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Abstract

We provide a concise aziomatization of a broad
class of generalized quantifiers in many-valued logic,
so- called distribution quantifiers. Although sound and
complete axiomatizations for such quantifiers exist,
their size renders them virtually useless for practical
purposes. We show that for certain lattice-based quan-
tifiers relatively small axiomatizations can be obtained
m a schematic way. This 1s achieved by providing an
explicit link between skolemized signed formulas and
filters/ideals in Boolean set laltices.

1 Introduction

In this paper we provide tools for a concise axiom-
atization of a broad class of generalized quantifiers
in many-valued logic, so-called distribution quantifiers
[6]. The task of axiomatizing such quantifiers has been
solved satisfactorily in theory: sound and complete
axiomatizations exist for Hilbert style as well as for
Gentzen style calculi, see e.g. [7, 5, 10, 1]. For the
purpose of automated theorem proving, however, this
is not enough. There, one needs minimal axiomatiza-
tions which, moreover, one must be able to find in a
reasonable way. In this paper we obtain axiomatiza-
tions in the form of sequent or tableau rules for a broad
class of quantifiers. The key observation, due to Zabel
[10], is that the bodies of quantified signed formulas,
when a Skolem term or universal term is substituted
for the quantified variable, can be used to character-
ize upsets and downsets of the set lattice over the set
of truth values N. This leads to schematic and con-
cise tableau rules for quantifiers which are defined as
generalized meet and join in a lattice of truth values.

*Due to lack of space all proofs have been omitted, however,
they were available to the referees. A full version of this pa-
per will be published elsewhere and can be obtained from the
author.
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2 Basic Definitions

Definition 1 A first-order signature ¥ is a triple
(Ps,Fx,as), where Py is a non-empty family of
predicate symbols, Fx s a possibly empty family of
function symbols disjoint from Px, and ax assigns
a non-negative arity to each member of Py U Fy.
Let Terms be the set of Y-terms over object vari-
ables Var = {xo,x1,...}, and let Term% be the set
of ground terms in Termy. Atoms are defined as
Ats = {p(t1, ..., tn)|p € Px,as(p) = n, ;€ Termg }.

Definition 2 A first-order language s a triple L =
(0, A, &), where © is a finite or denumerable set of log-
ical connectives and « defines the arity of each connec-
tive. Connectives with arity 0 are called logical con-
stants. A is a finite or denumerable set of quantifiers.
The set Ly, of L-formulas over X is inductively defined
as the smallest set with the following properties:

1. Ats C Ly.

2. If ¢1,...,¢m € Ly, 0 € O, and «(0) = m then
0(¢1,...,6m) € L.

3. If €A, ¢ €Ly, and x € Var then (Ax)¢ € Lx.

Definition 3 ([6]) The set of truth values N s an
arbitrary finite sel. |N| denotes the cardinalily of N.
IfL = (0, A, ) is a first-order language then we call a
triple A = (N, A, Q), where N is a truth value set, A
assigns to each 0€O a function A(0) : N — N, and
Q assigns to each A€A a function Q(X) : PY(N) — N
a first-order matrix for L (we abbreviate 2V — {0} by
PH(N)). Q(X) is called the distribution function of
the quantifier A.

Example 1 Let N = {0, ﬁ, ey Z—j, 1}. Then one
can define generalizations of the classical quantifiers
via Q(V) = min, Q(3) = max, where min and max
are defined wrt the natural order of N. In particular,

for [IN| = 2 one has N = {0,1} and Q(V)({1}) = 1,
QY)({0}) = Q(V)({0,1}) = 0.



Definition 4 A pair £ = (L, A) consisting of a first-
order language L and a first-order matriz for L 1s
called | N|-valued first-order logic.

Definition 5 Let £ be a first-order logic. A Herbrand
structure’ M over ¥ is an interpretation I that maps
pEPs 1o functions I(p) : (Term$)*®) — N. W.lo.g.
Y must contain at least one 0-ary function symbol. For
a structure M over X and a closed first-order formula
we define a valuation function vy : Ly — N wvia:

L If¢=p(ty, ... ty) then vpm(t) = I(p)(t1,. .., tn).

2. If¢=0(¢1,...,0m) then
vm(@) = A(0)(vm(61), -, vm(Pm))-

3. Let the distribution of ¥(x) be dm(¥(z)) =
{one(w ()|t Ternd .
If ¢ = (Ax)y(x) then vm(¢) = Q(A)(dm(¥())).

Definition 6 Let S C N. A signed first-order %-
formula S ¢ is said to be (first-order) satisfiable iff
there is a structure M over ¥ such that vm(¢) € S.
In this case we say that M s a model of S¢ and write
M E Sé¢. S¢ isvalid, in symbols = S ¢, iff every

Y-structure is ¢ model of ¢.

