
INTERNATIONAL COMPUTER SCIENCE INSTITUTE I���� Center St� � Suite ��� � Berkeley� California �����	���
 � ����
 ���	���� � FAX ����
 ���	��
�

Enabling Compiler

Transformations for pSather ���

Michael Philippsen�

phlipp� icsi�berkeley�edu

TR�������

August 	���

Abstract
pSather 	�	 
�� is a parallel extension of the object�oriented sequential programming
language Sather 	�	 
	�� A compiler for sequential Sather is available which is written
in Sather� This document describes the basic ideas of the extensions of the sequential
Sather compiler to handle pSather programs and is thus a high�level documentation
of parts of the pSather compiler� Most of the transformations are presented in form
of a transformation from pSather to Sather�

�On leave from Department of Computer Science� University of Karlsruhe� Germany



Contents

� Introduction �

Transformation of pSather�s Memory Consistency Model �

� Transformation of pSather�s Memory Consistency Model �

��� Constructs Dealing with Threads � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Memory Model Transformation of par Statements � � � � � � � � � � � � � � � �
����� Memory Model Transformation of fork Statements � � � � � � � � � � � � � � � �
����� Memory Model Transformation of attach Statements � � � � � � � � � � � � � � �

��� Constructs Dealing with Locks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Memory Model Transformation of lock Statements � � � � � � � � � � � � � � � �
����� Memory Model Transformation of unlock Statements � � � � � � � � � � � � � � �
����� Memory Model Transformation of sync Statements � � � � � � � � � � � � � � � �

��� Exclusive Gate Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Memory Model Transformation of Exclusive Gate Operations � � � � � � � � � �
����� Exclusive Gate Operations in if Statements � � � � � � � � � � � � � � � � � � � �

Transformation of pSather�s Threads �

� Transformation of attach Statements �

��� Basic Transformation Principle � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Helper Objects in pSather	s Memory Consistency Model � � � � � � � � � � � � � � � � ��

� Transformation of par Statements ��

� Transformation of fork Statements ��

Helper Objects� Declaration and Access ��

� Nesting of attach	 par	 and fork Statements �



�� Declaration of Helper Objects � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Motivating Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Pseudo Code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Packing of Helper Objects� Export � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Update of Helper Object Attributes� Export � � � � � � � � � � � � � � � � � � � � � � � ��


���� Motivating Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Pseudo Code � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Unpacking of Helper Objects� Import � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Complete Example ��

��� Original pSather Program � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Result of the Transformation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


References ��

ii



� Introduction

Throughout this document we assume that the reader is familiar with the language de
nitions of
sequential Sather ��� ��� and the parallel extension pSather ��� ����

Conceptually� the transformation of pSather to Sather is organized in phases� each of which deals
with a separate problem of the translation� The document	s organization re�ects these phases� Note
however� that a phase does not correspond with a pass of compilation� Instead the implementation
achieves all transformations in a single pass�

Phase I� The 
rst phase of the transformation focuses on pSather	s memory consistency model�
The memory consistency model of pSather o�ers a shared address space to the programmer� But
it is not a sequentially consistent shared memory model because changes to object attributes are
in general not immediately visible to all threads� The language speci
cation associates import and
export operations with various language constructs and operations�

The goal of the 
rst phase of the transformation of pSather	s memory consistency model is
to make these operations explicit� i�e�� instead of associating import and export operations with
language constructs and operations� functions of the SYS class are called explicitly�

The transformations of the 
rst phase are described in section ��

Phase II� In the second phase threads are transformed into routines or functions� This is relevant for
all pSather implementations since most available thread packages require a correspondence between
threads and functions� Local variables which are visible at the point of thread creation in pSather
must be made accessible in the resulting routine� We decided to pass these local variables into the
new routine by use of newly created objects� so called helper objects�

The transformations of the second phase are described in sections � to ��
In this part of the document� we assume that the Sather compiler targets a run�time system that

o�ers threads and mechanisms for blocking and synchronization� Hence� we rely on a mechanism
for starting routines concurrently that are implemented in sequential Sather�

Phase III� In section 
 we focus on the declaration of helper objects and discuss the access to
attributes of these helper objects� The transformation is context sensitive and behaves di�erently
for di�erent nestings of par� fork� and attach statements� The declaration of helper objects� their
packing and unpacking� and the update of attributes is described in detail in section 
�

Finally� section � discusses a pSather implementation of the producer�consumer problem and presents
the result of all transformation phases�

�



� Transformation of pSather�s Memory Consistency Model

The 
rst phase of the transformation focuses on pSather	s memory consistency model� The memory
consistency model of pSather o�ers a shared address space to the programmer� But it is not a
sequentially consistent shared memory model because changes to object attributes are in general
not immediately visible to all threads� The language speci
cation associates import and export
operations with various language constructs and operations�

The goal of the memory model transformation is to make these operations explicit� i�e�� instead of
associating import and export operations with language constructs and operations� functions of the
SYS class are called explicitly� In the remainder of this section we describe transformation templates
that implement pSather	s memory consistency model�

Let us 
rst look at the import and export rules as de
ned in the pSather language speci
cation�

An import occurs�

Rule Condition
Imp� in a newly created thread�
Imp� on exiting a par statement �children have terminated��
Imp� on entering one of the branches of a lock statement�
Imp� on exiting exclusive GATE and GATEfTg operations� and
Imp� on completion of a sync statement�

An export occurs�

Rule Condition
Exp� in a parent thread when a child thread is forked�
Exp� by a thread on termination�
Exp� on exiting a lock statement�
Exp� on entering an unlock statement�
Exp� on entering exclusive GATE and GATEfTg operations� and
Exp� on initiation of a sync statement�

In the remainder of this section we present transformation templates for all relevant constructs of
pSather�

The transformation templates map pSather programs into pSather programs� since SYS��import
and SYS��export are legitimate pSather statements� Moreover� because repetitions of one of these
calls are semantically equivalent to a single call� the semantics of a given pSather program is not
changed by adding these calls explicitly where implicit import or export operations are de
ned by
the language�

For notational purposes� we de
ne a new language pSatherie� which is pSather without the
association of import and export to constructs and operations� Therefore� if in pSatherie a thread
changes an attribute of an object� another thread is only guaranteed to observe this change� if ���
the 
rst thread has executed an explicit export operation� if ��� the second thread has executed an
explicit import operation� and if ��� export and import have occurred in this temporal order�

In the code fragments shown below the left hand side shows the given pSather code� The right
hand side shows pSatherie code which is the result of the transformation� The explanations of the
transformation use the rule identi
ers given in the above tables�

�



��� Constructs Dealing with Threads

����� Memory Model Transformation of par Statements

pSather �� pSatherie

par

stmts �
end

�SYS��export�
�par��ie
�SYS��import�
�stmts ��
�SYS��export�
�end�
	SYS��import�

The language speci
cation de
nes that the body of a par statement is �conceptually� executed
by a new thread� Therefore� rule Exp� requires an export immediately before the par statement
�line ��� Analogously� rule Imp� results in an import at the beginning of the body �line ��� Due to
rule Exp�� the new thread must export changes before termination �line ��� These changes must
be imported after the par in line � because of rule Imp��

Note� that the new thread cannot legally terminate inside of stmts � since the use of return�
yield� and quit is not allowed inside the body of a par statement� Moreover� iters can only be
called inside the body of the par statement if the enclosing loop statement is as well inside the
body of the par statement� Exceptions are not an issue with respect to thread termination� If the
programmer does not catch exceptions with explicit protect statements in the body of the par �and
hence before the termination of the thread� these exceptions are considered to be fatal errors� Since
the program is terminated in presence of such exceptions� no export operation must be called�

Other than the mentioned rules Imp�� Imp�� Exp�� and Exp�� no memory consistency model
rules must be applied when transforming a par statement�

����� Memory Model Transformation of fork Statements

pSather �� pSatherie

fork

stmts �
end

�SYS��export�
�fork��ie
�SYS��import�
�stmts ��
�SYS��export�
�end�

The memory model transformation of the fork statement results from the same rules Imp�� Exp��
and Exp� as the memory model transformation of the par statement shown above�

The di�erence is that after the fork statement no import is required� Hence� unless caused
by other import or export rules that might be hidden in stmts �� there is no speci
c point in the
program at which the thread that executes the fork statement will become aware of changes made
by the forked thread� However� since fork statements may only occur inside the body of a par

statement� the closing import caused by the par statement makes sure that these changes are seen
by the originating thread�

Note again� that the new thread cannot legally terminate inside of stmts � since the use of
return� yield� and quit is not allowed inside the body of a fork statement� Again� iters can only
be called inside the body of the fork statement if the enclosing loop statement is as well inside the

�



body of the fork statement� Because of the same reasons given for the par statement� exceptions
are not an issue with respect to thread termination inside of the body of the fork�

����� Memory Model Transformation of attach Statements

Although the right hand side of an attach statement can be a complex expression� let us assume
for now and without loss of generality that the right hand side is simply a function call�

The given transformation template is incomplete and only suggestive because such a de
nition
of new routines induces additional problems due to local variables� Since this problem will be solved
in section � we � for now � postpone the presentation of a complete transformation template�

pSather �� pSatherie� incomplete

expr� �� operation� �SYS��export�
�expr� �� operation�� ��ie

�
�operation� �
�
�SYS��import�
�
�tmp ��� operation�
�
�SYS��export�
�
�return tmp�

The memory model transformation of attach statements is slightly more complicated� Although
the same rules Imp�� Exp�� and Exp� apply to the attach statement as they do to the fork
statement� the transformation requires more work since pSather allows only expressions on the right
hand side of the attach statement� Hence� simply adding additional statements is not possible�

To circumvent this problem� we de
ne a new routine operation� that has the necessary import
and export calls� Instead of attaching operation to the gate determined by evaluation of expr�� the
new routine operation� is attached�

Note� that there is no explicit import operation after the asynchronous call of operation� in line ��
The reason is� that the originating thread proceeds without waiting for the newly created thread�
The two threads synchronize� when the originating thread uses an exclusive gate operation to access
the result of operation� which is stored in the gate� See section ��� for the transformation templates
used to implement rules Exp� and Imp� of pSather	s memory consistency model�

��� Constructs Dealing with Locks

����� Memory Model Transformation of lock Statements

Rule Imp� requires an import when entering a branch of a lock statement� This is implemented in
lines �� �� and �� of the following �incomplete and only suggestive� transformation template � Rule
Exp� results in export in lines �� �� and �� at the end of the branches of the lock statement�

Other than the mentioned rules Imp� and Exp�� no memory consistency model rules must be
applied when transforming the lock statement�

�



pSather �� pSatherie� incomplete

lock

guard �expr� when �lck list �� then

stmts �
when �lck list �� then

stmts �
else

stmts 	
end

�lock

�guard �expr� when �lck list �� then

�SYS��import�
�stmts ��
�SYS��export�
�when �lck list �� then

	SYS��import�
�stmts ��
�SYS��export�
�
else

��SYS��import�
��stmts 	�
��SYS��export�
��end�

However� simply inserting an export call as the last statement of all branches of the lock statement
is often incorrect� The export must occur whenever the body can be left by the control �ow�

This is the case for return� quit and raise statements� �The yield statement is not allowed
in the lock statement�� Moreover� the control �ow can leave the lock statement if an iter is called
inside the lock statement but the enclosing loop is outside the lock statement� To implement this
requirement� the statement list stmts �� stmts �� and stmts 	 must be processed as shown in the
following pseudo code�

Transformation Algorithm append export�

�append export
stmt list�mode� is
��� process all statements in stmt list sequentially
�s���stmt list
�rst stmt�
�loop

�if is in loop and contains iter call
s� then
�insert export stmt before
s��
	end�
�typecase s
�when RETURN STMT� QUIT STMT� RAISE STMT then

�
insert export stmt before
s��
��when STMT WITH BODIES then
��loop append export
s
bodies��on exit only� end�
��end�
��until�
void
s
next��� s��s
next�
��end�
���� work on last statement of stmt list
�	if mode �� on exit only then
��typecase s
��when RETURN STMT� QUIT STMT� RAISE STMT then �� done
�
else

��insert export after
s��
��end

��end�
��end�

�



Algorithm Description� The loop in lines � to �� processes the statements in stmt list� If the current
statement �s� contains an iter call we add a �speculative� export in front of this statement� See lines �
to �� This export is only required by rule Exp� if the control �ow really leaves the lock statement�
However� since we cannot know this during the transformation� we add a potentially unnecessary
export� The typecase statement in lines � to �� handles all other statements that might result
in leaving the lock statement� In front of return� quit� and raise statements an export is added
�lines � and ���� For statements that have bodies of their own� for example the if statement� all
their bodies are processed recursively� The di�erence is that their bodies are processed in on exit only
mode� In this mode� only the transformation described so far is applied to the statement list�

For the top level statement list of the lock statement however� append export is called in
with �nal export mode� This mode makes sure� that at least one export is called at the end of
the branch of the lock statement� See lines �� to ��� The 
nal export is only added if the last
statement of the list does not cause an export itself� Moreover� the semantics of sequential Sather
prohibits the existence of statements after return and raise�

Implementation Restriction�

Although pSather requires that the export occurs immediately upon leaving the lock
statement� the statement based transformation might cause some problems� Imagine
a return statement that returns a value� However� let this value be provided by a
function call that itself changes some global state� The transformation presented above
will not export these changes because the export is called before the return statement�
This could be corrected by evaluating the expression of the return statement into a
newly introduced temporary variable 
rst� i�e� before the export operation� The return
statement then would return the new temporary variable� Similar e�ects might occur
in statements that accomplish work before calling an iter� Again� since the export is
already done the current implementation will not export the accomplished work� Similar
to the return statement� the transformation could easily be extended to cover this case
correctly�

Now we are equipped to present the complete transformation template for the lock statement� In
line � the statement list stmts � is transformed by the algorithmwe have just described� The recursive
algorithm is called in with �nal export mode to make sure that there is at least one export after the
statements in stmts � unless the type of last statement prohibits this� The same transformation
algorithm is called for stmts � �in line �� and stmts 	 �in line ����

pSather �� pSatherie

lock

guard �expr� when �lck list �� then

stmts �
when �lck list �� then

stmts �
else

stmts 	
end

�lock

�guide �expr� when �lck list �� then

�SYS��import�
�append export
stmts ��with �nal export��
�when �lck list �� then

�SYS��import�
	append export
stmts ��with �nal export��
�else

�SYS��import�
�
append export
stmts 	�with �nal export��
��end�






����� Memory Model Transformation of unlock Statements

pSather �� pSatherie

unlock �lck�� �SYS��export�
�unlock �lck��

Only rule Exp� is applicable to the unlock statement� Before executing an unlock statement� an
export must occur�

����� Memory Model Transformation of sync Statements

pSather �� pSatherie

sync� �SYS��export�
�sync�
�SYS��import�

Rule Imp� causes an import in front of the sync statement� Similarly� rule Exp� is applicable and
causes the export operation immediately after the sync operation in pSatherie�

��	 Exclusive Gate Operations

Rules Imp� and Exp� require that exclusive gate operations are surrounded by export and import
operations� Exclusive gate operations are operations that work on the queue of a gate �set� get�
enqueue� and dequeue��

To implement the requirement that exclusive gate operations are immediately surrounded by
export and import� expressions must be broken up into sequences of individual statements with
temporary variables� isolating the gate operation� After the isolation of exclusive gate operations
in individual statements� the statement containing the gate operation can easily be immediately
surrounded by export and import�

Implementation Restriction�

Although pSather requires that these operations are immediately surrounded by export
and import� the implemented transformation is slightly weaker� Instead of immediately
surrounding exclusive gate operations� we surround the statement that contains the ex�
clusive gate operation�

The di�erence only becomes visible if a program relies on the order of execution of
expressions� For example� in cases like g
get � x� where x is changed by a di�erent
thread and the import caused by get is essential for the correct behavior of the program�

This implementation restriction requires a special treatment of the if statement which is
presented in section ������

����� Memory Model Transformation of Exclusive Gate Operations

pSather �� pSatherie

stmt with exclusive gate op� �SYS��export�
�stmt with exclusive gate op�
�SYS��import�

�



Rule Exp� requires that before the statement with the exclusive gate operation an export is added
to the code� Rule Imp� results in an import after that statement�

Similar to the special treatment of the return and raise statement in the transformation algo�
rithm append export� the import is not necessary if the statement with the exclusive gate operation
is a return or raise statement� Moreover� the semantics of sequential Sather in that case prohibit
the added call of SYS��import� The speci
c transformation templates are given below�

pSather �� pSatherie

return expr with exclusive gate op� �SYS��export�
�return expr with exclusive gate op�

raise expr with exclusive gate op� �SYS��export�
�raise expr with exclusive gate op�

����� Exclusive Gate Operations in if Statements

Without isolation of the exclusive gate operation in a separate statement� the if statement needs
a special treatment�� Otherwise the e�ects of the evaluation of a condition with an exclusive gate
operation might be invisible in the branches of the if statement�

pSather �� pSatherie

if cond with exclusive gate op then
stmts ��

end�

�SYS��export�
�if cond with exclusive gate op then
�SYS��import�
�stmts ��
�end�
�SYS��import�

Export rule Exp� results in the leading export in line �� The import operation required by rule
Imp� results in the two imports� An import occurs before the statements of the then part �line ���
If there is no else part� then an additional import must occur after the if statement �line 
��

pSather �� pSatherie

if cond with exclusive gate op then
stmts ��

else

stmts �
end�

�SYS��export�
�if cond with exclusive gate op then
�SYS��import�
�stmts ��
�else

�SYS��import�
	stmts �
�end�

If there is an else part then the second import occurs inside the else part �line 
� instead of after
the if statement�

�Since the case statement is syntactic sugar based on the if statement� we do not consider the case statement in
more detail


�



Transformation of pSather�s Threads

Threads can be created in pSather in three ways� One way is the attach statement� the second way
is the par statement� and the third way is the fork statement� The basic idea of a transformation
used in the pSather compiler is to replace these statements with sequential Sather statements� the
attach statement� the par statement� and the fork statement are replaced with routines� This is
necessary for most thread packages that can be used to implement a run�time system since only
routines can be associated with run�time system threads in these packages�

The target language of this second step of transformation is called pSatherie�thread � This lan�
guage is pSatherie without par� fork� and attach statements and without cohort� Instead of these
statements the language o�ers a macro THREAD with four arguments� The 
rst argument is the
name of a function to be called concurrently� The second argument is the helper object as de
ned
below� The third argument denotes the gate to which the new thread is attached� Finally� the fourth
argument of the macro is the cluster number which should be used to execute the new thread�

� Transformation of attach Statements

	�� Basic Transformation Principle

When presenting the pSather�to�pSatherie transformation for attach statements� we have already
mentioned that a new routine is created� Here we complete the transformation template�

The following fragment shows pSather code� When routine r is executed� the running thread
spawns a new thread in line � that executes the expression operation concurrently� On a parallel
machine� operation is supposed to be evaluated on cluster p� The result of this evaluation is enqueued
into the gate object resulting from the evaluation of expr�� The expression operation can be quite
complex since it can contain routine calls and the use of local variables declared inside the routine
r� The local variable local which is declared in line � is an example�

Original pSather Code�

�class X is

�r is
�local � TYPE OF LOCAL �� val�
���
��� some code
���
	expr� �� operation � p�
���
��� some code ���
�
��
��end� �� of r
���� more class elements
��end� �� of class X

Moving the evaluation of operation into a new routine as required by the transformation to pSatherie
requires that all the objects and variables which are visible at the point of the attach statement are
passed into the new routine�

�



The transformation presented here achieves the visibility of locals in the new routine by use of
helper objects� The attach statement is replaced by several statements� see lines �� to ���

First� the left hand side of the attach statement is transformed� In line ��� the expression expr�
is evaluated into a new gate object g of type GATEfTg whereby T is the resulting type of operation�
In general� this is not necessary� if expr� already is a gate� However� since expr� could be a complex
expression which might block during its evaluation� we choose to evaluate expr� 
rst� before we
continue to transform the attach statement�

After creation of the gate� a new helper object is created in line ��� then all visible local variables
declared inside the routine r �and all parameters of r if there were any� are copied into this helper
object �lines �� to ���� The HELPER class is speci
c to the transformed attach statement� Transfor�
mation of other attach statements in general result in additional �and often di�erent� helper classes
and objects� The copy operations are called packing of the helper object� Due to the transformation
to pSatherie� an explicit export operation is added in line ���

Finally� THREAD is a macro that starts a new thread� The new thread concurrently executes the
function fct
helper�g� at cluster p� In pSather semantics� the new thread is considered to be attached
to gate g� If the ��expression and the cluster number are missing� the thread is supposed to run on
the same cluster as the calling thread�

pSatherie�thread Code after Transformation�

��class X is

��r is
��local � TYPE OF LOCAL �� val�
����
���� some code
����
�	��
��g � GATEfTg �� expr��
��helper ��� �HELPER�
�
helper
local �� local�
���� ���
��SYS��export�
��THREAD
fct�helper�g�p�� �� concurrently executable
����
���� some code ���
����
�	end� �� of r
���� more class elements
��private fct
helper�HELPER� g�GATEfTg� is
�
local � TYPE OF LOCAL�
��SYS��import�
��local ��� helper
local�
��tmp ��� operation�
��g
enqueue
tmp��
���� maybe� helper�local �� local	
��SYS��export�
�	end� �� of fct
��end� �� of class X

In the routine fct �lines ���� the helper object is unpacked after an initial import operation� i�e��

rst local variables are declared that mirror the local variables which have been visible at the point
of the original attach statement �line ���� Afterwards the helper object is unpacked� i�e�� the newly

