
Parallel Genetic Algorithm for the Capacitated

Lot-Sizing Problem

Knut Haase

Institut f�ur Betriebswirtschaftslehre

University of Kiel, Germany

E-mail: haase@bwl.uni-kiel.de

Udo Kohlmorgen

Institut f�ur Angewandte Informatik und

Formale Beschreibungsverfahren

University of Karlsruhe, Germany

E-mail: kohlmorgen@aifb.uni-karlsruhe.de

Abstract

A parallel genetic algorithm is presented to solve the well-known ca-

pacitated lot-sizing problem. The approach is implemented on a massively

parallel single instruction multiple data architecture with 16384 4-bit pro-

cessors. Based on a random keys representation a schedule is backward

oriented obtained which enables us to apply a very simple capacity check.

1 Parallel Genetic Algorithm

Genetic algorithms are a general purpose optimization technique inspired by pop-
ulation genetics. The �elds in which genetic algorithms are used range from op-
erations research problems [17] and learning classi�er systems[7], [11] to training
neural networks [3]. For a detailed introduction to genetic algorithms see e.g. [9]
or [15].

A genetic algorithm models the development of a population over a number
of generations as it happens in nature. The understanding is that in nature the

1

�tter an individual is the better is its chance to survive and the more and better
o�spring it will create. Therefore, the performance of the population may improve
in every generation.

Generally speaking a genetic algorithm operates on a set of individuals, called
population. Each individual represents a solution to a given problem. In our case
an individual represents a solution to the capacitated lot-sizing problem. The
individual is represented as a chromosome which consists of genes. Here each
gene contains a real value. The performance (often referred to as '�tness') of an
individual is its phenotypic value with respect to an objective function which is to
be optimized. For the capacitated lot-sizing problem an individual's performance
is determined by the cost that the schedule produces. Genetic operators (e.g.
mutation and crossover) are used to create new individuals. Due to the selection
of good individuals as parents for the next generation the average performance
of the population is expected to increase.

There exist various strategies for the selection process. A simple strategy for
selecting parents is to choose individuals with a probability proportional to their
performance.

Those individuals which are chosen as new parents are then subject to cross-
over and mutation. The crossover operator combines two parents and produces
one or two new individuals. Therefore a genetic algorithm has the following
overall structure:

genetic algorithm

randomly generate initial population

evaluate each individual of the population

REPEAT

select parents

use crossover to create o�spring

mutate o�spring

evaluate o�spring

UNTIL termination criterion satis�ed

Since genetic algorithms are inherently parallel we are using a �ne-grained par-
allel computer MasPar MP 1216. 16k processors are placed on a two dimensional
grid with toroidal connections. Figure 1 shows this array with the connections
to the 8 neighbors for each processor. The toroidal connections are not drawn

2

in this �gure. We implemented the neighborhood model ([14] and [16]) on this
computer. In this model each processor holds one individual of the population.
In the selection process for each individual a mating partner is chosen from one
of its 8 direct neighbors, only. So there is no need for global communication.
Recombination is done by 2 point crossover, and mutation is standard.

This model avoids premature convergence [14].

. . .

. . .

. . .

. . .

............

1

 1

128

128

Figure 1: two dimensional 128 � 128 processor array

The selection process to determine the new parent1 chooses among the old
parent1 and the o�spring child1 and child2. The best individual of these three
is chosen with a probability of 55%. With a probability of 15% for each indi-
vidual those are chosen as parent1. Therefore the best individual has an overall

3

probability of 70% to be selected as new parent1.

parallel genetic algorithm (neighborhood model)

randomly generate initial population such that each processor con-
tains one individual (called parent1)

evaluate each individual of the population

REPEAT

select an individual of the neighborhood as parent2

use crossover to create o�spring (child1 and child2) from par-
ent1 and parent2

mutate o�spring

evaluate o�spring

replace parent1 with one out of parent1, child1, and child2

UNTIL termination criterion satis�ed

For a more detailed description of the parallel genetic algorithm see [4].

2 The Capacitated Lot-Sizing Problem (CLSP)

The capacitated lot-sizing problem (CLSP) is characterized as follows: A num-
ber of J di�erent items is to be manufactured on one machine (corresponding
to a single capacity constraint). The planning horizon is segmented into a �nite
number of T periods. In period t 2 f1; :::; Tg the machine is available with Ct

capacity units. Producing one unit of item j requires pj > 0 capacity units. The
demand for item j in period t, djt � 0, has to be satis�ed without delay. Setting
up the machine for item j causes setup cost sj > 0. Setup costs occur for each
lot produced in a period (basic assumption). Holding cost hj � 0 is incurred for
the inventory of item j at the end of a period. The objective is to minimize the
costs for setups and holding.

De�ning the decision variables

Ijt the inventory of item j at the end of period t (Ij0 = 0 8j)

qjt the quantity (lot-size) of item j to be produced in period t

4

xjt a binary variable indicating whether a setup occurs for item j in period t
(xjt = 1) or not (xjt = 0)

we can state the CLSP as follows:

Minimize
JX

j=1

TX
t=1

(sjxjt + hjIjt) (1)

subject to

Ij;t�1 + qjt � Ijt = djt 8j; t (2)
JX

j=1

pjqjt � Ct 8t (3)

Ctxjt � pjqjt � 0 8j; t (4)

Ijt; qjt � 0 8j; t (5)

xjt 2 f0; 1g 8j; t (6)

The objective function (1) counts the costs for the setups and the holding of the
items. (2) are the inventory balances. Constraints (3) make sure that the total
production in each period does not exceed the capacity. For each lot (4) forces a
setup, i.e. the corresponding binary setup variables must be one, thus increasing
the sum of setup cost. The last two constraints (5) and (6) properly de�ne the
domains of the continuous and binary variables, respectively.

In the literature for the CLSP a multitude of heuristics (cf. [6], [12], [13], [19])
and exact methods (cf.[1], [8]) have been proposed.

Now, let us consider the following example.

Example 1: Let J = 3, T = 4, (hj) = (1 1 1), (sj) = (100 300 200), (pj) =
(1 1 1), (Ct) = (100 100 100 100), and

(djt) =

0
B@

30 20 40 50
10 10 20 10
20 50 50 70

1
CA

We determine an optimal solution of the CLSP with the standard solver LINDO
[18]. The corresponding objective function value is Z� = 1610 and the lot-sizes

5

are as follows:

(qjt) =

0
B@

50 0 60 30
20 0 30 0
20 100 0 70

1
CA

We see that in the optimal solution a splitting occurs for the demand d14 = 50,
i.e. a fraction of 20 units is produced in period t = 3 which is included in the lot-
size q13 = 60. Thus it is important to provide a demand splitting in approaches
for solving the CLSP. In the following section we introduce a new heuristic which
allows one (additional) demand splitting per period.

3 Genetic Representation of a CLSP Schedule

A CLSP solution is computed as follows: The CLSP schedule is generated back-
ward oriented. We compute the lot-sizes in period t = T , we then go back to
period t = T � 1, and so on, until the production decisions are made for period
t = 1. In every backward step from a period t to period t� 1 a feasiblity check is
performed. The selection of items to be produced in a period t depends on item
and period speci�c random keys [2] .

Initially all qjt (j = 1; : : : ; J , t = 1; : : : ; T) are set to 0. Consider now a period
t; 1 � t � T , where we have already made production decisions for the periods
� = t + 1 : : : T by �xing qj� for j = 1 : : : J . Then the remaining cumulative
demand for item j from period t to the horizon T which has to be satis�ed in the
periods t; : : : ; 1 is de�ned by

Djt =
TX

�=t

(dj� � qj�)

The remaining total required capacity is speci�ed by

TRC =
JX

j=1

pjDj1

Furthermore, the still available capacity in period t will be computed as follows:

ACt = Ct �
JX

j=1

pjqjt

6

Outline of the scheduling algorithm

TRC :=
P

j;t pjdjt 8jDjT := djT
FOR t = T DOWNTO 1 DO

ACt = Ct

i = d tJe

k = 0
WHILE k � J � 1 AND ACt > 0

j := (i+ k � 1) mod J + 1
IF �jt � �t AND ACt > pjDjt THEN

qjt := Djt

Djt := 0
TRC := TRC � pjqjt
ACt := ACt � pjqjt
k = k + 1

WHILE k � J � 1 AND CCt�1 < TRC

j := (i+ k � 1) mod J + 1
qjt := minfDjt; ACt=pjg
Djt := Djt � qjt
TRC := TRC � pjqjt
ACt := ACt � pjqjt
k = k + 1