Definition 7 A lattice L is an ordered set (N, <)
such that any two elements of N have a unique supre-
mum (called join, we use the symbol L) and a unique
infimum (called meet, we use the symbol M} in N.

A lattice can be alternatively defined with join and
meet alone in which case it is explicitly stipulated that
they are associative, commutative, idempotent and
absorptive. With this in mind we write U{iy,.. .4, }
for ¢ U (g U (- (in—1Uip)---)) and similarly with .

We are only working with bounded latlices that is
we assume there is a (unique) minimal element L and
maximal element T in L. A lattice L is distributive iff
forall a,b,ce L: aN(bUe) =(anb)U (aMe).

A special case are Boolean set lattices for N: 2N =
(2N 0, N,N,U), where N is set intersection and U is
set union and N any set. In our present setting we
associate the elements of 2N with distributions.

Definition 8 Let L be a lattice and i € L. Then
li={e € Lla > i} and |i = {z € L|x <, i} are
called the upset, respectively, the downset of i. The
interval between i and j is defined as [i,j] = {z €
Lli<px<pj}

1We work with Herbrand structures to avoid technical com-
plications. The result that any satisfiable X-formula is satisfi-
able already in a Herbrand structure over some & D X is proved
exactly like the classical result, see [1].

We say an element x € L 1s covered by y € L iff
z <y and for any z ® < z < y implies v = z. The
elements that cover L are called the atoms of L.

Obviously, [¢,j] = (1) N (14) holds for all ¢,j € L.

Definition 9 Let L be a lattice and J, I’ sets of ele-
ments of L. If the properties

1 abeJ (a,beF)implyallbeJ (albeF)

22.a€el,beJ (beF)and a <b (a>b) imply
a€lJ (aeF)

hold then J is called an ideal (F is called a filter)
of L. For each a € L, |a s an ideal of L. This
particular ideal 1s called the principal ideal generated
by a. Principal filters are defined dually. A maximal
ideal (a maximal filter) is an ideal (a filter) such that
the only ideal (filter) properly containing it is L.

In a finite lattice, every filter and ideal is principal.

Definition 10 Let L be a lattice. An element v € L
is called meet-irreducible if (i) & # T and (it) x = aNb
impliesx = a orx =b for alla,be L. M(L) denotes
the meet-irreducible elements of L.

3 Standard Axiomatization of Distri-
bution Quantifiers

The problem one needs to solve in order to provide
Gentzen or tableau rules? for signed quantified formu-
las is: given a quantified signed formula S (Az)¢(x) we
are looking for a formula of the form

\ N\ Sij 6(z4) (1)
el jeJ;
where S;; C N and the z;; are certain ground terms
falling in two categories: either z;; is a Skolem con-
stant ¢, then it must be new relative to the proof in
which the formula occurs or z;; is a term ¢, then it
stands for an arbitrary ground term. We stipulate for
(1) that any structure M over X can be extended to a
structure M over ¥ D ¥ such that S (Az)é(x) is satis-
fiable in M iff (1) is satisfiable in M for every possible
substitution of ground terms for z;; of universal type.
This is nothing else than soundness and completeness
of a tableau rule which is directly derived from (1):

2We use ground versions of tableau rules 4 la Smullyan [9]
as opposed to free variable tableau rules [4] in order to avoid
technical complications. It is completely straightforward to give
free variable versions of the results in this paper.



S (Az)¢(x)
511 6(z11) ‘ | S len) (2)

Slsl QS(lel) SrsT ¢(Z7‘ST)
where I = {1,...,r}, J; = {1,...,s} and the z;
are either ¢;; or ¢ according to their status in (1).
Such rules are given e.g. in [7, 1] for the special case
where all signs S, Si1,...,5,s are singletons. [5] deals
with the general case which can easily be obtained
from the following lemma:

Lemma 1 ((3]) Let (Q\)"'(S) = {0 # I C
NI QN (I) € S}. Then a signed quantified formula
S(Ax)é(x) is satisfied iff there isan T = {i1,... 4} €
(Q(X)~H(S) such that for each iy, € I, there is a con-
stant term cp not occurring in ¢(x) such that (i) all
{ir} ¢(cr) and (ii) for any ground term t, I ¢(t) are
simultaneously satisfiable.

If (Q(A))_l(s) = {Ila B IT}a IZ = {kila R kl|I,|}
then let I = {1,...,7“}, s, = |Iz| + 1, Sz'j = {k‘i]'},
zij = cij for j < |Li and Syr,41) = Ly ziqr+1) =1
in (1) to obtain a sound and complete tableau rule
from the preceding lemma.

Example 2 Consider N = {0, %, 1} and ¥V as defined
in Example 1. In (Q(V))_l({o,%}) are all subsets of
N that contain at least one of 0 and %, all in all siz
sets. Hence the tableau rule according to Lemma 1 is
as shown in Figure 1.

The obvious problem with such rules is that they
can become rather big. This is unavoidable in general:
Zach [11] shows that for similar characterizations as
(1) there exist combinations of quantifiers and signs
such that |I| = 2IN1=1. Hence, the branching factor
can be exponential with respect to the cardinality of
the set of truth values. On the other hand, Lemma 1
tends to give “fat” rules even when “slim” ones exist.
For instance, the tableau rule (3) below is a sound and
complete rule for the premiss from Example 2 and it
is considerably smaller.

4 Skolemized Distribution Quantifiers
and Boolean Set Lattices

In the following we show that in many cases con-
cise representations of distribution quantifiers can be
obtained. The starting point is the observation that
signed formulas of the form I ¢(c) and J ¢(t) can be
used to characterize certain sets of distributions. The

important thing to note is that these sets of distribu-
tions play special roles within the set lattice 2N.

For § # F C N we introduce the abbreviation
UF)={XCN|XNF#0}.

Lemma 2 Assume U(F) = (Q(X\)™(S). Then any

structure M over ¥ can be extended to a structure

M over ¥ D X such that vm((Az)g(z)) € S iff
vyg (6(c)) € I, where ¢ does not occur in X.

As F ¢(c) is considerably shorter than the set of
extensions corresponding to the members of U (F') one
obtains simplified tableau rules whenever U(F) =
(Q(X))~(S) holds for some F' C N. For instance,
as U({0,4}) = (Q(V))"1({0,3}) in Example 2, the

rule shown in Figure 1 can be simplified to:

{03} (Vo)o(x)

0,17 600 ®

The usefulness of Lemma 2 comes from the fact that
the family of sets ¢/ (F') has an interesting structure:

Lemma 3 For any F € 2N, U(F) = Uier i}, in
particular, U({i}) = T{¢}.

A principal filter generated by an atom of 2N is a
maximal filter of 2N (a maximal filter on N for short)
and in the finite case all maximal filters on N are of
this form.

Thus, whenever (Q(A))~1(S) is a union of maximal
filters one may choose its upset representation to ob-
tain a single-extension rule. In particular, whenever
(Q(X))~(S) is a maximal filter on N, say 1{i}, then
there i1s a single-extension rule with exactly one for-
mula, namely {i} ¢(¢). Tt turns out that at least in
the finite case this can be generalized:

Lemma 4 For finite N the principal filter 11 of 2N
is equal to ;¢ THi}

In other words, whenever (Q(A))~1(S) is a filter of
2N there is a single extension rule containing the for-
mulas {{i}¢(c;)|i € T} for some I C N. Consequently,
whenever we have a representation of (Q(X))~*(S) of
the form UkeK Fy, where the Fy, are filters of 2N, then,
by repeated application and disjunctive combination
of Lemma 2, there is a tableau rule for S(Az)¢(z) with
| K| extensions.

Similarly as signed formulas of the form I ¢(c) char-
acterize distribution quantifiers whose distributions
correspond to filters of 2N signed formulas of the form
I ¢(t) characterize distribution quantifiers whose dis-
tributions correspond to certain ideals of 2N. To make
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Figure 1: Tableau rule for {0, %} (Va)p(x), see Example 2.

this idea more precise, we define P(I) = {X C N|0 #
XCI).

Lemma 5 Let (Ax)¢(x) be a T-formula, M a X-
structure, assume P(I) = (Q(X))~1(S). Then for all
ground terms t: vp((Az)¢(x)) € S iff vm(o(2)) € 1.

