � a Stautology iff � v��� � S for all valuations�

��� Analytic Tableaux

Analytic Tableaux are a sound and complete proof procedure for classical rstorder
predicate logic introduced in the ��s �a standard reference is 	
���� The version we
present here is modied for the efcient treatment of manyvalued logics� cf� 	�� ���

Denition�
 Signed Formula� Let � � L� S � N � Then we call the expression S � �
signed formula� The set of signed formulas is denoted with L��



Signed formulas are a device for talking about manyvalued logics with only two
truth values on the metalevel� In 	�� we introduced systematically truth value sets as
signs in order to achieve an adequate representation of themanyvalued search space�We
coined this �setsassigns� approach� In 	�� it is demonstrated that using setsassigns
in some way is crucial for the efciency of anymanyvalued proof procedure�

Analytic tableaux are a refutation procedure� For our purposes it is sufcient to
visualize a tableau proof as a nite labelled tree� whose node labels are signed formulas�
To proof validityof a formulaS � �we beginwith a tableauwhose single node is labelled
with the complement� �N �S� � �� Now this formula is analysed following its syntactic
structure in a topdown manner to the atomic level� If we arrive at a contradiction in
any case we have proved that no valuation can satisfy the root� in other words� � is a
Stautology� Rather than giving the formal denitions we illustrate the process with a
small example from classical logic�

Example ��We prove that the formula �p � �p� � �p is a classical tautology� that is�
f
g � �p � �p� � �p holds� The initial tableau consists of the complemented theorem
f�g � �p � �p� � �p�

Next� we analyze the truth conditions for f�g and the top connective �� For each
combination of signs and connectives there is a rule that characterizes it� In the present
case we need the following rules�

f
g � � �

f�g � � f
g � �

f�g � � � �

f
g � �
f�g � �

Rule application to a formulaS � � in the tree means

�� ��

f�g � �p � �p� � �p

f
g � p � �p

f�g � �p

f
g � p

f
g � �pf�g � p

that we can append to any of the paths containing it
as many new branches as there are extensions in the
conclusion of the rule whose premise matches S � ��
The new branches contain the formulas from the rule
extensions� In our example we apply rst the rule on
the right and then on the rst of the resulting formulas
the rule on the left� Formulas within the same branch
are conjunctively connected while formulas in different
branches are disjunctively connected� We notice that
each branch in the example contains a complementary

pair of formulas� that is� S� � �� S� � � with S�	 S� � 
� Such branches are called
closed� A tableau represents a proof iff all its branches are closed�

The extension of this framework to manyvalued logics is more or less straight�
forward� To prove that � is a Stautology we simply construct a manyvalued tableau
with root �N � S� � �� Manyvalued tableau rules can be stated very much like
their twovalued counterparts� For instance� if we dene manyvalued conjunction as
i � j � min�i� j�� where min is the natural minimumon N � we nd the following rule
for f�� �

�
g � � � � in threevalued logic�

f�� ��g � � � �

f�� �
�
g � � f�� �

�
g � �



One difference between the twovalued and the manyvalued case is that in the
latter more than two extensions in the rules may become necessary� Another important
difference is the slightly more general notion of branch closure�

Denition�� ManyValued Closure� A branch in a manyvalued tableau is closed iff
�i� either it contains signed formulasS� � ��� � � � � Sm � �m such that S�	 � � �	Sm � 

or �ii� a single signed formula S � F ���� � � � � �k� such that rg�f� 	 S � 
� where
rg�f� � fiji � f�j�� � � � � jk�� i� j�� � � � � jk � Ng�

For some logics� including classical logic�m � � is sufcient for completeness and
�ii� never occurs 	��� Then� of course� we have the old notion of closure�

Remark�It is in general not necessary to have all �n possible signs present to achieve a
sound and complete system� see 	�� for necessary conditions on the set of signs� On the
other hand� the more signs are present� the fewer extensions the rules tend to have and�
consequently� the shorter the proofs become�

Remark�Various improvements of analytic tableaux known from the twovalued case
such as lemma generation� structure sharing� selection heuristics etc� carry over to the
manyvalued case�

In 	�� it is demonstrated that manyvalued tableaux �with a certain extension of the
syntax� can be naturally translated into integer programming �IP� problems which can
then be solved quite efciently with various algorithms� First results indicate that it is
well possible to handle formulaswith up to several hundred propositional variables and
more than one thousand connectives that way�

� Verication with ManyValued Logic

In this section we provide the connection between SLM and manyvalued logic� The
basic idea is to treat switchlevel values as truth values and to represent nodes and
transistors as manyvalued connectives� Thus we dene a manyvalued propositional
logic LSLM called switchlevel logic as follows�

Denition�� LSLM� Let LSLMbe the sevenvalued propositional logic with

truth values N � fE�D��D��DU� S�� S�� SUg�
binary connectives
f��ntrs�ptrs�ntrd�ptrd�AND�OR�XOR�NAND�NOR�imp�spec�m impg�
unary connectives fdefinite�vdd�gnd�NOTg

and with the truth table semantics as given in Table 
 to 
�

The meaning of the connectives should be clear� for example� ntrs computes the
value of the source terminal according to the given values at the gate and drain terminals��

�
ptrs andptrd� as well as ntrs andntrd have identical denitions in the currentmodel�
Thisis likelytochangewhenmodelsbecomemorenegrained�Moreover�thebinaryconnec�
tives suggest a unidirectional behaviour of transistors� A bidirectionalmodel couldbe easily
attainedby taking ternary predicates ptr�Gate�Source�Drain� insteadof binaryones
�cf� 
����however�wewantedtokeepthedenitionsas simpleaspossible�



Table��Truthtables forNOT� AND� OR� NAND� NOR andXOR�

NOT

� 

� 	

AND � �

� 	 	
� 	 


OR � �

� 	 

� 
 


NAND � �

� 
 

� 
 	

NOR � �

� 
 	
� 	 	

XOR � �

� 	 

� 
 	

Table ��Truthtables for��ntrs andptrs� In the tables for the latter� rows correspondto the
gate terminalandcolumns todrain�

� E D� D� DUS� S� SU

E E D� D� DUS� S� SU

D� D� D� DUDUS� S� SU

D� D� DUD� DUS� S� SU

DU DUDUDUDUS� S� SU

S� S� S� S� S� S� SU SU

S� S� S� S� S� SU S� SU

SU SU SU SU SU SU SU SU

ntrs E D� D� DUS� S� SU

E E E E E E E E

D� E E E E E E E

D� E D� D� DUS� D� SU

DU EDUDUDUSU DUSU

S� E S� E E E E E

S� E D� D� DUS� D� SU

SU EDUDUDUSU DUSU

ptrs E D� D� DUS� S� SU

E E E E E E E E

D� E D� D� DUD� S� SU

D� E E S� E E E E

DU EDUDUDUDUSU SU

S� E D� D� DUD� S� SU

S� E E E E E E E

SU EDUDUDUDUSU SU

m imp�I�S� corresponds to I � S and imp�I�out� is true iff the value of I equals
the value of out��

As can be seen� we have four kinds of connectives� Connectives associated with
the gate level� connectives associated with the switch level ��� ntrs� ptrs� ntrd�
ptrd�� connectives used as a link between these two levels �imp� spec� m imp� and
connectives used for expressing facts at the switch level �definite� vdd� gnd� which
have sevenvalued input and Boolean output�

In our rst approach only the connectives associated with the switch level have a
sevenvalued semantic� whereas all others have a Boolean one� One can imagine our
verication model consisting of several components� each with its own associated logic�
Each logic can be embedded into the most general one with a suitable reinterpretation
of the truth values� Hence� each of the component logics can be altered easily without

�
imp stands for �implements�� not for �implies� in contrast to m imp which is material
implication�



Table��Truthtables form imp� imp andspec�

m imp 	 


	 
 


 	 


imp 	 


	 
 	

 	 


spec 	 


	 
 	

 	 


Table��Truthtables fordefinite� vdd andgnd�

definite vdd gnd

E 	 	 	
D� 
 	 	
D� 
 	 	
DU 	 	 	
S� 
 	 

S� 
 
 	
SU 	 	 	

changing the whole verication model� This can occur if� for example� one wants to
analyze the gate level with a manyvalued logic� In LSLMwe use only the SLVs as
truth values� Boolean values are mapped to the SLVs� So the SLVs S� and D� are both
mapped to the Boolean �� S� and D� are mapped to the Boolean � and for the other
SLVs� the mapping is not dened�

Example� Interpretation of Truth Values�Take the signed formulafS��D�g � NOT����
its Boolean equivalent is f
g � NOT���� A signed formula fSU�DUg � NOT��� never
occurs during the proof procedure� because it has no Boolean equivalent and is therefore
not generated by any of the rules�

Example� Tableau Rules� cf� Section ����The upper left rule shown below is the one
we always need for the initial tableau� The upper right rule is one of the rules for
the � connective� The lower rule expresses the fact that the variable value has no
undened or unknown value� This rule demonstrates the interconnection between the
different logics� the premise has a Boolean semantic �it is true that value has a denite
value�� the conclusion has a ��valued semantic �value has a truth value from the set
fS��S��D��D�g��

fS��D�g�m imp�I�S�
fS��D�g�I
fS��D�g�S

fS�g���A�B�
fS�g�A fE�D��D��DUg�AfS�g�A

fE�D��D��DUg�B fS�g�B fS�g�B

fS��D�g�definite�value�
fS��S��D��D�g�value
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Fig���AcorrectandanincorrectNOR implementation�

A simple example illustrates our ideas� Figure � shows a correct �on the left� and an
incorrect �on the right� implementationof a NOR gate�We want to prove in the rst case

fS��D�gm imp�imp�����ptrs�in��ptrs�in��n����
ntrd�in��n	���

ntrd�in��n	���out��

spec�NOR�in��in���out��

and in the second case

fS��D�gm imp�imp���ntrs�in��ptrs�in��n����
��ntrd�in��n	��

ptrd�in��n	���out��

spec�NOR�in��in���out��

In standard syntax this would amount to prove validity of

�f�in
� in�� � out� � �g�in
� in�� � out�

where f�in
� in�� is the switchlevel design and g�in
� in�� the gate level design
of a circuit� The reasons not to use this notation are that �
� we wanted to use the same
set of truth values for all levels and ��� the denitions of imp�spec etc are very likely
to change when the verication model gets more negrained�

e start our proof procedure with the complemented theorem together with the fol�
lowing axioms�

fS��D�g vdd�n��
fS��D�g gnd�n	�

fS��D�g definit�in��
fS��D�g definit�in��

we have our initial database for an automatic theorem prover� Figure � shows the
rst two rule applications of the proof procedure to the initial tableau corresponding to
the correct implementation�



�
�fS��D�g�vdd�n
�

���fS��D�g�gnd�n��

���fS��D�g�definite�in
�

���fS��D�g�definite�in��

���fS��D�g�m imp�imp����� � ��out��spec�NOR�in
�in���out��

��� from���fS��D�g�imp����� � ��out�

��� from���fS��D�g�spec�NOR�in
�in���out�

���

Fig���TableauforvericationofNOR after therst tworuleapplications�

� Conclusion

With an experimental tableaubased manyvalued theorem prover implemented in Pro�
log 	�� we have veried the correct NOR implementationwithin ����� seconds and have
shown the incorrectness of the second implementation within ���� seconds �on a SUN

�����Among the larger problems�we have veried a fulladder for twobinary variables�
with a specication consisting of � gates and an implementation using �
 transistors�
There we have separated the computation of the sum and the computation of the carry�
To verify the computation of the sum of two variables we need 
� seconds and for the
verication of the carry computation� we need ��� seconds� Other experiments have
shown that up to �� transistors can be handled�

Sequential circuits �i�e�� with feedback� can either be handled as in 	�� using nite
automata or by extending the manyvalued reasoner to a temporal model checker�

These gures seem not very impressive� however� they show that the approach is
viable� As already noted recent experiments with a manyvalued propositional satis�
ability checker based on integer programming techniques 	�� showed that a speedup
by a factor of several hundred may be obtained by using sophisticated implementation
techniques� As demonstrated in 	�� most inference techniques can be extended from
classical to manyvalued logic in an efcient way� We expect that switchlevel circuits
consisting of several hundered parts can be handled this way without modularizing the
input�



The main contribution of this paper is to show that manyvalued theorem proving
on the propositional level is a promising tool for hardware verication of SLM� This
is the rst time that a genuine manyvalued theorem proving approach is used for this
purpose� In 	�� a similar verication problem is reduced to unication in a certain class of
functionally complete nite algebras and from there to unication in Boolean algebras�
In 	�� it is pointed out that the possibility of handling a single class of functionally
complete logics is not sufcient for manyvalued theorem proving in practice� Also the
reduction of manyvalued logic to twovalued logic as done in 	
� creates too much
redundancy to be efcient� We argue that genuine manyvalued proof procedures based
on �setsassigns� 	�� �� and integer programming 	�� are potentiallymore efcient and
more general than reduction techniques�

The next steps would be to �i� implement a highperformance satisability checker
for manyvalued logics� �ii� to develop manyvalued logics for a more negrained
modellingof switchlevel designs� �iii� to verify larger circuits taken fromreal hardware
designs and �iv� to extend the theorem prover for the treatment of sequential circuits�
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