
Architecture-Dependent Partitioning of Dependence Graphs

M. Beck and E. Zehendner Th. Ungerer

Dept. Mathematics & Computer Science Dept. Computer Design & Fault Tolerance

Friedrich Schiller University University of Karlsruhe

D-07740 Jena, Germany D-76128 Karlsruhe, Germany

Abstract

Performance tuning of non-blocking threads is based

on graph partitioning algorithms that create serial code

blocks from dependence graphs. Previously existing al-

gorithms are directed toward deadlock-avoidance and

maximisation of run-length. The latter criterion often

generates a high synchronisation overhead. This paper

presents a partitioning algorithm for dependence graphs

that uses a heuristic to determine a cost-e�cient solu-

tion based on an architecture-dependent cost function.

We present empirical results based on benchmark pro-

grams that were compiled with MIT's Id compiler, ex-

tended by our architecture-dependent partitioning algo-

rithm. The results demonstrate a reduction in software

overhead with our architecture-dependent partitioning

algorithm, compared with previously existing partition-

ing methods. The execution of the sample programs

on an emulator for the Monsoon data
ow architecture

shows a reduced number of processor cycles.

1 Introduction
Programs that were designed to execute on von Neu-

mann architectures consist of serial code. Each instruc-
tion designates a single successor instruction that de-
pends on the program order and the machine status.
Instruction execution on the superscalar microproces-
sors happens out-of-order, due to the application of a
local data
ow principle within an instruction window.
However, the processor-external view of the instruc-
tion execution must follow the serial control
ow due
to the serial program order. This requirement results
in a complex microprocessor organisation using regis-
ter renaming, reorder bu�ering, and a completion or
retirement phase during pipeline execution, that slows
down execution speed.

However, data and control
ow of an algorithm al-
ready de�ne a partial order on the set of instructions in
the code block. Data
ow or dependence graphs are a
suitable medium to describe these dependencies. When
using the data
ow scheme, programs are compiled into
data
ow graphs that represent the data dependencies

among instructions. Scheduling is data-driven: an in-
struction is ready to execute as soon as all required
operands are available. The availability of operands
is signalled by tokens that conceptually are propa-
gated on the arcs of the data
ow graph. Data
ow
architectures can be viewed as hardware interpreters
of data
ow graphs. They use token matching prior to
instruction execution. This synchronisation scheme is
able to exploit all possible parallelism at instruction
level but, unfortunately, leads to super
uous control
overhead when executing sequences of instructions.

Arvind et al. [1] analysed the computational scheme
of data
ow architectures and compared them to von
Neumann architectures. As regards the cost of pro-
gram execution, a program code can be divided into
the so-called basic work that must be executed on each
target architecture and into an architecture-dependent
part called overhead. The sources of overhead in
data
ow architectures are the additional code for un-
folding of parallelism (several outbound arcs of a node
in the data
ow graph) and for synchronisation (sev-
eral inbound arcs of a node). A conceptual source of
potential speed-up is the clipping of parallelism dur-
ing the unfolding phase, automatically resulting in less
synchronisation overhead. A trade-o� must be found
between the cost of unfolding parallelism and the ben-
e�ts from utilising parallelism. We are thoroughly con-
vinced that the trade-o� should strongly depend on an
architectural cost function.

To solve the overhead problem of �ne-grained
data
ow, data
ow graphs can be partitioned into sub-
graphs each with its own synchronisation interface and
parallel unfolding interface to the remainder graph.
Each subgraph that exhibits a low degree of paral-
lelism can be identi�ed within a data
ow graph and
transformed into a sequential thread.

A thread in this sense is a subset of the instructions
within a procedure body such that a compile-time or-
dering can be determined which is valid for all con-
texts in which the procedure can be invoked. Second,
the thread should be non-blocking, i.e., once the �rst

instruction in a thread is executed, it is always possi-
ble to execute each of the remaining instructions in the
compile-time ordering, without interruption or execu-
tion of instructions from other threads [12].

This proceeding is supported by the architectural
proposals of data
ow computers using the hybrid

data
ow model [3] where a thread of instructions is
executed consecutively without matching further to-
kens except for the �rst instruction of the thread. Val-
ues passed between instructions from the same thread
are stored in registers instead of writing them back to
memory. These registers may be referenced by any suc-
ceeding instruction in the thread.

The next section describes and analyses the di�er-
ent strategies for dependence graph partitioning due
to Iannucci [7], Hoch et al. [6], and Schauser [12, 13],
which are predecessors and presuppositions of our own
architecture-dependent partitioning method, presented
in section 3. The architecture-dependent partitioning
algorithm is a heuristic for determining a cost-e�cient
solution that is based on an architecture-dependent
cost function. It can be proven that the algorithmic so-
lution does not deteriorate during the proceeding of the
algorithm [2]. Moreover, our architecture-dependent
partitioning criterion can be replaced by a very simple
rule in case of a hybrid data
ow architecture as target
architecture. We present empirical results in section 4
before the conclusions.

2 Partitioning algorithms
Non-strict data
ow languages like Id create static

and dynamic dependences between instructions, that
must be observed during the compile-time partition-
ing of data
ow graphs. Static dependences are the
\true" data dependences, while dynamic dependences

are caused by control dependences or by split-phase
transactions [1]. Partitioning methods may generate
additional static and dynamic dependences that are
not present in the original data
ow graph and that may
cause deadlock. Safe partitioning algorithms perform
only deadlock-free transformations, thereby generating
deadlock-free (safe) partitions from deadlock-free pro-
grams.

Iannucci's partitioning algorithm [7]|called method

of dependence sets|generates a safe partition of the
data
ow graph. The dependence set of a node i is the
set of all names of annotated nodes from which node i
is reachable traveling along static arcs, only. Nodes
with identical dependence sets are assembled into a
thread. Conceptually, this is a depth-�rst traversal
of the graph, where each end node of a dynamic arc
serves as a starting point for a separate thread. A
node is added to a thread if no dynamic arcs and no
static arcs stemming from nodes with a di�erent anno-

tation end in that node. If a node is not added, the
subgraph starting at this node is cut o�, and the node
itself becomes a starting point for a new traversal, gen-
erating a new thread. The algorithm terminates when
all instructions are assigned to threads.

Hoch et al. [6] enhanced Iannucci's algorithm by
a further criterion for thread fusion. The goals of
their partitioning algorithm are the maximisation of
the thread length and the minimisation of the synchro-
nisation between threads. In addition to Iannucci's
annotations, all starting nodes of dynamic arcs are
marked by Hoch et al.'s partitioning. Iannucci's depen-
dence sets are called entry sets, and the analogous sets
which are based on the starting nodes of dynamic arcs
are called exit sets. Nodes are assembled to a thread if
either their entry sets or their exit sets are the same.
Hoch et al.'s algorithm is also safe.

Schauser [12, 13] extended the ideas of Iannucci and
Hoch et al. by two proposals of partitioning algorithms:
iterated partitioning and separation constraint parti-
tioning. Iterated partitioning is an extension of Hoch
et al.'s algorithm. The dependence sets (Hoch et al.'s
entry sets) and demand sets (Hoch et al.'s exit sets)
are computed. Then dependence-set partitioning and
demand-set partitioning are applied alternately in the
iterated partitioning scheme. During dependence-set

partitioning, nodes with the same dependence sets are
assembled to threads, while in the case of demand-set

partitioning nodes with the same demand sets are as-
sembled. Dependence-set partitioning and demand-set
partitioning are greedy algorithms: they both seek to
group together nodes into maximal subsets, where the
sole criterion for grouping nodes together is whether
they depend on the same set of inlet or outlet anno-
tations [12]. To create a safe partition, an intermedi-
ate step called subpartitioning is introduced that splits
threads with internal dynamic dependences. Thereby
dependence-set partitioning as well as demand-set par-
titioning are proven to be safe.

It can easily be seen that, in general, nodes with the
same dependence set may have di�erent demand sets|
and vice versa. This observation is the basis for the it-
erated partitioning : A partition of the data
ow graph
is generated starting with one of the two methods de-
scribed above. Then a reduced graph is constructed
that consists of threads as nodes and dependences be-
tween threads as arcs. Multiple arcs joining the same
nodes are reduced to a single arc, that becomes dy-
namic whenever any of the omitted arcs was dynamic.
This process is repeated with the resulting graph until
a stationary partition is reached. Each step is a safe
transformation.

Although the iterated partitioning algorithm is more

powerful than dependence-set partitioning or demand-
set partitioning alone, in some cases it may still fail to
group nodes which can safely be merged into a single
thread. The second method of Schauser, separation

constraint partitioning, does not exhibit this limitation.
It stems from a dual approach. The previous methods
place two instructions in a thread if speci�c criteria
based on the reachability of the nodes are ful�lled.

Schauser's separation constraint partitioning com-
putes separation constraints which tell for any two
nodes whether they can be merged or not. Two nodes
are not assembled in the same thread if they are joined
by an indirect dependence. Such a dependence consti-
tutes a separation constraint that arises due to non-
strictness and long latency communication.

The separation constraint partitioning computes
separation constraints from a data
ow graph. Nodes
without a separation constraint are assembled into a
thread. This yields a reduced graph, and the process
is repeated until the partition consists only of threads
with mutual separation constraints.

The resulting partition is not unique, in contrast to
a partition generated by one of the previously stated
methods. The thread length is maximised in the sense
that it is not possible to lengthen any longest thread by
adding further nodes. Only the result partition is safe.
Actually Schauser uses a mixture of separation con-
straint partitioning and of iterated partitioning for the
implementation of partitioning, due to the complexity
of the algorithm.

The primary goal of the partitioning methods stated
above is the creation of a safe partition. Quantita-
tive measures of the target architecture are not consid-
ered by these algorithms. The methods tend to create
long threads with reduced interthread communication.
In data
ow architectures, however, a context switch is
cheap. The main goal of partitioning should be a re-
duction in synchronisation cost. The cost function for
synchronisation is architecture-dependent, and is not
linear in the number of arcs to synchronise. Since exe-
cution of coarse-grained threads causes additional cost,
an analysis of the total cost is necessary.

All partitioning algorithms described above are
based on Iannucci's method of dependence sets with
a safe partition as single goal, partly enhancing Ian-
nucci's method by the second goal of maximising the
run length. All algorithms are provably safe. The
lack of an appropriate cost function implies that run-
time e�ciency deterioration cannot be excluded by the
proceeding of the algorithm. Our own architecture-
dependent partitioning algorithm states a heuristic for
determining a cost-e�cient solution. It can be proven
that there is no deteriorating by the proceeding to-

wards the algorithmic solution. Moreover, in case of
a hybrid data
ow architecture as target architecture,
the architecture-dependent partitioning criterion can
be replaced by a very simple rule.

3 Architecture-dependent partitioning

We now present a simple analytic cost model that
describes the execution of threads on a data
ow archi-
tecture. We assume a dynamic data
ow architecture
with explicit token-store (ETS) [9], where a token is
passed, in succession, through a token queue, a match-
ing unit, an instruction fetch unit, an ALU, and a form
token unit. The architecture provides a set of internal
registers that are used to store intermediate results.
The matching unit accesses the frame memory, using
the direct-matching scheme. Each instruction in the in-
struction set can appear as a synchronisation point ac-
cording to the direct-matching scheme, aside from some
special instructions where the matching unit synchro-
nises a set of tokens without passing any values. The
form token unit generates up to two result tokens for
each processed instruction. Processing of an instruc-
tion needs a complete execution cycle, even in case of
a mismatch in the matching unit.