��



declared variables are 
lled �line ���� Then the expression operation is evaluated �line ���� the
resulting value is enqueued into the gate g in line ��� Before the 
nal export operation in line �

which is required by the transformation to pSatherie� the a�ected local variables are copied back
into the helper object� This is required in pSather ��� because of inout parameters� If operation
would have had local as an inout argument� then the value of local could have changed� Rules for
packing and unpacking of helper objects are discussed in more detail in section ����

Note that the enqueue operation itself requires to be enclosed between export and import oper�
ations �see ������� Both operations however� can be omitted due to redundancy�

For the helper object a class must be de
ned that has an attribute for each local variable to be
passed into the newly declared function�

��class HELPER is

��attr local�TYPE OF LOCAL�
���� ���
�	create � SAME is

��return new�
��end� �� of create
�
end� �� of HELPER

The transformation of the right hand side expression of the attach relies on the fact that the
pSather speci
cation does not allow iters to be called in the right hand side expression� Otherwise
the transformation would result in an iter which is called in a routine without being textually
enclosed in a loop statement�

Rationale for helper objects� The use of helper objects and the packing and unpacking of values
seems to introduce more complexity than necessary� An alternative transformation could pass the
locals as arguments into the new routine� However� there are several reasons for the introduction of
helper objects� The 
rst reason is the intended simplicity of the run�time system� Passing all locals
via routine arguments would require that the thread creation mechanism of the run�time system
could deal with an arbitrary number and worse� arbitrary type of arguments� By always passing a

xed number of arguments� i�e� routine name� helper object� gate� and cluster number� the interface
is much simpler� A reason for unpacking is the intended simplicity of the transformation process�
Instead of processing the original expression operation and replacing all accesses to local variables
with accesses of attributes of the helper object� the expression operation can be copied textually
into the body of the new routine� Another reason is e�ciency� moving the whole helper object
to the cluster that hosts the new thread and then working with local variables is in general much
faster than always going through an additional level of indirection� The fourth reason� however�
is orthogonality� Similar helper objects will be used in the transformation of both par and fork

statements� where argument passing is insu�cient as will be shown in sections � and ��

Optimization� By data �ow analysis the export of local variables could easily be optimized� In�
stead of passing all visible local variables and parameters through the helper object into the thread
that implements the right hand side of the attach statement� only those must be copied that are
used in the right hand side expression� However� for simplicity of both the presentation and the
transformation we pass all local variables here�

	�� Helper Objects in pSather�s Memory Consistency Model

As discussed in section � the memory consistency model of pSather requires that threads which use
variables that are shared between threads import and export changes to these variables at certain
points of the code� Every transformation must ensure a correct implementation of this memory
consistency model�

��



By introducing explicit import and export operations into the code� the implementation of these
routines must guarantee that changes to any objects will be observed correctly� The SYS routines
however cannot guarantee correct import and export behavior between local variables and helper
objects�

Therefore� the transformation from pSatherie to pSatherie�thread works in two steps� both of
which have been applied above� In the 
rst step� helper objects are created and threads are replaced
by routines� However� the helper objects are neither packed nor unpacked�

In the second step� import and export operations which are either present in the original pSather
program or might have resulted from the transformation to pSatherie are expanded�

Rule Transformation
Hlp� Whenever an explicit import operation is encountered� im�

mediately after this import operation the helper object is
unpacked� i�e�� the local variables are set according to the
values of the helper object�

Hlp� Whenever a routine is called which has an import opera�
tion in its transitive closure of calls� immediately after this
routine call the helper object is unpacked�

Hlp� Whenever a local variable is changed �either by an assign�
ment to it or by using it as an inout argument� and this
variable is also available in a helper object� immediately
after this change the corresponding attribute of the helper
object is updated�

Hlp� If both Hlp� and Hlp� must be applied after a routine
call� rule Hlp� must be obeyed 
rst�

In section 
 we will present in more detail what it means to pack�unpack�update helper objects in
the general case� i�e�� for arbitrary nestings of par� fork� and attach statements�

Implementation Restrictions�

The same restrictions as for the requirement of immediately surrounding of exclusive
gate operations by export and import apply here� The expansion is implemented on a
per statement basis� For if �and hence case� statements the transformation is similar to
the one shown in ������

Optimization� By data �ow analysis the update of local variables due to Hlp� could easily be
optimized� Instead of updating a helper attribute immediately after the corresponding local variable
has been changed� only the last of these changes preceding an export operation must be made
visible in the helper object� Standard optimizations� e�g�� loop invariant code motion could be used
to improve run�time performance for locals that are written inside of a loop� However� for simplicity
of both the presentation and the transformation we export all variables here�

��



� Transformation of par Statements

The basic idea of the transformation of pSatherie	s par statement is its reduction to the attach
statement� When a par statement is encountered� the semantics of pSather enforce that a new gate
is created which is subsequently referred to as cohort� Then conceptually a new thread is started
and attached to this gate which executes the body of the par statement� The original thread blocks
and continues after the new thread has terminated�

pSatherie Code�

�class X is

�r is
�local � TYPE OF LOCAL �� val�
���
��� some code
���
	SYS��export�
�par��ie
�SYS��import�
�
��
��some code 
��
����
��SYS��export�
��end�
��SYS��import�
����
�	�� some code �
�
����
��end� �� of r
�
�� more class elements
��end� �� of class X

The following code shows the �still incomplete� result of the transformation which is very similar to
the one applied to the attach statement� In line �� a new gate is created� All accesses to cohort
inside the body of the par statement are replaced by accesses to this new gate� Similar to the right
hand side of the attach statement� the body of the par statement is moved into a newly created
routine fct �lines �� to ���� Again� parameters �if any� and visible variables which are declared
locally inside the surrounding routine r are passed into the new routine by means of the helper
object� Packing and unpacking of the helper object is not shown in detail�

pSatherie�thread Code after Transformation� incomplete�

��class HELPER is

��attr local�TYPE OF LOCAL�
���� ���
��create � SAME is

��return new�
�	end� �� of create
��end� �� of HELPER
��class X is

�
r is
��local � TYPE OF LOCAL �� val�
����

��



���� some code
����
��new cohort ��� �GATE�
��helper ��� �HELPER�
�	�� pack helper �see section ��
��SYS��export�
��THREAD
fct�helper�new cohort�any�� �� concurrently executable
�
lock when new cohort
no threads then end�
��SYS��import�
���� unpack helper �see section ��
����
���� some code �
�
����
��end� �� of r
�	private fct
helper�HELPER� new cohort�GATE� is
��local � TYPE OF LOCAL�
��SYS��import�
�
�� unpack helper �see section ��
����
���� some code ���� update helper object attributes
����
��SYS��export�
��end� �� of fct
���� more class elements
�	end� �� of class X

The lock statement in line �� ensures that the original thread can only proceed when no more
threads are attached to the new gate� i�e�� if the thread that executes the body of the par statement
has terminated� Later we will see that the same gate is used to attach threads that implement the
bodies of fork statements� Therefore� all these threads have terminated as well� when the original
thread succeeds in acquiring the lock� Note� that no additional import and export need to be
introduced into the empty body of this lock statement�

Return values of any kind are not an issue� The de
nition of pSather does not allow any of the
following statements to appear inside the body of the par statement� return� yield� quit��

�The transformation could easily be extended to correctly handle return statements as well
 For this purpose� a
return statement in the body of the par must transport the return value �if any� to the original thread through the
helper object
 After the original thread succeeds in acquiring the lock it must check whether a return statement has
been encountered � the helper object must provide a �ag for this purpose � and then return this value