FOR j = 1 TO J DO
Dj;t�1 := Djt + dj;t�1

Finally, we denote the cumulative capacity from period � = 1 to period � = t

by

CCt =
tX

�=1

C�

Now consider the vector vt = (�1t; : : : ; �Jt; �t; t) 2 (0; 1)J+2 where �t
is a threshold value, t is used to determine the �rst item which is scheduled
in period t, and �1t; : : : ; �Jt are preference values of the items j = 1; : : : ; J . If
the preference value �jt � �t and ACt � pjDjt then item j will be scheduled in
period t with qjt = Djt. Thus, due to the capacity restriction, an item j with
�jt � �t may not be scheduled in period t. Moreover, which items are scheduled

7

Table 1: Genetic representation
�11 �21 �31 �1 1 �12 �22 �32 �2 2 �13 �23 �33 �3 3 �14 �24 �34 �4 4
.2 .3 .4 .8 .6 .7 .8 .4 .1 .7 .5 .6 .3 .4 .3 .9 .2 .8 .7 .4

Table 2: Computational report
t i j (d1t; d2t; d3t) ACt qjt CCt�1 TRC

4 2 (50,10,70) 100 300 380
3 30 70 310
1 0 30 280

3 1 (60,30,50) 100 200
1 40 60 220
2 10 30 190

2 3 (20,10,100) 100 100
3 0 100 90

1 2 (50,20,20) 100 0
2 80 20 70
3 60 20 50
1 10 50 0

in a period depends also on the sequence in which we try to schedule the items.
We consider the items in the following sequence

SEQt = (i; i+ 1; : : : ; J; 1; : : : ; i� 1)

where i = d tJe.

Note, if all items j with �jt � �t are scheduled in period t and TRC > CCt�1

then we have to schedule more items in period t until TRC � CCt�1 (capacity
check, cf. [10]). This will be done according to the sequence SEQt. Furthermore,
if demand splitting is required due to capacity restrictions, it will only be per-
formed in this second part of the algorithm. A more detailed description of the
algorithm is given in the outline of the scheduling algorithm (see above).

8

Table 1 provides one genetic representation for the optimal solution of Ex-
ample 1. The corresponding computation of the optimal solution is reported in
Table 2.

4 Computational Results

The genetic representation which we use to derive a solution corresponds to the
random keys described above. Each random key is assigned to one gen. The num-
ber of gens totals T�(J+2). This corresponds to a oating point representation.
Our parallel genetic algorithm optimizes the parameters to compute solutions for
the CLSP. We employed the well-known 120 benchmark-instances from [5] where
T as well as J range from 8 to 50. Our computational study shows that the
results obtained by the parallel genetic algorithm has the same solution quality
as the state of the art algorithm from [12], which outperforms the heuristics of [6]
and [19]. The detailed results are shown in Table 3. Z� denotes the best result
obtained by the three algorithms. The results indicate that our parallel genetic
algorithms is superior for problems with 50 items, 8 periods and slightly better
for problems with 8 items, 50 periods. For problem with 20 items, 20 periods the
algorithms from [12] gets better results. But our results in this category are on
the average only 1.44% higher than the ones obtained by [12]. Table 4 shows the
number of problems for which each algorithm found the best result of all three
algorithms.

Table 3: Computational results
Dixon-Silver Kirca-K�okten parallel GA

50 items, 8 periods 1.29 0.65 0.17
20 items, 20 periods 7.55 0.06 1.50
8 items, 50 periods 9.57 0.99 0.76
total average 6.14 0.57 0.81

average % deviation from the best solution found by DS, KK or PGA

Overall our studies show that a parallel genetic algorithm is capable of solv-
ing the capacitated lot-sizing problem as good as or better than the best special

9

Table 4: Number of best results
Dixon-Silver Kirca-K�okten parallel GA

50 items, 8 periods 4 12 24
20 items, 20 periods 0 37 3
8 items, 50 periods 0 19 21
total number 4 68 48