Obviously, P(I) U {0} is the principal ideal of 2N
generated by I, that is |I. In finite lattices every
ideal is principal, hence, whenever (Q(A))~1(S) U {0}
is an ideal |1 of 2N then there is a single-extension
rule with exactly one formula, namely I ¢(¢). So the
characterization of distributions that are ideals of 2N
is even slightly easier than that of filters of 2NV,

5 Distribution Quantifiers and 2N

It could be argued that the case when (Q(A))~1(95)
can be straightforwardly repesented as a DNF com-
bination of filters and ideals is relatively rare and
therefore the results above are not particularly rel-
evant. There are two objections to this argument:
first, as Zabel [10, Section 1.3.3] points out, even when
(Q(X))~1(S) has no representation as a DNF combi-
nation of filters and 1deals, it still can possibly be par-
titioned into (Q(A))~1(S) = Z U R such that Z has
a representation as a DNF combination of filters and
ideals. In this case, at least the part of the standard
rule (2) that corresponds to Z can be simplified. Sec-
ond, in the following we show that many “naturally”
defined quantifiers in fact have a representation as a
DNF combination of filters and ideals.

Example 3 Consider the truth value set FOUR =
{L, f,t, T} with the ordering indicated in Figure 2(a)
and a quantifier I on FOUR defined as Q(II) = M,
where T1 1s the meet operator on the lattice FOUR.
Let us look at the set of distributions correspond-
ing to I and the sets of signs {L}, {f, L}, and {f},
respectively. One computes (Q(I1))"1({L}) = 2V —
LR THALTHAL HATH O (@)1 () =

{rH AL T and (QUI)™H{L, £1) is the union of
the latter. It turns out that all three sets of distri-

butions can be simply characterized using filters and

ideals of the set lattice of FOUR, see Figure 2(b):

QD)™ ({L, /1)
(QU)™H{L}) =1L U{L}
QI)~({fYH  =HANKLT)

This leads to the following tableau rules:

=H{AvHL=u({L, f})

{1} (Ma)g(x)  {f} (Mz)e(x)

{L, £} ()¢ (x)

A JPRO) TS T é(e {f} é(e
1L, (o) ! ¢>((d)) ) {7} EZ>()75)

This motivating example is generalized in the fol-
lowing theorem:

Theorem 6 Assume L = (N,1,U) is a lattice® over
a finite set of truth values N. We define distribution
quantifiers I and T via: Q(I1) =N, Q(X) = L.

1. Ifie M(L) then
(@Q~HI)({iH) = U{i}) n (P(ni) L {0})
2. If L is distributive and i € M(L) then
Q1) (Ui) = U(Ui)
3. For alli € N and distributive L:
(@I} = (Npear, U Gm) N(P(1)U{0})
where M; are the minimal elements of M(L)N 1.
4. For alli € N, distributive L, and M; s as above:
Q7)) = Nnear, U(m)
5. For alli € N: (Q=1(I)) (i) = P(f4)

By duality of I and X the previous theorem holds
as well if X is substituted for II, “join” for “meet”,
etc. This duality generalizes the well known duality
between the classical quantifiers ¥V and 3. Of course,
duality extends to the associated tableau rules:

Corollary Cases (1)-(5) in the previous theorem give
rise to the following sound and complete tableau rules
for distribution quantifiers:

If i 1s meet-irreducible

(1) L distributive For 62151)1.’ Lt
() (s @ |
{i} ¢(c) M BRSO
i ¢(t) Vi g(c) i g(t)

3We use 14, {J¢ for the upset and downset of an element ¢ € L
to discern it from upsets and downsets in 2NV,

4Tt is straightforward to see that in the case of (5) even
a lower semi-lattice and for its dual an upper semi-lattice is
sufficient.
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Figure 2: The truth value set FOUR with an ordering and the set lattice of FOUR.

For all i, L distributive, M;={m,, ..

(3) (4)

,my} as above:

Whenever ¢ is the bottom (top) element of L, a
signed formula of the form f}i ¢ ({}¢ ¢) is tautological
and can be removed in the rules above.

Note that all signs occurring in the conclusions are
of the form f, {}i or {i}. As for all these signs and
quantifiers based on distributive lattices rules exist we
have a complete inference system.

Rule (2) can be considered to be a special case of
rule (4): if ¢ is meet-irreducible then M = {i}, thus
(4) collapses to (2). Similarly, rule (3) collapses to
a rule with Ji ¢(¢) and 17 ¢(¢) in the conclusion. A
second application of this (3) in which ¢ is chosen to
be ¢, yields fti ¢(c). As {i} = ¢ N ¢ the result is

equivalent to the conclusion of (1).

Example 4 Two of the rules given in Frample 3 are
wnstances of the corollary: as FOUR s distributive
and f is meet-irreducible the left and the right rule in
FErample 3 can be obtained from schemata (2) and (1),

respectively. For {L} we have lo invoke rule schema
L Me)éle) S
(3) to obtain ~{L, fT é(e) which in fact is simpler than
{1t} ¢(d)

the rule derived “by hand”.

As a further example we gwe the rule for YD and
I in NINE (cf. Figure 3). A meet-irreducible repre-

, , 4D (Ilz)p(x)

sentation of D s FF 1 G, hence: . A rule
constructed with Lemma I would have several hundred
extensions.

Hdahnle [5, Section 5.4] lists rules for the special

case when L is a finite chain and signs are either up-

sets, downsets or singletons. Those rules can be 0b-
tained from the corollary immediately as special cases,
because a chain is distributive and all its elements are
meet-irreducible.

T
VEEERN
/@\ /@\
D
N N S
A B
NS
L

Figure 3: M(NINE), see Example 4.

We stress that propositional connectives do not oc-
cur at all in our results. This means that a many-
valued logic needs not be lattice-based in general for
our results to apply. It suffices that the quantifiers can
be defined with the help of lattices. One may even use
a different lattice for each quantifier given the lattices
are upset/downset-compatible.’

6 Conclusion

Summary It has been pointed out by Carnielli [2,
p. 488] that, even for singleton signs, it is a difficult
problem to find minimal rules for distribution quan-
tifiers automatically in a feasible way that is with-
out enumerating all possible rules. Zabel [10] gave

5T.e. an upset wrt to one of the lattices is also an upset or
downset wrt the other lattices. This is important for logics
based on bilattices [3] where two different lattices occur natu-
rally. As an upset (downset) in one of the lattices that consti-
tute a bilattice is an upset (downset) in the other lattice as well,
combination of the rules is no problem.



simplified singleton signs rules in the case when the
distributions to be characterized form a sublattice of
the Boolean set lattice. We generalized Zabel’s results
to include upsets and downsets as signs and provided
a class of quantifiers that allow systematic construc-
tion of concise rules with at most one extension. As
in the rule conclusions again only upsets, downsets
and singletons occur one obtains complete calculi for
those classes of logics. In particular, it is sufficient to
consider merely 2|N| different signs, the upsets and
downsets of N, because {i} = 17 N |i. Together with
the result that there exists a broad class of proposi-
tional many-valued logics with the same property (so-
called regular logics, see [5]) this implies that there
is a substantial class of many-valued first-order logics
which is proof-theoretically not a lot more complex
than classical logic.

Related Work Fitting [3] gives signed tableau rules
for the case when the set of truth values forms a certain
type of bilattice, however, as Fitting requires his rules
to follow Smullyan’s uniform notation [9], the class of
logics for which they work is somewhat restricted.

Similar results as Lemmata 2 and 5, but restricted
to singleton sets as signs, appear in [10] as Corollaries
1.3.3 and 1.3.4. Zabel also pointed out that the pre-
misses of those lemmata are “les plus communs dans
les logiques polyvalentes”; he did not try, however, to
make this statement more precise.

Zach [11, Section 1.7] and Baaz & Fermiiller [1,
Example 4.20] gave single extension rules for singleton
signs and quantifiers induced by certain connectives
(the latter were shown in turn to be related to upper
semi-lattices over the set of truth values).

Recently, Salzer [8] described a minimization algo-
rithm for distribution quantifiers. He proves that op-
timal dual (CNF-based) rules are produced by his al-
gorithm for arbitrary quantifiers and signs in finitely-
valued logics. Salzer gives also general tableau rule
schemata for quantifiers based on upper/lower semi-
lattices and interval-shaped signs. This result is more
general than the results presented here, but the num-
ber of signs occurring in Salzer’s rules cannot be re-
stricted a priors: all 21V — 2 different (non-trivial)
signs may occur. Using the results of the present pa-
per one can show, however, that in the case of dis-
tributive lattices only upsets and downsets need occur
in Salzer’s rule as well.

Future Work It is possible to generalize the present
results to certain infinite lattices and thus infinitely-
valued logics. As usual, one must work with prime

ideals and prime filters instead of irreducible elements.

One can exploit that 2N is Boolean, hence com-
plemented. This should extend the sets that can be
characterized with skolemized formulas. The comple-
ment of D in NINE, for instance, is rather simple
to represent, because it is the union of two upsets of
join-irreducible elements.

As already mentioned above, in a many-valued logic
several quantifiers and connectives may be present
each of which is based on regular signs, but wrt under-
lying orders that are not upset/downset-compatible.
Is it possible to give complete rule systems for such
logics that still can exploit the results of this paper?

Acknowledgements Thanks are due to B. Beckert,
G. Salzer and P. Schmitt who read drafts of this paper
and suggested various improvements. An example by Sal-
zer led to an improvement of Theorem 6, case (4).
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