��



� Transformation of fork Statements

The basic idea of the transformation of pSatherie	s fork statement is very similar to the transfor�
mation applied to par statements� The semantics of pSather only allow fork statements to appear
in the body of par statements� and hence in the bodies of routines implementing par statements
according to the transformation presented in section �� Therefore� we face the following situation
during transformation�

pSatherie�thread Code after Transformation of par �only��

�class X is

��� more class elements

�private fct
helper�HELPER� new cohort�GATE� is �� transformed par statement

�local � TYPE OF LOCAL�

�SYS��import�

��� unpack helper

	��

�my local � TYPE OF LOCAL�

���

�
�� some code

����

��SYS��export�

��fork � p� ��ie

��SYS��import�

����

���� some code ���

�	��

��SYS��export�

��end�

�
��

���� some code �
�� update helper object attributes

����

��SYS��export�

��end� �� of fct

��end� �� of class X

Before we discuss the result of the transformation� let us brie�y recall the semantics of pSather� The
local variable my local which is declared �line �� inside the body of the original par statement is not
shared among all threads� When a new thread is started in line �� to execute the body of the fork
statement� this new thread receives a unique copy of my local� Any changes that this new thread
makes to his instance of my local are not exported and are thus never visible in other threads� Hence
packing and unpacking of helper objects must be sensitive to the context in which they occur� The
context sensitivity is even more complicated because the semantics allow nesting of fork statements�
We will discuss the transformation of arbitrary nestings of attach� par� and fork statements and
the proper generation of packing� unpacking� and update statements in section 
�

The following three code sections show the result of the transformation which is very similar to
the one applied to the par statement� The 
rst section �lines �
 to ��� shows the code for the new
helper object� the second code fragment �lines �� to �
� shows the result of the transformation of
the fork statement� Finally� the third code fragment �lines �� to 
�� illustrates the result of the
transformation of the body of the fork statement�

��



Resulting pSatherie�thread Code after Transformation of par and fork� �part ��

��class HELPER � is
�	attr helper�HELPER�
��attr my local�TYPE OF LOCAL�
���� ���
�
create � SAME is

��return new�
��end� �� of create
��end� �� of HELPER

As usual� we declare a new helper object upon thread creation� This time� however� the original
helper object helper is an attribute of the newly created helper object helper �� see line ��� When
helper objects are packed and unpacked� this nesting must be taken into account� See section 
 for
details of nesting� Note� that an access to helper �
helper
local reaches the same storage position as
helper
local does� since all helper objects are reference objects�

Resulting pSatherie�thread Code after Transformation of par and fork� �part ��

��class X is

���� more class elements
��private fct
helper�HELPER� new cohort�GATE� is
�	local � TYPE OF LOCAL�
��SYS��import�
���� unpack helper �see section ��
�
��
��my local � TYPE OF LOCAL�
����
���� some code
����
��helper � ��� �HELPER ��
���� pack helper �� �see section ��
�	helper �
helper �� helper
��helper �
my local �� my local�
���� ���
�
SYS��export�
��THREAD
fct ��helper ��new cohort�p�� �� concurrently executable
����
���� some code �
�� update helper object attributes
����
��SYS��export�
��end� �� of fct

The transformation moves the body of the fork statement to a new routine� Instead of the original
fork statement� the THREAD macro is issued in line ��� Since the original thread that executes the
fork statement is attached to the gate new cohort which has been passed as parameter� the new
thread that implements the body of the fork will be attached to the same gate�

Resulting pSatherie�thread Code after Transformation of par and fork� �part 
�

�	private fct �
helper ��HELPER �� new cohort�GATE� is
��local � TYPE OF LOCAL�
��my local � TYPE OF LOCAL�

�




�
SYS��import�
���� unpack helper �� �see section ��
��local �� helper �
helper
local�
��my local �� helper �
my local�
����
���� some code ���� update helper �
� object attributes
����
�	SYS��export�
��end�
��end� �� of class X

The routine fct � that implements the body of the fork statement is very similar to the one that
implemented the par statement before� The only di�erence appears in the update statements in
lines 
� to 

� Whereas in the par routine all changed local variables are updated in the helper
object� in the fork routine only those changed local variables are updated� that are inherited from
the helper object of the surrounding par� �If the transformation of the par and the fork statement
were equivalent� then in line 
� the code should read � � �update helper � object attributes� Note the
di�erence�� In particular� the local variable my local is not updated�

��



� Nesting of attach	 par	 and fork Statements

Several times during the transformation of the attach� par� and fork statement� we encountered
the necessity to pack or unpack helper objects and to update some of their attributes� This section
explains how packing� unpacking� and update work for arbitrary nestings of these statements and
therefore for arbitrary nesting of helper objects�


�� Declaration of Helper Objects

Whenever a new helper object is created� the transformation must determine which attributes the
new helper object should have� After the attributes of the helper object are collected� the declaration
of local variables at the beginning of the routines that result from the transformation of par� fork�
and attach statements are the easy part� for each attribute in the helper object a local variable is
created�

����� Motivating Examples

Nesting Level ��
The following code fragment shows a top level par statement on the left hand side and the corre�
sponding helper object on the right hand side� �The top level attach statement has a similar helper
object��

a�TYPE OF LOCAL�
par

end�

�class HELPER � is
�attr a�TYPE OF LOCAL�
�create is 


 end�
�end�

Nesting Level ��
The situation for a second level par or fork statement is slightly more complicated� since the helper
object of the surrounding par statement must be used to access shared variables� �The second level
attach statement has a similar helper object��

a�TYPE OF LOCAL�
par

b�TYPE OF LOCAL�
par�fork
end�

end�

�class HELPER � is
�attr helper ��HELPER ��
	attr b�TYPE OF LOCAL�
�create is 


 end�
�end�
�
��

The reason for nested helper objects might need more explanation� Aside from the original thread
the variable a in the above example is shared by two threads� One thread executes the body of the
top level par statement� The other thread executes the body of the second level par or fork� The
idea is to have only one single copy of a in the helper objects� Therefore� if the second thread changes
helper �
helper �
a� this change is immediately visible in the 
rst thread� There are two reasons for
the desire to have only one copy� The 
rst reason is a performance reason� without nesting of helper
objects the second thread would need to update two copies of a� one copy in helper � and another
copy in helper �� The second reason is even stronger� Assume that helper � is passed to a third
level par or fork� If now the outermost thread changes the value of a the thread can update this in
helper �
a� However� the thread cannot update its change in any other helper object because these
are not declared in his scope� Hence� when the innermost thread tries to import the current value

��



of a� this thread cannot know which of the two versions of a is up�to�date� Hence� using nested
helper objects is a prerequisite of easy import� The alternative would require a complex protocol
for replication consistency handling�

Nesting Level 
�

Beginning at the third level of par or fork statements� the structure of the helper object becomes
sensitive to the context� We 
rst present the situation of a third level par or fork statement inside a
second level par statement� �The third level attach statement inside a second level par statement
has a similar helper object�� The next example will present the second level fork statement�

a�TYPE OF LOCAL�
par

b�TYPE OF LOCAL�
par

c�TYPE OF LOCAL�
par�fork
end

end�
end�

��class HELPER 	 is
��attr helper ��HELPER ��
��attr c�TYPE OF LOCAL�
��create is 


 end�
��end�
����
�	��
����
����

Note that both variables a and b are shared by all threads� Therefore� they are accessible through
helper � in the new helper object HELPER 	�

The third level par or fork statement inside a second level fork statement requires a di�erent
helper object� �The third level attach statement inside a second level fork statement has a similar
helper object��

a�TYPE OF LOCAL�
par

b�TYPE OF LOCAL�
fork

c�TYPE OF LOCAL�
par�fork
end

end�
end�

�
class HELPER 	b is
��attr helper ��HELPER ��
��attr b�TYPE OF LOCAL�
��attr c�TYPE OF LOCAL�
��create is 


 end�
��end�
����
�	��
����

Here only the variable a is shared by the threads� Therefore� an individual copy must be passed into
the innermost par or fork statement� To understand this demand more clearly assume a situation
where the forked thread on level � has changed its copy of b� Clearly this new value must be made
visible inside of the third level� Hence� the copy of b which is available from HELPER � in general
holds a wrong value� namely the unchanged version of b seen by the thread that executes the body
of the top level par statement�

����� Pseudo Code

The structure of the helper objects� i�e�� the attributes of a newly created helper object are deter�
mined by the following pseudo code�

��



Transformation Algorithm make attributes of helper�

�make attributes of helper is
��� �� link surrounding par helper
�if we are in a par or fork then
�surrounding par helper �� par helper of
current helper��
�add attribute to helper
surrounding par helper�
�end

	�� �� work on visible local variables and parameters
�loop local���active locals plus params��
�if user de�ned
local� then
�
if we are in a par or fork
��and reached via helpers
local�surrounding par helper�
��then �� skip this variable
��else add attribute to helper
local�
��end�
��end�
��end

�	�� 
� pass cohort into helper object�
��if we are working on an attach and we are in a par or fork then
��add attribute to helper
current cohort�
�
end�

Algorithm Description� The 
rst step �line � to 
� is skipped for top level par and attach statements�
For attach� fork� and par statements inside of par and fork statements the helper object of that
surrounding statement is considered� If the surrounding level is a par level then the corresponding
helper object becomes an attribute of the new helper� If the surrounding level is a fork level� then
there must be a par level surrounding this fork� Hence� the current helper object of the fork has an
attribute caused by the surrounding par level� This attribute is linked into the new helper object� In
the implementation� the routine call par helper of
current helper� 
nds the appropriate helper object
that must be linked in�

In the second step �lines � to �
� all parameters and visible locally declared variables are con�
sidered� If one of those variables is the result of an earlier transformation step� it is ignored� The
condition user de�ned
local� in line � implements this� For all remaining variables a new attribute
is added to the helper object� except for those variables for which the condition in lines �� and ��
holds� If the transformation happens to be inside of a par or a fork statement� then several variables
are inherited �transitively� by the helper of the surrounding par statement� This helper object is
found in step � �surrounding par helper� line ��� Note that the shortcut semantics for the evaluation
of boolean expressions makes sure that the surrounding par helper is not used if the transformation
is applied to a top level statement�

To understand the requirement of the transitive inheritance of locals consider the above example
again which introduced HELPER 	� The helper object of the surrounding par statement �helper ��
contains only the local variable b� However� by working the levels up� the local variable a can
be accessed as well� helper �
helper �
a� Therefore� the new helper class HELPER 	 only has the
attribute c in its body�

The same condition in lines �� and �� makes sure that HELPER 	b has both b and c in its body�
because b cannot be transitively reached via the surrounding helper object which is helper � here�

The third step of the pseudo code �lines �� to ��� needs some discussion� In general helper objects
transport only variables de
ned by the pSather programmer� Beyond that� local variables which are
introduced during transformation are not used in the routine that receives the helper objet� However

��



there is one exception� Inside of a par statement� the pSather programmer can freely use cohort�
In particular� cohort can be used in the right hand side expression of an attach statement� Because
the right hand side is moved into a newly created routine as has been presented in section �� the
name of the gate that implements cohort must be passed inside the attach routine� This is not
necessary for the transformation of par and fork statements because the new threads are attached
to cohort anyhow� i�e�� the gate that implements cohort is accessible as third parameter of the
THREAD macro�


�� Packing of Helper Objects� Export

After a new helper object is created during the transformation� the current values of the local
variables and parameters are copied into the corresponding attributes of the helper objects� Since
obviously all attributes must be 
lled initially� the pseudo code for pack helper object is very similar
to the one of make attributes of helper given in section 
�����

Transformation Algorithm pack helper object�

�pack helper object
helper� is
��� �� link surrounding par helper
�if we are in a par or fork then
�surrounding par helper �� par helper of
current helper��
�update attribute in helper
local�helper��
�end�
	�� �� work on local variables and parameters
�loop local���active locals plus params��
�if user de�ned
local� then
�
if we are in a par or fork
��and reach via helpers
local�surrounding par helper�
��then �� skip this variable
��else update attribute in helper
local�helper��
��end�
��end�
���� 
� pack cohort into helper object�
�	if we are working on an attach and we are in a par or fork then
��update attribute in helper
local�helper�
��end�

The only di�erences occur in lines �� ��� and ��� Instead of making a new attribute in the class de
�
nition of the helper object� an assignment statement is created� The 
rst step creates an assignment
statement that looks like�

helper �
helper � �� helper ��

This links the helper object of the surrounding par statement into the currently packed new helper
object� The second step creates assignment statements for the local variables�

helper �
local �� local�

Finally� in the third step that is only executed when an attach statement inside of a par statement
is transformed� a reference to the current cohort of that par statement is copied into the new helper
object�

helper �
new cohort �� new cohort�

��




�	 Update of Helper Object Attributes� Export

After a local variable is changed that is mirrored in a helper object the corresponding attribute of
the helper object must be updated� See rule Hlp�� Whenever a local variable is changed �either by
an assignment to it or by using it as an inout argument� and this variable is also available in a helper
object� immediately after this change the corresponding attribute of the helper object is updated�

����� Motivating Examples

Nesting Level ��
The following code fragment shows two top level par statements on the left hand side and the
corresponding helper objects on the right hand side� �Top level attach statements have a similar
helper objects��

a�TYPE OF LOCAL�
par

end�
b�TYPE OF LOCAL�
par

end�

�class HELPER �a is
�attr a�TYPE OF LOCAL�
�create is 


 end�
�end�
�class HELPER �b is
�attr a�TYPE OF LOCAL�
	attr b�TYPE OF LOCAL�
�create is 


 end�
�end�

Inside of the 
rst par statement� the helper object helper � must be used� In the second par the
helper object helper � is used� After the end of the 
rst par statement� the 
rst helper object is no
longer of any interest since all threads that might use this helper object have terminated� Note that
at all points of the program the last declared helper object is the one that gets used� Here the last
declared helper object always is a helper object caused by a par statement�

Nesting Level ��
The situation for a second level par or fork statement is slightly more complicated� since the helper
object of the surrounding par statement must be used for access to shared variables� �The second
level attach statement has a similar helper object�� The code on the left hand side has a sequence
of par and fork statements in its body�

a�TYPE OF LOCAL�
par

b�TYPE OF LOCAL�
par �� uses helper �a
end�
c�TYPE OF LOCAL�
fork �� uses helper �b
end�

end�

�
class HELPER �a is
��attr helper ��HELPER ��
��attr b�TYPE OF LOCAL�
��create is 


 end�
��end�
��class HELPER �b is
��attr helper ��HELPER ��
�	attr b�TYPE OF LOCAL�
��attr c�TYPE OF LOCAL�
��create is 


 end�
�
end�

The interesting aspect here is that the thread that executes the top level par statement can use
any of the helper objects when updating the value of a� Independent of the choice� the update will
always reach helper �
a� When updating the value of b however� this thread must be more careful�

��



Since b is shared with the thread that executes the second level par statement� the helper object
helper �a must be used� Moreover� helper �b must not be used to update the value of b� because the
thread that executes the fork statement initially gets a copy of b and is intended not to see any
changes that are made to the original b� Hence� for a correct update of helper object elements� the
last declared helper object must be used that is caused by a par statement�

Nesting Level 
�
The only interesting case here is the following�

a�TYPE OF LOCAL�
par

b�TYPE OF LOCAL�
fork

c�TYPE OF LOCAL�
fork

end�
end�

end�

��class HELPER 	b is
��attr helper ��HELPER ��
��attr b�TYPE OF LOCAL�
��attr c�TYPE OF LOCAL�
��create is 


 end�
��end�

At the moment when the transformation reaches the innermost fork statement there is no helper
object visible that is caused by a par statement� In this case� of course that last declared helper
object must be chosen�

����� Pseudo Code

The following pseudo code creates a statement to update an attribute of the helper that mirrors a
changed local variable� If a change of a local variable needs not to be updated� the pseudo code does
not add a new statement�

Transformation Algorithm update in helper�

�update in helper
local� is
��� �� Find out the appropriate helper object for export
�if no helper is visible then return�
�elsif no par helper is visible then helper to use �� last declared helper�
�else helper to use �� last declared par helper�
�end�
	�� �� Copy into helper object if applicable
�if reach via helpers
local�par helper of
helper to use�� then
�update attribute in helper
local�helper to use�
�
end�

Algorithm Description� Nothing is updated if no helper object is visible �line ��� Otherwise� the last
declared helper object is considered which is caused by a par statement �line ��� If no such helper
object can be found the last declared helper object is used instead �line ��� This has been motivated
by the examples in the previous section�

The second step of update in helper makes sure that only those attributes are written which are
accessible from helper objects that correspond to par statements� In the above example for nesting
level �� only changes to local variable a will make it into the helper object� The other two attributes
of helper 	b cannot be reached in par helper of
helper to use�� In the example the following update
code will be created for a change of a�

��



helper 	b
helper �
a �� a�


�� Unpacking of Helper Objects� Import

Helper objects must frequently be unpacked� i�e�� the local variables must be set to the values that
are stored in the helper object� We must di�erentiate between two di�erent cases� The 
rst case
is the initial unpacking that is needed at the beginning of routines which implement the bodies of
par or fork statements or which implement the right hand side of attach statements� The second
case is caused by rules Hlp� and Hlp�� i�e�� whenever an import operation occurs that requires the
shared local variables to be set to the up�to�date value�

The pseudo code for the unpacking is a mixture of the one for packing of helper objects �see 
���
update attribute in helper� and the pseudo code for the update of helper attributes �see 
����� up�
date in helper��

Transformation Algorithm update from helper�

�update from helper
mode� is
��� �� Find out the appropriate helper object for export
�if no helper is visible then return�
�elsif no par helper is visible then helper to use �� last declared helper�
�else helper to use �� last declared par helper�
�end�
	�� �� Consider different modes
�if mode �� init then
�helper to use �� par helper of
helper to use��
�
end

���� 
� Copy into helper object if applicable
��loop local���active locals plus params��
��if 
 user de�ned
local�
��or 
mode � init and is cohort
local���
��and reach via helpers
local�helper to use�
��then

�	update local from helper
local�helper to use�
��end�
��end�

Algorithm Description� First of all� the routine decides in the 
rst step which helper object to use�
This is done in the same way and for the same reasons as it has been done for the update of helper
attributes� In the second step �lines � to ��� the mode is considered� If called in init�mode the
last declared helper object is the one that is passed as a parameter to the routine implementing the
new thread� Since nothing is changed in step � �lines �� to ���� all variables that are �transitively�
reachable from this helper object are set in the third step�

However� if called in import�mode� helper to use is changed to point to the helper object of the
surrounding par statement� if the current routine does not itself implement a par statement� In this
case only those variables are copied from the helper object that are mirrored in the helper of the
surrounding par statement� which exactly implements the sharing of the corresponding variables�

��




 Complete Example

In this section we 
rst show a pSather implementation of the consumer�producer problem� After�
wards we present the complete result of the transformation described in this document� Actually�
except for the comments which are added manually� the resulting program is produced by the pSather
compiler�


�� Original pSather Program

�class MAIN is

�const pnum �� 	� �� number of producers
�const cnum �� �� �� number of consumers
�const max prod �� ����� �� number of �items� a producer creates
�attr comm gate�GATEfINTg� �� used to queue �items�
�attr prod gate�GATE� �� used to attach producers

The main program consists of a single par statement �lines � to ���� Inside of this par statement�
two loop statements are used to create the producers and consumers by means of an attach and a
fork statement�

In the 
rst loop �lines �� to ��� pnum producers are attached to the gate prod gate� i�e�� the
producers are started to run concurrently� The producers must be attached to a named gate because
the consumers must be able to check whether there are any producers left� If all producers have
terminated and all produced items have been consumed� the consumers can terminate as well�

In the second loop �line �� to ��� cnum consumers are started by the fork statement�
The par statement terminates when all consumers have terminated�

	main is

�comm gate �� �� prod gate �� ��
�par

�
�� Create producers and attach to prod gate
��loop pnum
times��
��prod gate �� producer�
��end�
���� Create consumers
��loop cnum
times��
��fork consumer end�
�	end�
��end�
��end�

The code of the producer is straightforward� there is a loop statement and inside of this loop items
�which are consecutive INTs in the implementation� are enqueued into the communication bu�er
comm gate� If max prod items have been produced� the loop and thus the producer are terminated�

�
producer is
��res�INT����
��loop �� some work
��comm gate
enqueue
res��
��res �� res��� if res � max prod then break� end�

��



��end�
��end� �� producer� this will remove from prod gate

The code of the consumer is slightly more complicated because the consumer not only has to retrieve
items from the communication bu�er but in addition� the consumer must decide whether to terminate
or to continue�

�	consumer is
��loop

��lock

�
when comm gate
not empty then
���OUT�comm gate
dequeue�
��when comm gate
empty� prod gate
no threads then
��break��
��end�
��end�
��end� �� consumer
�	end� �� MAIN

Whereas the producer will terminate after max prod elements are enqueued into the bu�er� the
consumer uses the multi�branch lock statement to decide about termination� The lock statement
�lines �� to ��� has two branches� The 
rst branch is entered if there is an element in the commu�
nication bu�er� If this is the case� the bu�er is locked� the element dequeued from the bu�er� and
the bu�er is unlocked again� If there is no element in the communication bu�er and there is no
thread attached to prod gate then the consumer can terminate� This is achieved by the break
 in
the second branch of the lock statement�


�� Result of the Transformation

The following code is basically generated by the implemented transformation of pSather� However�
the code is beauti
ed by hand to enhance readability� For example� helper objects and compiler
declared temporary variables have been renamed to be more intuitive� Moreover� we re�introduced
syntactic sugar that has been lost during the compilation� e�g�� incrementing res in the producer is
written as res�� instead of res
plus
���

To avoid confusion when referring to line numbers in the code� the resulting code starts at line
number ����

�

class MAIN is

�
�const pnum �� 	� �� number of producers
�
�const cnum �� �� �� number of consumers
�
�const max prod �� ����� �� number of �items� a producer creates
�
�attr comm gate � GATEfINTg� �� used to queue �items�

The main routine is shortened during the transformation� The whole body of the original par
statement is moved into the new routine pS par� Instead 
rst the gate used as cohort is created in
line ���� Then the helper object pS par hlp is created� which is of type PS PAR HLP� Since there are
no locally declared variables� the helper object has no attributes which otherwise would have been
packed afterwards� Before the new thread that executes the body of the original par is started�
changes are exported� The new helper object is thus made visible to other threads that might use
it� The new thread is started in line ���� The thread is attached to the pS cohort and runs routine

�




pS par
pS par hlp�pS cohort�� The fourth argument of THREAD is void� since the new thread should
run� where the original thread was executed� The initial thread continues after evaluating THREAD
and is stopped in the lock statement of line ���� There the initial thread is blocked until all threads
which are attached to the pS cohort have terminated� Afterwards the initial thread imports any
changes other threads might have made�

�
�main is

�
�comm gate���� prod gate����
�
	�� par�
�
�pS cohort����GATE�
�
�pS par hlp����PS PAR HLP�
��
SYS��export�
���THREAD
pS par� pS par hlp� pS cohort� void�� �� conc�
���lock when pS cohort
no threads then end�
���SYS��import�
���end� �� of main

Potential Optimization� In the basic transformation template there is a lot of room for optimization�
In the above code fragment some of the problems an optimization phase could address are obvious�

� It is not necessary� to create and and pass empty helper objects�

� If this can be avoided� no export needs to occur� since no objects are changed�

� No import needs to occur if the thread does not use any of the potentially imported new
versions of objects�

The code of the producer did not change signi
cantly� However� since import and export operations
must be explicit in pSatherie�thread the exclusive gate operation �lines ���� is enclosed in calls of
export and import�

���producer is
���res�INT����
��	loop

���SYS��export�
���comm gate
enqueue
res��
��
SYS��import�
���res �� res��� if res � max prod then break� end�
���end�
���end� �� of producer

The code of the consumer has been changed a little more� In addition to the explicit export and
import code that surround the exclusive gate operation in line ���� there are additional import and
export operations enclosing each branch of the lock statement �lines ������� and lines ������
��

���consumer is
���loop

���lock

��	when comm gate
not empty then

��



���SYS��import�
���SYS��export�
��
�OUT�comm gate
dequeue�
���SYS��import�
���SYS��export�
���when comm gate
empty� prod gate
no threads then
���SYS��import�
���break��
���SYS��export�
��	end�
���end�
���end� �� of consumer

The transformation moves the former body of the par statement into the new routine pS par� At the
very beginning of the body there is the explicit import operation �line ���� that makes the helper
object visible� At the end of the body �line ���� there is an explicit export operation�

Although the two loop statements are still present� their bodies have been changed signi
cantly�
Lines ��� to ��� show the transformation of the attach statement� Lines ��� to ��
 show the

transformation of the fork statement�
For the attach statement� at 
rst a new gate pS gate is created that is subsequently used instead

of prod gate� Then a helper object of type PS ATTACH HLP is created and used to make the local
variables and arguments visible in the routine that will implement the right hand side of the attach�
Here a reference to the surrounding helper object of the par statement and the current cohort are
copied into this helper object� After an explicit export operation in line ���� the routine pS attach
is started concurrently �line �����

��
private pS par 
pS par hlp�PS PAR HLP� pS cohort�GATE� pS at�INT� is
���SYS��import�
���loop pnum
times��
����� attach�
���pS gate���prod gate�
���pS attach hlp����PS ATTACH HLP�
���pS attach hlp
pS par hlp��pS par hlp�
��	pS attach hlp
pS cohort��pS cohort�
���SYS��export�
���THREAD
pS attach� pS attach hlp� pS gate� void�� �� conc�
��
end� �� of loop
���loop cnum
times��
����� fork
���pS fork hlp����PS FORK HLP�
���pS fork hlp
pS par hlp��pS par hlp�
���SYS��export�
���THREAD
pS fork� pS fork hlp� pS cohort� void�� �� conc�
��	end� �� of loop
���SYS��export�
���end� �� of pS par

The fork statement is transformed slightly di�erently� In contrast to the helper object we have used
for the attach statement� the helper object PS FORK HLP of the fork statement does not include
the current cohort� The reason for this is that the routine that implements the body of the fork

��



statement always has the cohort gate as its second parameter� Since the routine that implements
the right hand side of an attach statement is in general not attached to the cohort� the cohort had
to be passed through the helper object�

Potential optimization� Again several special cases can be noted that could be exploited by opti�
mization�

� It does not make much sense to link empty helper objects into new helper objects� as it is done
with the empty helper object ps par hlp in lines ��
 and ����

� Data �ow analysis could reveal that the thread created for the attach statement does not
need access to pS cohort� Therefore� passing this reference through the helper object could be
left out without any harm�

The following code fragment shows the routine that results from the transformation of the attach
statement� In line �
� a local variable is declared that mirrors the one which is visible at the
point of the original attach statement� After the initial import operation �line �
��� the helper
object is unpacked� i�e�� the mirroring local variables are 
lled according to the values their original
counterparts have at the point of the attach statement �line �
���

The producer is started in line �
�� The enqueue operation is as uninteresting as the side e�ect
of the initial attach statement to count the number of terminated producers� The implementation
of THREAD makes sure that the invocation of pS attach is properly attached to pS gate� which is
needed for the lock statement in the consumer �lines ��
 to ���� to work�

��
private pS attach 
pS attach hlp�PS ATTACH HLP� pS gate�GATE� pS at�INT� is
���pS cohort� GATE�
���SYS��import�
���pS cohort��pS attach hlp
pS cohort�
���producer�
���pS gate
enqueue�
���SYS��export�
��	end� �� of pS attach

Potential Optimization� See above�

The routine pS fork does not need much discussion� Since there are no attributes in the helper object�
no mirroring local variables need to be declared or initialized� Hence� the body of the routine simply
consists of explicit import and export operations that enclose the call of consumer�

���private pS fork 
pS fork hlp�PS FORK HLP� pS cohort�GATE� pS at�INT� is
���SYS��import�
�	
consumer�
�	�SYS��export�
�	�end� �� of pS fork

Potential Optimization�

� Closer analysis can avoid many of the import and export operations that are required by the
language speci
cation�

��



Finally� for the sake of completeness� we present the class de
nitions of the helper objects�

�	�class PS PAR HLP is

�	�create�SAME is

�	�return new�
�	�end�
�		end� �� of PS PAR HLP
�	�class PS ATTACH HLP is

�	�attr pS cohort � GATE�
��
attr pS par hlp � PS PAR HLP�
���create�SAME is

���return new�
���end�
���end� �� of PS ATTACH HLP
���class PS FORK HLP is

���attr pS par hlp � PS PAR HLP�
��	create�SAME is

���return new�
���end�
��
end� �� of PS FORK HLP

��



References

��� Stephen M� Omohundro and David Stoutamire� The Sather ��� speci
cation� Technical Report
TR�in preparation� International Computer Science Institute� Berkeley� ����� Available from
http���www�icsi�berkeley�edu�Sather�

��� David Stoutamire� The pSather ��� manual and speci
cation� Technical Report TR�
in preparation� International Computer Science Institute� Berkeley� ����� Available from
http���www�icsi�berkeley�edu�Sather�

��


