Verication of SwitchLevel Designs with

ManyValued Logic

Reiner Hahnle* and Werner Kernig

Institute for Logic, Complexity and Deduction Systems,
Dept. of Computer Science, University of Karlsruhe, Germany
{haehnle, kernig}@ira.uka.de

Abstract. This paper is an approach to automated verication of circuits repre-
sented asswitchlevel designs. Switchlevel models (SLM) are a wellestablished
framework for modelling lowlevel properties of circuits. We use manyvalued
propositional logic to represent a suitable variant of SLM. Logical properties of
circuits (gatelevel) can be expressed in a standard way in the same logic. Asa
result we can express soundness of switchlevel designs wrt to gatelevel speci-
cations as manyvalued deduction problems. Recent advances in manyvalued
theoremprovingindicate thatit is possible to handle real life examples. Wereport
rst results obtained with an experimental theorem prover.

Introduction

Switchlevel models! (SLM) are well-established tools for representing a circuit on
the transistor level in considerable detail. They can be used to model phenomena like
propagation and resolution of undened values, hazard detection, degradation effects,
varying capacities, pull-up transistors or depletion mode transistors; see [4] for a very
exhaustive list. It is important to note, however, that all dimensions are symbolic values.

Traditionally, SLM have been used as a formal basis for the construction of simula-
tion tools which can be used for testing the behaviour of a circuit before it is actually
built. In this paper we present an approach to automated verication on the switch
level based on automated deduction in propositional manyvalued logics. Related work
was done by Bryant & Seger [1] and Biittner et al. [3]. The relationship between these
approaches and our own is discussed in the conclusion.

Propositional manyvalued logics are particularly wellsuited for representing SLM.
Given the fact that typical SLM of real circuits contain several hundreds of parts, there is
no sense in trying full rstorder predicate logic. Also the expressivity of full rstorder
predicate logic is not really needed. On the other hand, mere twovalued propositional
logic is not advisable, too, since one has to introduce lots of auxiliary variables that
bear no natural meaning, such that the logical representation of SLM would become
unreadable and, more important, unfeasible through its many variables. We found that
propositional manyvalued logics are just the right tool for adequate representation of

* Research supported by IBM Germany and Deutsche Forschungsgemeinschaft.
Switchlevel models were introduced in the late 70s mainly by Bryant [2] and Hayes [10, 11]
as a formal framework for modelling lowlevel properties of circuits.

SLM if truth values are interpreted as different levels of voltage. Together with a logical
representation of the intended function of a circuit it becomes possible to establish its
soundness in terms of a formal proof in manyvalued logic.

Recent research showed that it is well possible to build generic satisability checkers
for propositional manyvalued logics that are quite efcient [5, 6, 8]. The logical basis for
manyvalued deduction here is a suitable extension of analytic tableaux [12]. Moreover,
manyvalued tableaux give rise to a reduction of manyvalued deduction problems
to integer programming problems [7]. First results suggest that with this technique it
is possible to build manyvalued satisability checking programs whose performance
comes close to stateoftheart satisability checkers for classical logic.

We are condent that ultimately it is possible to prove properties of real life circuits
with our approach. In this paper we sketch the rst steps towards this task. The orga-
nization of the paper is as follows: in Section 1 we describe the variant of switchlevel
model we used for our experiments. In Section 2 we introduce a manyvalued deduction
framework based on analytic tableaux. Section 3 presents the link between SLM and
logic in terms of a translation from the former into the latter. This is illustrated by an
example. Finally, we give statistical gures from rst tests, we discuss related work and
we point out the next steps.

1 The Verication Model

1.1 SwitchLevel Representation of Circuits

In SLM we represent a MOS circuit as a set of nodes which are interconnected by
switches (transistors). In this paper we consider only combinational and asychronous
circuits with zerodelay elements.

Denition 1 SwitchLevel Network. A switchlevel network consists of a set N of
nodes {ni,...,n} which are interconnected by a set T of transistors {{1,...,¢}. A
subset Q of N is called the set of source nodes and the set S = N — Q is called the set
of storage nodes.