How a code block is executed on such an architec-
ture? The code block consists of a set of threads. Each
thread is composed of a synchronisation interface, a
thread body, and a parallel unfolding interface. The
leading instructions of a thread form the, usually tree-
like, synchronisation interface. Thread body and par-
allel unfolding interface may be interleaved; together
they are organised as a totally ordered set of instruc-
tions. The instructions for the thread body as well as
for the synchronisation interface are chosen such that,
after all inbound arcs have been synchronised, the in-
structions in the thread body and parallel unfolding
interface can be sequentially executed without inter-
ruption. The succession of instructions in the synchro-
nisation interface as well as in the thread body follows
the data
ow principle. The form token unit generates,
for each processed instruction in the thread body, a
result token destined to the next instruction in the se-
quential thread; this result token is directly passed to
the matching unit in the following cycle. Thus, for
each instruction in the thread body, at most one re-
sult token can be destined to an instruction in another
thread, except for the last instruction of a thread, that
can send up to two result tokens to di�erent threads.
Values can be passed in registers between instructions
of the same thread body; each of these instructions
can read at most one further value from the frame. We
distinguish the following approaches to pass values to
threads:

1. Values are transferred between threads on tokens.
In this case, all instructions in the thread body
are ready for execution as soon as all tokens on in-
bound arcs have been synchronised and the values
passed on them have been made available to the
instructions in the thread body.

2. Values are passed between threads via an ETS
frame. Then, all instructions in the thread body
are ready for execution as soon as a precalculated
number of tokens have been synchronised and the
values in the frame have been made available to
the instructions in the thread body.

The cost of the synchronisation interface and the
parallel unfolding interface, measured in the number
of processor cycles, is di�erent for these approaches.
In this paper we only present results for the case that
values are passed on tokens; the other case is treated
in [4]. In the sequel we use the following notation:

I the set of threads of the code block (i.e., a description
of the partition)

I the number of threads in the code block, I = jIj

Ni the number of instructions in the body of thread i

Si the number of tokens carrying values that are
synchronised via the synchronisation interface of
thread i

Ui the number of tokens carrying no values that are
synchronised via the synchronisation interface of
thread i

�(S;U) the cost (in processor cycles) of the synchro-
nisation by the synchronisation interface for S to-
kens carrying values and U tokens carrying no val-
ues (if values are passed via the frame, then S

denotes the number of values needed from other
threads, covering the expenses of store resp. load
operations)

Fi the number of result tokens generated by the par-
allel unfolding interface of thread i

'(F) the cost (in processor cycles) of generating F re-
sult tokens by the parallel unfolding interface

� and ' are architecture-dependent cost functions
for an optimum coding of the synchronisation inter-
face and the parallel unfolding interface, relative to the
chosen approach to transfer values between threads.
In our basic model, that covers the mandatory fea-
tures of dynamic data
ow architectures, ' is de�ned
by '(F) = max(F � 2; 0); function � is depicted in

Fig. 1. Under these conditions, the number of proces-
sor cycles needed to execute a single thread i is given
by Ti = �(Si; Ui) +Ni +'(Fi). The cost for executing

the complete code block is T (I) =
PI

i=1 Ti.

Now we study the e�ects of generating a new par-
tition of a code block by merging some threads; we
con�ne ourselves to the merging of only two threads.
Some formulae derived in [4] imply that the synchro-
nisation interface constitutes the main source of ad-
ditional overhead introduced by coarsen the partition.
In consequence, the synchronisation cost function pro-
vides us with an architecture-dependent criterion to
decide whether merging of threads would be advan-
tageous. Such a criterion can|and should|be used
in every partitioning algorithm that iteratively deter-
mines the �nal partition by merging some threads.

As an example of our proposed proceeding, we show
how to modify the iterated dependence-demand-set
partitioning algorithm following Schauser [12]. Assume
the code block has been decomposed into disjoint ba-
sic blocks; the latter represent our program as directed
acyclic subgraphs that are connected through their in-
terfaces. We annotate these graphs with inlets and
outlets, as described in [12].

The algorithm annotates all end nodes of dynamic
dependencies with unique names. As mentioned above,
the dependence set of a node i is the set of all names of
annotated nodes from which node i is reachable travel-
ing along static arcs, only. If node i is itself an endpoint
of a dynamic dependence, its own name is added to its
dependence set. The analogous sets which are based on
the starting nodes of dynamic arcs are called demand

sets [12].

