
INTERNATIONAL COMPUTER SCIENCE INSTITUTE I���� Center St� � Suite ��� � Berkeley� California �����	���
 � ���� ���	���� � FAX ���� ���	��
�

Sather ��� Tutorial

Michael Philippsen�

phlipp� icsi�berkeley�edu

TR������	

Version ��
� December
���

Abstract

This document provides basic information on how to obtain your copy of the Sather
��
system and gives several pointers to articles discussing Sather
�� in more detail�

We thoroughly describe the implementation of a basic chess program� By carefully
reading this document and the discussed example program� you will learn enough
about Sather
�� to start programming in Sather
�� yourself� This document is
intended for programmers familiar with object oriented languages such as Ei�el or
C� General information on object oriented programming can be found in ����

The main features of Sather
�� are explained in detail� we cover the di�erence
between subtyping and implementation inheritance and explain the implementation
and usage of iters� Moreover� the example program introduces all the class elements
�constants� shared and object attributes� routines and iters� are introduced� Most
statements and most expressions are also discussed� Where appropriate� the usage of
some basic features which are provided by the Sather
�� libraries are demonstrated�
The Tutorial is completed by showing how an external class can be used to interface
to a C program�

�On leave from Department of Computer Science� University of Karlsruhe� Germany

Contents

� About Sather ��� �
��� Where can I �nd Sather� �
��� Where can I read about Sather� �
��� Related Work� Sather�K �
��	 Planned Changes to this Tutorial �

� Sather Tutorial Chess �
��� Hello World Program �
��� Getting Started � 	
��� Class Hierarchy of Sather Tutorial Chess � 	

� Class Main �
��� Routine main �

��� Routine setup �

� Type �CHESS DISPLAY and Related Classes ��
	�� Type �CHESS DISPLAY ��
	�� Class CHESS DISPLAY ��
	�� Class ASCII DISPLAY �	
	�	 Class X DISPLAY �

	� External Class XCW ��
	�
 Class DEFAULT ��

� Type �PLAYER and Related Classes ��
�� �PLAYER ��
�� Class PLAYER ��
�� Class HUMAN PLAYER ��
�	 Class MINMAX ��

	 Class MOVE ��

 Class POS ��

� Class BOARD ��

� Type �PIECE and Related Classes ��
��� Type �PIECE � 	�
��� Class PIECE � 	�
��� Class BISHOP � 	�
��	 Class ROOK �
�� Class QUEEN �
��
 Class KNIGHT �
��� Class PAWN �
��� Class KING � 	

�� Suggested Execises �

References ��

ii

� About Sather ���

Sather is an object oriented language which aims to be simple� e�cient� safe� and non�proprietary�
One way of placing it in the �space of languages� is to say that it aims to be as e�cient as C� C���
or Fortran� as elegant and safe as Ei�el or CLU� and support higher�order functions and iteration
abstraction as well as Common Lisp� Scheme� or Smalltalk�

Sather has parameterized classes� object�oriented dispatch� statically�checked strong �contravari�
ant� typing� separate implementation and type inheritance� multiple inheritance� garbage collection�
iteration abstraction� higher�order routines and iters� exception handling� assertions� preconditions�
postconditions� and class invariants� Sather programs can be compiled into portable C code and
can e�ciently link with C object �les� Sather has a very unrestrictive license which allows its use in
proprietary projects but encourages contribution to the public library�

��� Where can I �nd Sather�

Information on Sather can be found on the Mosaic page http���www�icsi�berkeley�edu�Sather�
From that page� you can reach various documents related to Sather� There also is a list of frequently
asked questions� Another source of information is the newsgroup comp�lang�sather that is devoted
to discussion of Sather related issues�

There is a Sather mailing list maintained at the International Computer Science Institute �ICSI��
Since the formation of the newsgroup� this list is primarily used for announcements� To be added
to or deleted from the Sather list� send a message to sather�request�icsi�berkeley�edu�

If you have problems with Sather or if you want to discuss Sather related questions that are
not of general interest� mail to sather�bugs�icsi�berkeley�edu� This is also where to send bug
reports and suggestions for improvements�

The current ICSI Sather ��� compiler� the manual� this tutorial� and the Sather FAQ can be
obtained by anonymous ftp from

ftp�icsi�berkeley�edu �pub�sather

The distribution �le is called Sather�����	�tar�Z� The wildcard is to be replaced by the number
of the latest release� At the time this tutorial was written three sites have mirrored the Sather
distribution�

ftp�sterling�com �programming�languages�sather

ftp�uni�muenster�de �pub�languages�sather

maekong�ohm�york�ac�uk �pub�csp

��� Where can I read about Sather�

There are various papers on Sather ���� on earlier versions� primarily on Sather �� which is somewhat
di�erent� and on pSather which is a parallel extension of Sather�

Most of the papers listed here are directly available from the Mosaic page mentioned above�
Others can be retrieved via anonymous ftp from ftp�icsi�berkeley�eduunder �pub�techreports�
As a last resort� hardcopies may be ordered for a small fee� Send mail to info�icsi�berkeley�edu

for more information�
The current language speci�cation is published in ����� This document can be found next to the

code on the ftp server mentioned above� Obviously the �le is called manual�ps�
Sather�s general design and the di�erences from Ei�el have been presented in �
� �� �� ��� The

type system is presented in depth in ����� Moreover� ICSI technical papers report on other speci�c
issues� see ��� 	� ��� ����

�

Sather has been analyzed from an external point of view� Comments and comparisons can be
found in ��� �� ����

��� Related Work� Sather	K

Although we know a lot about Sather�K� which is being developed in Karlsruhe� Germany� it is not
yet available online� Future versions of this Technical Report� which can be accessed from anonymous
ftp will have some more details�

��
 Planned Changes to this Tutorial

Currently Sather Tutorial Chess does not use the �le I�O libraries of Sather ���� Since it takes some
time to get used to these libraries� the Tutorial de�nitively should explain them�

Hence� later versions of this Technical Report� which can be accessed from anonymous ftp will
be extended in that respect� We will either introduce a way to save the current state of a game and
resume at a later program invocation� Or we will supply a library of standard openings and use that
information when generating automatic moves�

�

� Sather Tutorial Chess

Sather Tutorial Chess is not an expert chess program� In fact� it is quite easy to win against the
computer� Moreover� the implementation is very ine�cient in certain parts of the code� The idea is
to simply provide a context for demonstrating and explaining various features of Sather and not to
show a world class chess program�

To make the best use of this tutorial� the Sather ��� system should be properly installed and the
following �les should be available online�

hello�sa This �le contains is the standard Hello World program� It does not belong to Sather
Tutorial Chess but is included as an initial exercise�

Makele This is the Make�le for Sather Tutorial Chess�

SChess�sa This is the main Sather �le�

XInterf�sa This is an additional Sather �le� Although the code could have been in SChess�sa� it is
kept in a separate �le for explanatory reasons�

DefaultA�sa If your system is not running the X�� window system� this �le is used for compilation
and linking�

DefaultX�sa Otherwise� this �le is used instead�

XCW�c This C �le provides the interface to the X�� window system� If you do not use X��� the
Make�le will detect this and generate an executable that does not depend on or use XCW�c�

bitmaps This directory has bitmaps for all the chess pieces which are used in XCW�c�

��� Hello World Program

The �le hello�sa is the standard Hello World program� Sather programs usually have �le names
with the extension �sa� To compile it� simply enter cs hello�sa� The command for invoking the
compiler is easy to remember� since cs stands for �Compile Sather�� After successful compilation
you can execute it by entering a�out� If the current directory is not in your search path� enter
��a�out�

Only proceed after having successfully compiled and executed the Hello World program� If
something went wrong� check your installation of the Sather ��� system� The �le Doc�Installation
might be helpful for diagnosing problems�

��� This is the standard Hello World program
��� implemented in Sather ���
�class MAIN is

�main is
��OUT � �Hello Worldnn
�
�end�
	end�

The �rst two lines of the �le are comments� Comments start with two minus signs� The comment
cannot be explicitly closed� they end at the end of the line� The class MAIN has a special purpose
in Sather� Unless altered by compiler �ags� the routine main of MAIN is started when a compiled
Sather program is invoked by the user� In main there is only one statement� This statement is
responsible for several things� At �rst �OUT creates a new object of class OUT� Class OUT is a

�

basic class provided by Sather� In the implementation of class OUT which can be found in the
library �le Library�out�sa there are several routines that can be invoked on an object of that class�
One of these routines has the signature

plus�s�STR��
Make sure that you look at the library �le Library�out�sa and �nd the routine used in the Hello
World program� It is necessary for using the Sather ��� system that you are familiar with the libraries
and the routines provided by them� The routine plus takes one string argument and �adds� this
argument to the object before returning the modi�ed object� In line of the program the routine
plus is called implicitly� by the operator � which itself is syntactic sugar for the call of plus�

In Sather ��� a string is enclosed in double quotes �
�� Similar to C� �n stands for the carriage
return�line feed�

��� Getting Started

The other �les mentioned above are needed for Sather Tutorial Chess� They could be derived
from this document by extracting and concatenating the code segments explained in the remainder�
Unless otherwise noted� the code segments go to the �le SChess�sa�

For the presentation� code segments are numbered on the right of the code� Numbering is
restarted with line � either when a new Sather code �le is started or with the beginning of a new
section�

You can create an executable Sather Tutorial Chess program by invoking the compiler� This is
done by staring the execution of the Make�le�

make

The Make�le �nds out whether your system runs then X Windows� Depending on the result� the
appropriate Sather code �les are compiled and linked together� The executable is called

SChess

After invoking Sather Tutorial Chess� you are the white player� The computer is responsible for the
moves of black� Later� in section ��� we will show how this default behavior can be changed�

��� Class Hierarchy of Sather Tutorial Chess

Let us �rst discuss the basic design decisions that led to our implementation of Sather Tutorial Chess�
The central object is the board� The board knows about its state� which is � roughly speaking � the
set of pieces� and is capable of applying moves to itself� Moves and pieces are other types of objects�
A �moves� knows about the piece that is moved and knows both the starting and the �nal position
of the move� Pieces and moves use position objects to represent the position on the board�

Besides those objects that are used for representing and handling the chess game� there are
several helper objects that are necessary for interfacing with the user� For both players there is
a player object� This player objects hides the origin of a move from the chess engine� The player
object is asked to return a move� This call is either forwarded to the user or to the searching strategy
of the computer player� Hence� the same chess engine can be used for all four possible pairings of
human and automatic players�

Another object is used for handling the display of the chess board� If required� this interface can
ask the user to enter a move in standard chess notation� The implementation provides both a plain
ASCII interface and an interface to the X Window system�

The description will start with the class MAIN which contains the basic loop of the game� In
section 	 we discuss the display objects� After that� section deals with the players� Then the
other classes are presented in the following order� move in section
� position in section �� board in
section � and �nally pieces in section ��

	

� Class Main

The class MAIN has a special purpose in Sather� Unless altered by compiler �ags� the routine main
of MAIN is started when a compiled Sather program is invoked by the user� Class names must be
in capital letters�

Although it is possible� it is unusual to create objects of class MAIN� Therefore� attributes should
be declared shared� Shared attributes of a class exist and can be accessed even if no objects are
created� Above that� shared attributes are globally accessible by all objects of a given type�

Here we declare shared variables that can hold pointers to the chess board� the display object�
and to the players� The variable board can hold an object of type BOARD� which is speci�ed by the
implementation of class BOARD� see section � for details� The other four variables can hold objects
of the abstract type 	CHESS DISPLAY or 	PLAYER� respectively� These objects can be created by
classes that are explicitly declared to be subtypes of the abstract types� The di�erence between
classes and abstract types that is visible here by the use of the 	 symbol in the type identi�ers and
will be explained in more detail in section 	�

�class MAIN is

�shared board � BOARD�
�shared display � �CHESS DISPLAY�
�shared white
 black
 player � �PLAYER�

This is a good point to introduce Sather�s ubiquitous basic data types� Upon declaration of basic
types� these are initialized automatically�

� BOOL de�nes value objects which represent boolean values� The initial value is false�

� CHAR de�nes value objects which represent characters� The initial value is �����

� STR de�nes reference objects which represent strings�

� INT de�nes value objects which represent machine�dependent integers� The size is implemen�
tation dependent but must be at least �� bits� The two�s complement representation is used to
represent negative values� Bit operations are supported in addition to numerical operations�

� INTI de�nes reference objects which represent in�nite precision integers�

� FLT� FLTD� FLTX� and FLTDX de�ne value objects which represent �oating point values ac�
cording to the single� double� extended� and double extended representations de�ned by the
IEEE��	���� standard�

� FLTI de�nes reference objects which represent arbitrary precision �oating point objects�

� The parameterized type ARRAYfTg de�nes general purpose array objects of type T� For ex�
ample� ARRAYfSTRg represents an array whose elements are strings of type STR�

� TUP names a set of parameterized value types called �tuples�� one for each number of param�
eters� Each has as many attributes as parameters and they are named �t��� �t��� etc� Each is
declared by the type of the corresponding parameter �e�g� TUPfINT
FLTg has attributes t��INT
and t��FLT�� It de�nes a create routine with an argument corresponding to each attribute�

There are more basic data types� Since these are irrelevant for this Tutorial� the interested reader
is referred to the manual �����

Sather distinguishes between reference objects and value objects� �Other types of objects are
not mentioned in this tutorial�� Experienced C programmers immediately catch the di�erence when

told about the internal representation� Value types are C structs and reference types are pointers
to structs�� Because of that di�erence� reference objects can be referred to from more than one
variable� Value objects can not� The basic types mentioned above �except arrays� are value classes�
Reference objects must be explicitly allocated with new� Variables have the value void until an
object is assigned to them� Void for reference objects is similar to a void pointer in C� Void for value
objects means that a prede�ned value is assigned �� for INT� �� for CHAR� false for BOOL� ��� for
FLT�� Accessing a void value object will always work� Accessing a void reference object usually
will be a fatal error�

There are some more di�erences between value types and reference types but they are beyond
the scope of this tutorial��

��� Routine main

The routine main of MAIN is started when Sather Tutorial Chess is invoked� Similar to C� the
parameter args returns the command line which is used to invoke the program� If main is declared
without parameters� the command line and any arguments are ignored� Since the routine main is
declared to return an integer� this will specify the exit code of the programwhen it �nishes execution�
If main is declared without return parameter� no exit code will be returned�

�main�args�ARRAYfSTRg��INT is
�if �setup�args� then �� � is the boolean NOT
	�� If the given command line arguments are not acceptable� setup

�� returns false� Then the program terminates and returns ���
�return ���
��end�

After invocation� the routine setup analyzes the given command line arguments� It returns true if
the given parameters are acceptable and false otherwise� If acceptable� setup has some side e�ects�
it creates objects for the players� for display� and for board� Later on these objects are accessible
via the variables declared in lines ��	�

If setup had returned true� the board� the display� and the players have been created when
execution reaches line �� where the game starts� The game is essentially a loop �lines ������ in
which the current player is asked to enter�generate a move� The result is then assigned to the
implicitly declared local variable move �line ���� The type of move is derived from the return type
of player�getmove because of ������ The type could also have been speci�ed explicitly as follows�

move � MOVE �� player�getmove�board��
Another way could be to declare the variable �rst and then assign in a second statement�

move � MOVE�
move �� player�getmove�board��

The scope of move is de�ned by the surrounding block� i�e�� the loop statement�
Later we will �nd out that player�getmove is a dispatched call� But let�s skip this for now�

�Furthermore� you are not allowed to have pointers directly to elds of structs�
�Some other di�erence are named here because of completeness�

� Value type must inherit from AVALfTg instead of AREFfTg�

� The writer routine takes di�erent forms for reference and value types� For reference types� it takes a single
argument whose type is the attribute�s type and has no return value� Its e�ect is to modify the object by
setting the value of the attribute� For value types� it takes a single argument whose type is the attribute�s type�
and returns a copy of the object with the attribute set to the specied new value� and whose type is the type of
the object� This di�erence arises because it is not possible to modify value objects once they are constructed�
Study the complex number library in le Library�cpx�sa�

The loop is terminated if the move is a quit� The test occurs in line �� in the until� expression�
which is a call to a special iter� each time until� is called� the given boolean expression is evaluated�
If false� until� �quits� which breaks the immediately surrounding loop� i�e�� terminates the game�

If the program �ow reaches the statement after until� the latter did not terminate the loop� Since
some move has been returned from player�getmove it must be checked and applied to the board� This
is done in line �	 by the routine check n apply move which returns false if the move could not be
applied properly�

After application of the move to the board in line �� the display object is called to update the
view of the board�

Later we will �nd out that the calls to display�update in line �� to display�king check�� in line ��
to display�invalid move in line ��� and to display�close in line � all are dispatched calls� But again�
let�s skip this for now�

��loop
��move ��� player�getmove�board��
��until��move�isquit��
��if board�check n apply move�move� then
��display�update�board�str��
���� Set player to the next player
�	if board�white to play then
�
player �� white�
��else

��player �� black�
��end�
���� Find out whether the king of the current player is in
���� check� If so� have the display talk about the situation�
��if board�my king isin check then
��display�king check�board�white to play��
��end
�	else
�
�� The move was invalid� Display this� By not changing
���� the current player� the same player is asked to try again�
��display�invalid move�
��end�
��end� �� of loop
���� The game is over� since the current player issued a �quit�move��
���� Close the display�
��display�close�
��return ��
�	end�

��� Routine setup

This setup routine gets the command line arguments and returns a BOOL� The return value of setup
is true� i� the parameters have been acceptable�

To start Sather Tutorial Chess use�

SChess �white� black�� �Displ��

white� can be either H for Human Player

or C for Computer Player

�

black� dito

Displ� can be either X for X Interface

or A for ASCII Terminal

The default behavior is SChess H C X

The type of the args parameter� ARRAYfSTRg� is an instantiation of the parameterized basic type
ARRAYfTg� The source code can be found in �le Library�array�sa� An c of type ARRAYfTg stores
elements of type T� If c is not void� the �rst element can be accessed by c���� c�size returns the
number of elements stored in the array� c�c�size��� accesses the last element�

�
setup�args�ARRAYfSTRg��BOOL is
���� set defaults
��ret � BOOL �� true� �� the default is that the parameters are ok
��p ��� �ARRAYfCHARg����
��p��� �� �H�� �� default	 human player
��p��� �� �C�� �� default	 computer player
��d � CHAR �� �X�� �� type of display

First of all� setup creates a few variables that will hold the result of the evaluation of the command
line arguments� A novelty is in line 	�� where p is declared to be a character array and space is
allocated for it� The array is created and initialized by calling the create routine of the class ARRAY�
The � symbols is syntactic sugar for calls of create routines� If the create routine need additional
arguments� they must be supplied behind the � symbol� Here the array has two characters which
can be accessed as p��� and p����

In the following code segment� the arguments get processed in a loop �lines 	��
�� The �rst
argument� args��� is left out� since this contains the name of the running program� Here� loop
termination is implemented in line 	� by the use of the iter upto� which is declared in the INT
library� �The INT class is implemented in the �le Library�int�sa�� The iter upto� returns an integer
value each time it is called� Here the �rst call will return �� the argument speci�es the upper bound�
In the second call upto� will return �� then �� � � � � and �nally args�size��� The next call will quit
the iter and terminate the immediately surrounding loop� i�e�� program execution will continue in
line ���

For analysis of single parameters we use routines� provided by the STR class� The string class�
which is implemented in the �le Library�str�sa o�ers a routine char�int� that returns the character
with the speci�ed number� Since strings are arrays of characters� the �rst character of a string can
be accessed by char���� The character class which is implemented in the �le Library�char�sa has
routines upper and lower that return an upper case or lower case version of the character they are
called upon� The routine head�k� returns the �rst k characters of a string�

��if args�size � � and args�size �� � then
��player cnt � INT �� ��
�	loop i�����upto��args�size����
�
if args�i��size �� � and args�i��head����lower��help
 then
��ret �� false�
��end�
��tmp � CHAR �� args�i��char����upper�
��case tmp
��when �A�
 �X� then �� ASCII� or X�Display if available
��d �� tmp�
��when �H�
 �C� then �� Human or Computer player
��if player cnt � � then

�

�	p�player cnt� �� tmp�
�
player cnt �� player cnt � ��
��else

��ret �� false�
��end�
��else

��ret �� false�
��end�
��end� �� of loop
��elsif args�size �� � then �� not equal
�	�� The parameters are not acceptable�
�
ret �� false�
��else

	��� use defaults� The else could have been omitted�
	�end�

Boolean expressions are evaluated with short�circuit semantics� For an and this means that the
second operand is only evaluated if the �rst operand was true� For an or the second operand is
evaluated if the �rst one was false� Lines 	 and 	� are good examples�

Sather�s case statement �lines ��
	� is used for processing the command line parameters other
than �help�� The variable tmp is evaluated and depending on the result� the �rst matching when
branch is taken� Note� that multiple expressions can be given for comparison in each branch�

Depending on the analysis of the command line arguments either all global objects needed for
the chess program are created in lines ����� or the user is informed about the correct parameter
syntax in lines ����
� The Output class OUT is de�ned in �le Library�out�sa� The idea of using
the class is to create an output object and �add� the things that should be output to this object�
The plus is overloaded so that all basic types can be output in this fashion� As usual� �n indicates
a carriage return�line feed�

	�if ret then
	�display �� DEFAULT��display�d�� �� Creates Display object� Described below�
	�board �� �BOARD�
	�if p��� � �H� then
	��� An object of type HUMAN is created� In contrast to BOARD�
		�� this object has a special create routine� that needs an argument�
	
white �� �HUMAN�board�white to play��
	�else

�white �� �MINMAX�board�white to play��

�end�

�if p��� � �H� then

�black �� �HUMAN��board�white to play��

�else

�black �� �MINMAX��board�white to play��

�end�

	�� the first player is White

player �� white�

�else

���OUT��To start Sather Tutorial Chess use� nn
�
���OUT��args��� ��white� �black�� ��Displ��nn
�
���OUT�� �white� can be either H for Human Playernn
�

�

���OUT�� or C for Computer Playernn
�
���OUT�� �black� ditonn
�
���OUT�� �Displ� can be either X for X Interfacenn
�
���OUT�� or A for ASCII Terminalnn
�
�	end�
�
�� Since setup has a return parameter� a result
���� has to be returned to the caller�
���return ret�
���end� �� of setup
���end� �� of class MAIN