Denition 2 MOSTransistor. A MOS-transistor is a bidirectional switch in aswitch-
level network which has three terminals called gate, source and drain.

A NMOStransistor is closed (conducting) iff the voltage at its gate terminal re-
presents a logical 1. The transistor is open (nonconducting) iff the voltage at its gate
terminal represents a logical 0. In all other cases, the state of the transistor is called
unknown.

For a PMOStransistor, the conditions for the gate terminal are ipped.

From now on we use the more general term value instead of voltage to describe the
state of the nodes (and the terminals of a transistor are nothing else than nodes).

We follow [11, 4] by using a sevenvalued logic in order to model one particular
switch level phenomenon, namely degradation effects in CMOS circuits which occur
due to the fact that transistors constitute nonideal switches that degrade the strength of
the signals.

Denition 3 SwitchLevel Value. The set of switchlevel values (SLVs) consists of
the elements E, DO, D1, DU, S0, S1, SU. These are the only possible values at the nodes
of a switchlevel network. The meaning of these SLVs is as follows:

The strong values S1 and SO0 are the values associated with the support voltage
vdd and ground gnd.

D1 and DO are values which result of a degradation effect, that is, the property that
a closed transistor passes on the voltage of his drain (source) terminal diminished
to his source (drain) terminal.

SU and DU are undened values, but correspond to a certain strength.

E is the value of all nodes which are not connected to a source node via a path
through the network.

Remark.If we consider circuits in ratioed logic we can split the degraded values further
to distinguish between depletion transistors and normal transistors.

To compute the value of a node in the network we rely on

the # operator introduced by Hayes [10]. The semantics of the (@ SU M{M

operator #£ corresponds to the computation of the supremum S1 Mgy S0

in a lattice if we order the SLVs as shown in Figure 1. For an DU o1

exhaustive treatment of this topic see [10, 11]. ol Mt
Compared to SLM used in real simulation tools our model ~ D1 MM/[DO

seems a bit simplicistic, however, it should be clear that with E Cﬁ(ﬁ

more truth values we can achieve a much more negrained

model. To keep this paper readable we have taken the simplest Fig. 1. SLV lattice.

SLM which is nontrivial.

1.2 GateLevel Specication of Circuits

The gatelevel specication of circuits is well known and we restrict ourselves to a short
denition.

Denition 4 Gate. A gate is the smallest undividable switch element for the processing
of binary signals. It is an unidirectional element which computes according to n inputs

an output. Common gates are: AND, OR, NOT, NAND, NOR and XOR.
In other words, gates realize (certain) Boolean functions.

Denition 5 Gate-Level Network. A gatelevel network is a directed graph whose
nodes are gates.

The modelling of digital systems exclusively with gate networks is regarded as
unsufcient for several reasons:

1. circuits in ratioed logic cannot be modelled properly at the gate level.

2. the analysis of circuits on the gate level is too far from the actual layout of the
circuit. Connections on the chip, for instance, the connection with vdd cannot be
represented with the gate model.

3. gates are unidirectional elements.

4. a onetoone transformation of circuits described with gates to circuits constructed
with transistors does usually not result in an efcient implementation of the desired
function.

1.3 Vertical and Horizontal Verication

In general, the meaning of verication is the (formal) proof of a certain property, for
example, the correctness of a hardware system. Since the construction of a hardware
system is done by several design steps in which the designers lay down what the system
should do and how it should do it, we have several tasks for verication.

We call the design of what the system should do the specication and the design of
how it should do it the implementation.

One possible mode of verication is the proof that asingle design level (specication
or implementation) is correct in itself, for example, that a specication at the gate level
does not produce hazards or similar kinds of errors. In a switchlevel design we can
verify that only proper (dened) voltage levels occur at the output nodes provided that
the voltages at the input nodes are proper. This kind of verication we call horizontal
verication, a commonly used term for verications concerning only one design level.