heuristics known so far. The computation of a schedule from the genetic rep-
resentation is very easy and does not require too much knowledge about the
capacitated lot-sizing problem itself. The genetic representaion we use has some
advantages. First, optimizing the parameters �jt, �t, and t instead of the ac-
tual lot-sizes qjt avoids the implementation of a special crossover strategy. We
can apply the normal one-point, two-point, multi-point, and uniform crossover
strategies and we always get feasible solutions. Second by not generating non fea-
sible solutions, we avoid enlarging the search space. A setback is that we could
not prove that the optimal solution is always a member of our new search space.
But as it can be seen, the algorithm still found very good solutions. Another
disadvantage of our parallel genetic algorithm is the time required to compute
the solutions. On the SIMD machine MasPar MP 1216 with 16k processors it
takes about ten minutes before the genetic algorithm terminates, while other al-
gorithms need about one second on a PC to compute their heuristic solution. A
huge advantage of our parallel genetic algorithm is it's exibility. We have shown
in [4] that our parallel genetic algorithm is easily adapted to a slightly di�erent
problem, and the solutions are even better compared to other algorithms whereas
specialized algorithms do not adapt very well.

References

[1] I. Barany, T.J. van Roy, and L.A. Wolsey. Strong formulations for multi-item
capacitated lot-sizing. Management Science, 30:1255{1261, 1984.

[2] J.C. Bean. Genetic algorithms and random keys for sequencing and opti-
mization. ORSA Journal on Computing, 6:154-160, 1994.

10

[3] J. Branke. Evolutionary Algorithms for Neural Network Design and Train-
ing. In J.T. Alander, editor, First Nordic Workshop on Genetic Algorithms,
Vaasa, Finnland, 1995.

[4] J. Branke, U. Kohlmorgen, H. Schmeck, and H. Veith. Steuerung einer
Heuristik zur Losgr�o�enplanung unter Kapazit�atsrestriktionen mit Hilfe
eines parallelen genetischen Algorithmus. In J. Kuhl and V. Nissen, edi-
tors, Tagungsband zumWorkshop Evolution�are Algorithmen in Management-

Anwendungen, G�ottingen, 1995.

[5] D. Cattrysse, J. Maes, and L.N. van Wassenhove. Set partitioning and col-
umn generation heuristics for capacitated lotsizing. European Journal of

Operational Research, 46:38{47, 1990.

[6] P.S. Dixon and E.A. Silver. A heuristic solution procedure for multi-item
single-level, limited capacity, lot-sizing problem. Journal of Operations Man-

agement, 23{39, 1981.

[7] P.W. Frey and D.J. Slate. Letter Recognition Using Holland-Style Adaptive
Classi�ers. Machine Learning, 6,2:161{182, 1991.

[8] L.F. Gelders, J. Maes, and L.N. van Wassenhove. A branch and bound algo-
rithm for the multi-item single level capacitated dynamic lot-sizing problem.
In S. Axs�ater and et al., editors, Multi-stage production planning and inven-

tory control, pages 92{108. Springer Berlin, 1986.

[9] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1992.

[10] K. Haase. Capacitated lot-sizing with sequence dependent setup costs. Tech-
nical Report 340, Institut f�ur Betriebswirtschaftslehre, University of Kiel,
Germany, 1994. OR Spektrum (to appear).

[11] J.H. Holland. Adaptation in natural and arti�cial systems. Ann Arbor: The
University of Michigan Press, 1975.

[12] �O. Kirca and M. K�okten. A new heuristic approach for the mult-item dy-
namic lot sizing problem. European Journal of Operational Research, 75:332{
341, 1994.

11

[13] M.R. Lambrecht and H. Vanderveken. Heuristic procedures for the single op-
erations, multi-item loading problem. AIIE Transactions, 11:319{326, 1979.

[14] B. Manderick and P. Spiessens. Fine-Grained Parallel Genetic Algorithms. In
J.D. Scha�er, editor, Third International Conference on Genetic Algorithms

, pages 428{433. Morgan Kaufmann, San Mateo, 1989.

[15] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin, 1994.

[16] H. M�uhlenbein. Parallel Genetic Algorithms in Combinatorial Optimization.
Computer Science and Operations Research, pages 441{453, Pergamon Press
1992.

[17] H. M�uhlenbein. Evolution in time and space - the parallel genetic algorithm.
In G. Rawlins, editor, Foundations of genetic algortihms, pages 316{337,
Morgan Kaufmann, 1991.

[18] L. Schrage. Linear integer and quadratic programming with LINDO, third
edition, 1986.

[19] J.M. Thizy and L.N. Van Wassenhove. Lagrangean relaxation for the multi-
item capacitated lot-sizing problem: A heuristic implementation. IIE Trans-

actions, 17:308{313, 1985.

12