Figure 1: Synchronisation cost � in the basic model

Whereas Schauser in one partitioning step merges
all nodes with identical dependence set resp. demand
set, we only merge two threads if the Schauser criterion
holds and the synchronisation cost function indicates
that this merging will be useful. Such merging does
not change the actual dependence set resp. demand
set, thus the newly generated thread can immediately
participate in further merging transformations. Also,
two nodes are not assembled in the same thread if they
are joined by an indirect dependence (separation con-

straint [13]).

Architecture-dependent threads (partition-

ing algorithm)

1. Count the number of inbound arcs of each node in
the basic block, separately for arcs carrying values
resp. arcs carrying no values; then calculate the
value of function � for each node.

2. Determine the dependence sets of all nodes.

3. Choose an arbitrary pair of nodes i and j with
identical dependence set, and merge them if the
following conditions hold:

� there is no separation constraint between
node i and node j

� merging nodes i and j results in a node k

with

�(Sk; Uk) � �(Si; Ui) + �(Sj ; Uj) (*)

Repeat step 3 until the partition becomes station-
ary.

4. Determine the demand sets of all nodes.

5. Choose an arbitrary pair of nodes i and j with
identical demand set, and merge them if the fol-
lowing conditions hold:

� there is no separation constraint between
node i and node j

� merging nodes i and j results in a node k

with

�(Sk; Uk) � �(Si; Ui) + �(Sj ; Uj) (*)

Repeat step 5 until the partition becomes station-
ary.

6. Repeat steps 1{5 until the partition eventually be-
comes stationary.

The proposed merging criterion prevents additional
synchronisation cost. However, we have the impression
that this criterion might be hardly practicable, in par-
ticular if few mergings would be refused. Thus we also
derived a more handy test, that can be applied under
certain conditions.

The course of the function � has a jump whose po-
sition (S + U = 3) and height (Fig. 1) depend on the
capabilities of the matching unit in the target architec-
ture. The height of this jump prevents a merging of
threads that have more inbound arcs carrying a value
than can be coded within a single instruction to the
matching unit. We can take advantage of this fact
and simplify our merging criterion: Threads should not
be merged if the synchronisation interface of the new
thread generated from them could not be coded as a
single instruction. If we substitute this simpli�ed merg-
ing criterion into the partitioning algorithm described
above (formulae marked by an asterisk), we always end
up with a �nal partition that uses not more cycles than
the initial nonpartitioned code block.

In [4] we studied the impact of several architectures
on the partitioning algorithm; in the sequel we direct
our discussion toward the Monsoon architecture [9].
Function ' there is identical to the one of our pro-
posed basic model; function � is depicted in Fig. 2. In
the following section we analyse some sample partitions
and show experimental results.

4 Experimental work

In this section we compare the performance of our
partitioning algorithm to the algorithms of Schauser
[12], i.e., iterated partitioning and separation con-
straint partitioning. The algorithms given by Schauser

Figure 2: Synchronisation cost function � of Monsoon

aimed at a partition of a code block into threads that
should be as long as possible and thus reduce in-
terthread communication.

We compiled and executed a program (see [15]) for
the solution of the heat di�usion problem with the Id
compiler provided by the programming environment ID
World [8]. The compiler generates a data
ow graph
and produces code for the Monsoon data
ow machine
[9]. We studied in detail the partitioning of one cycle-
free subgraph from the generated data
ow graph that
corresponds to the following fragment of the program:

|[i,u2] = A[i,u2] ||i <- l1+1 to u1-1

For evaluation of the di�erent partitions we gener-
ated code that could be executed on the Monsoon. Rel-
evant parameters of this code are the number and the
length of the threads, the number of arcs connecting
the threads, their synchronisation cost, and the dy-
namic length (measured in processor cycles) of the par-
titions excluding latencies. The results of our analysis
are given in Tab. 1. Schauser's partitioning algorithms
generate long threads but at the expense of a high syn-
chronisation cost. The threads generated by our algo-
rithm have shorter average length than with Schauser's
algorithms, and thus are more suited to hide the la-
tency of split-phase transactions.