In contrast we can also perform vertical verication which includes two levels of
the design hierarchy. For instance, we can prove soundness of a gatelevel specication
with respect to a switchlevel implementation. A complete stratication ranging from the
physical level to highlevel functional properties of complex circuits would incorporate
many other formalisms than propositional logic. The type of formal systems used is
determined by the complexity of the circuit and the kind of properties which are to be
veried. For functional verication of a CPU, for instance, rstorder or even higher
order logic may be required. The drawback of these more complicated formalisms
is that they are not amenable to full automatization. If the amount of automatization
within the whole verication task is to be maximized, it is crucial that at each level the
most adequate formalism is used. For the switch level this is manyvalued (temporal)
propositional logic.

In the eld of hardware verication several meanings of the term verication are in
common use: simulation, complete testing and formal verication. Our understanding
is formal verication which means that the verication is mathematical and not experi-
mental. Correctness is understood in this paper as a mathematical relation between two
entities, for example, a specication/implementation pair. Formal verication allows a
general proposition in contrary to simulation, where we can only prove the presence of
bugs, but never their absence. Correctness as a relation can be classied as follows:

equality: S = I reverse logical implication: I D S
equivalence: S < I homomorphism: M(¢(S)) = M(I)
logical implication: S D I

We choose in the following the logical implication I D S which denotes that a
specication S is a behavioural abstraction, in other words, the formal verication that
a switchlevel network realizes the same function as a given gatelevel network.

For a more detailed survey on formal verication of hardware correctness see [4].

2 Automatic Proof Search in ManyValued Logic

In this section we give a very brief introduction into the logical formalism underlying
our verication approach. For more details we refer the reader to [5, 8].

2.1 ManyValued Logic

Denition 6 Syntax, Truth Values. Let L be a propositional language with proposi-
tional variables L(and connectives F. Let NV be the set of truth values, for deniteness
n—2

- ,1} and dene n to be

take equidistant rational numbers, i.e. N = {0, n_ll’ ey
the cardinality of V.

Denition 7 Semantics, ManyValued Logic. Connectives F' € F are interpreted as
functions with nite range and domain, in other words, if & is the arity of F we associate
a function f : N¥ — N with F which we call the interpretation of F'. Let f be the
family of functions over N associated with connectives in F. Then we call f nvalued
matrix for I and the triple (L, f, N} nvalued propositional logic.

In practice we take always the same symbols for f and F.

Denition 8 Valuation. Let £ = (L,f, N) be a nvalued propositional logic. A va-
luation for £ is a function v : L) — N. As usual, v can be uniquely extended to a
homomorphism from L to N via

V(F(01, -5 0k)) = f(v(01); .- -5 v(Pk))

where [is the interpretation of F'.

Denition 9 SSatisable, STautology. For S C N and a nvalued propositional
logic £ call a formula ¢ € L Ssatisable iff there is a valuation such that v(¢) € S.
Call ¢ a Stautology iff ¢ v(¢) € S for all valuations.

2.2 Analytic Tableaux

Analytic Tableaux are a sound and complete proof procedure for classical rstorder
predicate logic introduced in the 50s (a standard reference is [12]). The version we
present here is modied for the efcient treatment of manyvalued logics, cf. [5, 8].

Denition 10 Signed Formula. Let ¢ € L, S C N. Then we call the expression S : ¢
signed formula. The set of signed formulas is denoted with L*.

Signed formulas are a device for talking about manyvalued logics with only two
truth values on the metalevel. In [5] we introduced systematically truth value sets as
signs in order to achieve an adequate representation of the manyvalued search space. We
coined this ‘setsassigns’ approach. In [8] it is demonstrated that using setsassigns
in some way is crucial for the efciency of any manyvalued proof procedure.

Analytic tableaux are a refutation procedure. For our purposes it is sufcient to
visualize a tableau proof as a nite labelled tree, whose node labels are signed formulas.
To proof validity of aformula S : ¢ we begin with a tableau whose single node is labelled
with the complement: (N — 5) : ¢. Now this formulais analysed following its syntactic
structure in a topdown manner to the atomic level. If we arrive at a contradiction in
any case we have proved that no valuation can satisfy the root, in other words, ¢ is a
Stautology. Rather than giving the formal denitions we illustrate the process with a
small example from classical logic.

Example 1. We prove that the formula (p D —p) D —pis a classical tautology, that is,
{1} : (p D =p) D —p holds. The initial tableau consists of the complemented theorem
{0} : (p D —p) D —p.

Next, we analyze the truth conditions for {0} and the top connective D. For each
combination of signs and connectives there is a rule that characterizes it. In the present
case we need the following rules:

{192 Weow
DO o

Rule application to a formula 5 : pin the tree means {0}:(p> —p) D —p
that we can append to any of the paths containing it
as many new branches as there are extensions in the ‘
conclusion of the rule whose premise matches S : p. {1}:pD—p
The new branches contain the formulas from the rule

extensions. In our example we apply rst the rule on {0} ‘ P

the right and then on the rst of the resulting formulas

the rule on the left. Formulas within the same branch l:p

are conjunctively connected while formulas in different

branches are disjunctively connected. We notice that {0}:p {1}:-p

each branch in the example contains a complementary
pair of formulas, that is, S1 : ¢, S2 : ¢ with S1N S2 = 0. Such branches are called
closed. A tableau represents a proof iff all its branches are closed.

The extension of this framework to manyvalued logics is more or less straight-
forward. To prove that ¢ is a Stautology we simply construct a manyvalued tableau
with root (N — §) : ¢. Manyvalued tableau rules can be stated very much like
their twovalued counterparts. For instance, if we dene manyvalued conjunction as
i A j = min(Z, j), where minis the natural minimum on N, we nd the following rule

for {0, %} : ¢ A1 in threevalued logic:
{0.3}: 6 A%
{0, 2} ¢[{0, 3} = v

One difference between the twovalued and the manyvalued case is that in the
latter more than two extensions in the rules may become necessary. Another important
difference is the slightly more general notion of branch closure:

Denition 11 ManyValued Closure. A branch in a manyvalued tableau is closed iff
(i) either it contains signed formulas 51 : @1, ..., 9m : @ such that S1N---N S, =0
or (ii) a single signed formula S : F(¢1,...,¢x) such that rg(f) N.S = B, where

rg(f) ={ili = f(1.. .. Jr)s 4, 4L ...k € N}

For some logics, including classical logic, m = 2 is sufcient for completeness and
(ii) never occurs [6]. Then, of course, we have the old notion of closure.

Remark.It is in general not necessary to have all 2” possible signs present to achieve a
sound and complete system, see [8] for necessary conditions on the set of signs. On the
other hand, the more signs are present, the fewer extensions the rules tend to have and,
consequently, the shorter the proofs become.

Remark. Various improvements of analytic tableaux known from the twovalued case
such as lemma generation, structure sharing, selection heuristics etc. carry over to the
manyvalued case.

In [7] it is demonstrated that manyvalued tableaux (with a certain extension of the
syntax) can be naturally translated into integer programming (IP) problems which can
then be solved quite efciently with various algorithms. First results indicate that it is
well possible to handle formulas with up to several hundred propositional variables and
more than one thousand connectives that way.

3 Verication with ManyValued Logic

In this section we provide the connection between SLM and manyvalued logic. The
basic idea is to treat switchlevel values as truth values and to represent nodes and
transistors as manyvalued connectives. Thus we dene a manyvalued propositional
logic Lg1,M called switchlevel logic as follows:

Denition 12 Loy Let Lg1\ be the sevenvalued propositional logic with
truth values N = {E, D0, D1, DU, S0,51,SU},

binary connectives
{#,ntrs,ptrs,ntrd, ptrd, AND, OR, XOR, NAND, NOR, imp, spec,m_imp},
unary connectives {definite, vdd, gnd, NOT}

and with the truth table semantics as given in Table 1 to 4.