So far we compared partitions destined to the same
architecture. In the sequel we relate the partition pro-
posed by us for the Monsoon with partitions destined
to other hybrid data
ow architectures. To study this
problem, we constructed a testbed based on the ID
World environment. Since we were interested in com-
paring di�erent hybrid data
ow architectures, we de-
veloped a stand-alone emulator whose behavior can be
adapted to several architectural properties through pa-
rameters. This emulator is based on the instruction
set of the Monsoon. The speci�cation of the Mon-
soon architecture has been preserved as far as possible.
However, our emulator supports 256 registers. SVC-
instructions do not call handler functions but imple-
ment their functionality, blocking the pipeline during a
prescribed number of cycles. We emulate 1 to 16 pro-
cessors and structure memory elements, but network
con
icts are disregarded.

The instruction set and the speci�cation of the vari-
ous units in the processing element have been adapted
to the needs of di�erent architectures. Here we focus
on provisions that are directed towards a cheaper syn-
chronisation. Besides Monsoon, we distinguish three
further modes of operation:

1. The 2.5-address machine. This mode adopts the
separation of match o�set and operand o�set as
in the Epsilon project [5]. The matching unit can

address two operands in the frame independently.
Results are passed in registers.

2. The 3-address machine. The matching unit is as
in the 2.5-address machine. Results can be written
back to the frame.

3. Load-store-architecture. From the EM project [11]
we adopted the RISC-like execution of the instruc-
tions. The matching unit serves two purposes: im-
plementing the direct-matching scheme as well as
reading/writing values from/to the frame (the em-
ulator di�ers from the EM project in this respect).

In addition to the emulator we developed a code
generator. We partition the Monsoon assembly code
generated by the ID World environment. A compiler
backend is used to generate threaded code for the var-
ious modes of operation of the emulator.

Fig. 3 shows the results of the emulation for the pro-
gram speech [10]; for a detailed review of further bench-
mark programs see [4]. The architecture dependent
partitioning method (directed towards Monsoon code)
is compared with non-partitioned Monsoon code and
with Schauser's iterated dependence-demand-set par-
titioning on idealised competing architectures (Mon-
soon th, 2.5 Addr, 3 Addr, and Load store in Fig. 3).
The results show that iterated partitioning can not di-
minish the overhead of �ne-grain data
ow without ad-
ditional cost. Architecture-dependent partitioning gen-
erates code with a cost of about 80% of that of �ne-
grained code. Thus we reached our goal to reduce the
overhead without additional cost. The reduction in the
degree of parallelism, caused by the partitioning, ap-
parently had no negative e�ect on the utilisation of the
pipeline during our experiments.