The meaning of the connectives should be clear, for example, ntrs computes the
value of the source terminal according to the given values at the gate and drain terminals.?

2 ptrs andptrd, as wellasntrs andntrd haveidentical denitionsin the current model.
Thisislikely to change when models become morenegrained. Moreover, the binary connec-
tives suggest a unidirectional behaviour of transistors. A bidirectional model could be easily
attained by taking ternary predicates ptr (Gate, Source,Drain) instead of binary ones
(cf. [3]), however, we wanted to keep the denitions as simpleas possible.

Table 1. Truth tables for NOT, AND, OR, NAND, NOR and XOR.

[[wor] [ampfO[1] [or[O]f] [wampfjO[1] [wom[JO[{] [xOR[JO[L]
o] 1 0_[[0]0 0 o[t 01 0 10 0 O[T
[0 T [o[1 T[T |10 o) [0

Table 2. Truth tables for #£, ntrs and ptrs. In the tables for the latter, rows correspond to the
gate terminal and columns to drain.

[# [[E [DO[DI[DUS0[SI[SU]
E [E [DO[DI[DUSO[SI|SU
D0 D[DO[DUPU|S0| S1[SU
D1 DI[DUDIDU|S0| S1[SU
DU[DUDPUDUDUS0| S1[SU
S0] S0] S0[S0[S0] S0|SU[SU
ST][S1]S1[51 S1[SU[SI]SU
SU[SU[SU[SU[SU[SU[SU[SU

[atz=[[E[DO[DI[DU[S0] S1[SU] [ot==[[E[DO[DI[DUJSO[S1[SU]
E[B[E|E|E|E|[E|E E [B[E|E|E|[E[E[E
DO|E[E|E|E|E|E|E D0 ||E[D0| DI|DU[D0|S1|SU
D1 |[E[D0|DI|DUJS0] DI|SU DI |E[E[S]| E]E|E[E
DU |[E[DUDUDUSU[DURU DU |[E[DUDUDUDURSU[SU
SO |ESI[E|E|E|E|E S0 || E|[D0| D1|DUIDO|S1] SU
ST | E[DO[D1|DU[S0] DI[SU SI|E[E|E|E|E|[E[E
SU |[E[DUDUDUSU[DURU SU [E[DUDUDUDUSU[SU

m_imp (I,S) correspondstol D Sand imp (I, out) istrueiff the value of I equals
the value of out.

As can be seen, we have four kinds of connectives: Connectives associated with
the gate level, connectives associated with the switch level (#, ntrs, ptrs, ntrd,
ptrd), connectives used as a link between these two levels (1mp, spec, m_imp) and
connectives used for expressing facts at the switch level (definite, vdd, gnd) which
have sevenvalued input and Boolean output.

In our rst approach only the connectives associated with the switch level have a
sevenvalued semantic, whereas all others have a Boolean one. One can imagine our
verication model consisting of several components, each with its own associated logic.
Each logic can be embedded into the most general one with a suitable reinterpretation
of the truth values. Hence, each of the component logics can be altered easily without

3o stands

imp stands for ‘implements’, not for ‘implies’ in contrast to m_imp which is material
implication.

Table 3. Truth tablesform_imp, imp and spec.

mimp[O] [ime[O[1] [spec][O[]
0 ||L{0 0 ||Lj0

0 |11
1

01

1 01‘ 1 ot

Table4. Truth tablesfordefinite, vdd and gnd.

| ||defir1ite|vdd|gr1d|

E 0 00
Do 1 00
DI| 1 00
DUl 0 00
sof 1 01
S1 1 10
sul o 00

changing the whole verication model. This can occur if, for example, one wants to
analyze the gate level with a manyvalued logic. In Ly we use only the SLVs as
truth values, Boolean values are mapped to the SLVs. So the SLVs S1 and D1 are both
mapped to the Boolean 1, SO and D0 are mapped to the Boolean 0 and for the other
SLVs, the mapping is not dened.

Example 2 Interpretation of Truth ValuéBake the signed formula{S1, D1} : NOT(¢);

its Boolean equivalent is {1} : NOT(¢). A signed formula {SU, DU} : NOT(¢) never
occurs during the proof procedure, because it has no Boolean equivalent and is therefore
not generated by any of the rules.

Example 3 Tableau Rules, cf. Section 2.Z’he upper left rule shown below is the one

we always need for the initial tableau. The upper right rule is one of the rules for
the # connective. The lower rule expresses the fact that the variable value has no
undened or unknown value. This rule demonstrates the interconnection between the
different logics: the premise has a Boolean semantic (it is true that value has a denite
value), the conclusion has a 7-valued semantic (value has a truth value from the set

{51,50,D1,D0}).

{S0,D0}:m_imp(I,S) {S1}:#:(A,B)
{S1,D1}:1 [SIT}:A [{E,D1,D0,DUL:AJST}:A
{S0,D0}:S {(E,D1,DO,DU}:B| {S1}:B |{S1}:B

{S1,D1}:definite(value)
{S1,50,D1,D0}:value

nl nl

inl & ———3 inl & ———3
T T
n2 @ in?2 @
|n2 |n2
— —(
n3 n3

Fig.2. A correct and an incorrect NOR implementation.

A simple example illustrates our ideas: Figure 2 shows a correct (on the left) and an
incorrect (on the right) implementation of a NOR gate. We want to prove in the rst case

{S1, Dl}m imp (imp (# (# (ptrs (in2,ptrs (inl,nl)),
ntrd(inl,n3)),
ntrd(in2,n3)),out),
spec (NOR (inl, in2) ,out))

and in the second case

{S1, Dl}mimp (imp (# (ntrs (in2,ptrs (inl,nl)),
(ntrd(inl,n3),
ptrd(in2,n3)),out),

spec (NOR (inl, in2) ,out))

In standard syntax this would amount to prove validity of
(f(inl,in2) & out) D (g(inl, in2) & out)

where f(inl,in2) is the switchlevel design and g(inl, in2) the gate level design
of a circuit. The reasons not to use this notation are that (1) we wanted to use the same
set of truth values for all levels and (2) the denitions of imp,spec etc are very likely
to change when the verication model gets more negrained.

e start our proof procedure with the complemented theorem together with the fol-
lowing axioms:

{S1, D1} vdd (nl) {S1,D1} definit (inl)
{S1, D1} gnd (n3) {S1,D1} definit (in2)

we have our initial database for an automatic theorem prover. Figure 3 shows the
rst two rule applications of the proof procedure to the initial tableau corresponding to
the correct implementation.

(1){S1,D1}:vad(n1)

(2) {S1,D1}:gnd(n3)

(3){S1,Dl}:detinite(inl)

(4){S1,Dl}:detinite(in2)

(5) {S0,D0}:m_imp (imp(#(.. .),out),spec(NOR(inl,in2),out))

(6) from (5) {S1,D1}:imp(#(.. .),out)

(7) from(5) {S0,D0} :spec(NOR(inl,in2),out)

Fig. 3. Tableau for verication of NOR after the rst tworule applications.

4 Conclusion

With an experimental tableaubased manyvalued theorem prover implemented in Pro-
log [9] we have veried the correct NOR implementation within 0.250 seconds and have
shown the incorrectness of the second implementation within 0.37 seconds (on a SUN
4/75). Among the larger problems, we have veried a fulladder for two binary variables,
with a specication consisting of 7 gates and an implementation using 24 transistors.
There we have separated the computation of the sum and the computation of the carry.
To verify the computation of the sum of two variables we need 18 seconds and for the
verication of the carry computation, we need 5.6 seconds. Other experiments have
shown that up to 30 transistors can be handled.