Figure 3: Execution time of benchmark speech

Table 1: Analysis of partitioning the sample graph

d
a
ta

o
w

it
e
ra
te
d
p
a
rt
it
io
n
in
g

se
p
a
ra
ti
o
n
c
o
n
st
ra
in
t

p
a
rt
it
io
n
in
g

m
e
th
o
d
o
f

d
e
p
e
n
d
e
n
c
e
se
ts

a
rc
h
it
e
c
tu
re
-d
e
p
e
n
d
e
n
t

p
a
rt
it
io
n
in
g

of threads 26 13 11 15 12

maximal length 1 6 7 3 5

average length 1.0 2.0 2.36 1.73 2.16

of arcs connecting threads 47 26 24 30 26

average synchronisation cost 1.81 1.53 2.09 1.06 1.25

of processor cycles 58 49 47 46 45

5 Conclusions
We presented a new architecture-dependent parti-

tioning algorithm to create non-blocking threads from
dependence graphs. Previously published partitioning
algorithms are directed toward deadlock-avoidance and
maximisation of run-length, and often generate a high
synchronisation overhead. In contrast, our partitioning
algorithm uses a heuristic to determine a cost-e�cient
solution based on an architecture-dependent cost func-
tion. It can be proven that the algorithmic solution
does not deteriorate during the proceeding of the al-
gorithm. Moreover, the architecture-dependent par-
titioning criterion can be replaced by a very simple
rule in case of a hybrid data
ow architecture as tar-
get architecture. We presented empirical results based
on benchmark programs compiled with an extension
of MIT's Id compiler. The results demonstrate a re-
duction in software overhead with our architecture-
dependent partitioning algorithm, compared with pre-
viously existing partitioning methods. The execution
of the sample programs on an emulator for Monsoon
shows a reduced number of processor cycles.

The reduction of software overhead due to
architecture-dependent partitioning may also be ap-
plicable outside the scope of non-strict data
ow lan-
guages and hybrid data
ow architectures. The syn-
chronisation overhead we encountered in non-blocking
threads generated from dependence graphs is inher-
ent to �ne-grained parallel multithreaded execution.
Therefore optimising compilers for superscalar or mul-
tithreaded processors [14] may pro�t from our parti-
tioning method.

References
[1] Arvind, D. Culler, and K. Ekanadham. The price of

asynchronous parallelism: an analysis of data
ow ar-

chitectures. CONPAR88, pages 541{555, September

1988.

[2] M. Beck. Architekturabh�angige Partitionierung von

Daten
u�graphen, Dissertation. Friedrich-Schiller-

Universit�at Jena, 1997.

[3] M. Beck, T. Ungerer, and E. Zehendner. Classi�cation

and performance evaluation of hybrid data
ow tech-

niques with respect to matrix multiplication. Work-

shop PARS, pages 118 {126, April 1993.

[4] M. Beck, T. Ungerer, and E. Zehendner. Architecture-

dependent partitioning of dependence graphs. Berich-

te zur Rechnerarchitektur 3, 23, Friedrich-Schiller-

Universit�at Jena, 1997. ftp://ftp2.informatik.uni-

jena.de/pub/AG/OPC/Be-97-BR-3:23.

[5] V. Grafe and J. Hoch. The Epsilon-2 multiproces-

sor system. J. Parallel and Distributed Computing,

10:309{318, 1990.

[6] J. E. Hoch et. al. Compile-time partitioning of a non-

strict language into seqential threads. In Proc. 3rd

Symp. on Parallel and Distributed Processing, 1993.

[7] R. Iannucci. Toward a data
ow / von Neumann hy-

brid architecture. 15th Ann. Int. Symp. Comp. Arch.,

Honolulu, pages 131{140, 1988.

[8] R. P. Johnson. Monsoon id world user's guide (draft).

CSG Memo 334, MIT LCS, 545 Tech. Square, Cam-

bridge, MA, 1992.

[9] G. Papadopoulos and D. Culler. Monsoon: an explicit

token-store architecture. 17th Ann. Int. Symp. Comp.

Arch., Seattle, pages 82{91, 1990.

[10] A. Sah. Parallel language support for shared mem-

ory multiprocessors. Masters thesis, Computer Science

Div., University of California at Berkeley, 1991.

[11] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and

T. Yuba. An architecture of a data
ow single chip

processor. 16th Int. Symp. on Comp.Arch., pages 46{

53, 1989.

[12] K. Schauser. Compiling lenient languages for parallel

asynchronous execution. PhD thesis, Computer Sci-

ence Div., University of California at Berkeley, 1994.

[13] K. Schauser, D. Culler, and Goldstein. Separation con-

straint partitioning - a new algorithm for partition-

ing non-strict programs into sequential threads. Proc.

Principles of Programming Languages, 1995.

[14] J. Silc, B. Robic, and T. Ungerer. Asynchronity in par-

allel computing: From data
ow to multithreading. In

Journal of Parallel and Distributed Computing Prac-

tice, January/February 1998.

[15] K. Traub. relax.id. id-world example suite. MIT LCS,

545 Tech. Square, Cambridge, MA, 1991.