Sequential circuits (i.e., with feedback) can either be handled as in [3] using nite
automata or by extending the manyvalued reasoner to a temporal model checker.

These gures seem not very impressive, however, they show that the approach is
viable. As already noted recent experiments with a manyvalued propositional satis-
ability checker based on integer programming techniques [7] showed that a speedup
by a factor of several hundred may be obtained by using sophisticated implementation
techniques. As demonstrated in [8] most inference techniques can be extended from
classical to manyvalued logic in an efcient way. We expect that switchlevel circuits
consisting of several hundered parts can be handled this way without modularizing the
input.

The main contribution of this paper is to show that manyvalued theorem proving
on the propositional level is a promising tool for hardware verication of SLM. This
is the rst time that a genuine manyvalued theorem proving approach is used for this
purpose. In [3] asimilar verication problem is reduced to unication in a certain class of
functionally complete nite algebras and from there to unication in Boolean algebras.
In [8] it is pointed out that the possibility of handling a single class of functionally
complete logics is not sufcient for manyvalued theorem proving in practice. Also the
reduction of manyvalued logic to twovalued logic as done in [1] creates too much
redundancy to be efcient. We argue that genuine manyvalued proof procedures based
on ‘setsassigns’ [, 8] and integer programming [7] are potentially more efcient and
more general than reduction techniques.

The next steps would be to (i) implement a highperformance satisability checker
for manyvalued logics, (ii) to develop manyvalued logics for a more negrained
modelling of switchlevel designs, (iii) to verify larger circuits taken from real hardware
designs and (iv) to extend the theorem prover for the treatment of sequential circuits.

References

1. R. E. Bryantand C.-J. H. Seger. Formal verication of digital circuits using symbolic ternary
system models. In E. M. Clarke and R. P. Kurshan, editors, Computer-Aided Verication:
Proc. of the 2nd International Conference CAV’90, pages 3343. Springer, 1991.

2. R.Y. Bryant. A switchlevel model and simulator for MOS digital systems. IEEE Transac-
tions on Computers, C33:160 169, 1984.

3. W. Biittner, K. Estenfeld, R. Schmid, H.-A. Schneider, and E. Tidén. Symbolic constraint
handling through unicationin nite algebras. Applicable Algebrain Engineering, Commu-
nication and Computing, 1:97 118, 1990.

4. H. Eveking. Verikation digitaler Systeme:, eine Einfiihrungin den Entwurf korrekter digi-
taler Systeme. LMI. Teubner, Stuttgart, 1991.

5. R. Héahnle. Towards an efcient tableau proof procedure for multiplevalued logics. In
Proc. Workshop on Computer Science Logic, Heidelberg, pages 248 260. Springer, LNCS
533, 1990.

6. R. Hahnle. Uniform notation of tableaux rules for multiplevalued logics. In Proc. In-
ternational Symposium on MultipleValued Logic, Victoria, pages 238 245. IEEE Press,
1991.

7. R. Hahnle. A new translation fromdeduction into integer programming. In Proc. Conf. on
Articial Intelligence and Symbolic Mathematical Computations, Karlsruhe. Springer LNCS,
1992.

8. R. Hahnle. Automated Proof Search in MultipleValued Logics. Oxford University Press,
forthcoming, 1993.

9. R. Hahnle, B. Beckert, S. Gerberding, and W. Kernig. The ManyValued TableauBased
Theorem Prover Q’AP IWBS Report 227, Wissenschaftliches Zentrum Heidelberg, IWBS,
IBM Deutschland, July 1992.

10. J. P. Hayes. A unied switching theory with applications to VLSI design. Proceedings of
the TEEE, 70(10):1140 1151, October 1982.

11. J. P. Hayes. PseudoBoolean logic circuits. TEEE Transactionson Computers, C35(7):602
612, jul 1986.

12. R. Smullyan. FirstOrder Logic. Springer, New York, 1968.

This article was processed using the I&TjX macro package with LLNCS style