��

� Type �CHESS DISPLAY and Related Classes

�� Type �CHESS DISPLAY

Sather di�erentiates between concrete types and abstract types� In Sather each object has a unique
concrete type that determines the operations that may be performed on it� Classes de�ne concrete
types and give implementations for the operations� Abstract types however� only specify a set of
operations without providing an implementation� This set of operations is called the interface of the
type� An abstract type corresponds to a set of concrete types which obey that interface�

	CHESS DISPLAY is an abstract type� Names of abstract types must be in capital letters� The
leading 	 di�erentiates abstract from concrete types�

In the body of the type declaration �lines ���	�� the operations are given without any implemen�
tation� Formal parameters must have names� However� since these are not used� the names serve
only documentary purposes�

For example� consider the case where you want to have a simple integer variable in all concrete
types�classes that are subtypes of an abstract type� An integer attribute a has two implicit routines�
a reader which has the signature a�INT and a writer with the signature a�new value�INT�� Since the
abstract type hides implementation details from the interface� one has to put both signatures in
the body of the type� This gives room for changing the implementation of a in the classes� �In the
abstract type below� there are however no attributes��

�type �CHESS DISPLAY is

��� Display the state of the board

�redraw�board�ARRAYfCHARg��

�update�board�ARRAYfCHARg��

�showmove�text�STR��

��� Inform player about certain conditions

	invalid move�

thinking�white to move�BOOL��

�king check�white to move�BOOL��

���� Interact with the player

��getmove�white to move�BOOL��MOVE�

��ask pawn xchg�CHAR�

���� Close

��close�

��end� �� of abstract type �CHESS DISPLAY

The string interface �ARRAYfCHARg� to board needs some explanation� The board is represented
by
	 characters� Each character speci�es the piece on a particular position of the board�

� � no piece �P� Pawn
�B� Bishop �Q� Queen
�K� King �R� Rook
�N� Knight

Capital characters represent white pieces� small characters stand for black pieces� The �rst character
in board speci�es board position �a��� the last �h���

All concrete classes that are subtype of 	CHESS DISPLAY must at least have all the above
routines �or implicitly declared routines��

��

�� Class CHESS DISPLAY

This is a concrete type or class which is a subtype of 	CHESS DISPLAY� The subtype relation is
expressed by the � symbol in line �
� This concrete class however will not be used to instantiate
objects� i�e�� there will be no objects of type CHESS DISPLAY� The main purpose of this class is to
declare attributes and routines that are common to other classes of type 	CHESS DISPLAY� which
include the implementation of this class� Hence� whereas 	CHESS DISPLAY is used to express the
subtype relation� the class CHESS DISPLAY is used for code inheritance�

The �rst two routines are included unchanged in ASCII DISPLAY and replaced in X DISPLAY�
A create routine has to be provided if objects of that concrete type are created� SAME denotes

the type of the class in which it appears� As explained in ASCII DISPLAY below� it is a good idea
to return SAME instead of CHESS DISPLAY� if the create routine is meant to be included�

The expression new is used in line �� to allocate space for �reference� objects �and may only
appear in reference classes�� New returns a �reference� object of type SAME� All attributes and
array elements are initialized to void�

��class CHESS DISPLAY � �CHESS DISPLAY is

�	create�SAME is

�
return new�
��end�
��update�board�ARRAYfCHARg� is
��redraw�board��
��end�

The following two routines do not provide a basic implementation� However� for consistency with the
interface required by 	CHESS DISPLAY� they have to exist� When the code of class CHESS DISPLAY
is included� special implementations of redraw and getmove must be provided that replace the dum�
mies given here�

To make sure that these implementations of redraw and getmove are not called erroneously� an
exception is raised by the raise statement �lines �	 and ���� Since redraw does not have a return
parameter� the body of the routine could have been empty� In getmove either a return or a raise
is required because getmove has a return parameter�

��redraw�board�ARRAYfCHARg� is
��raise �INTERFACE� invalid call to redrawnn
�
��end�
��getmove�white to move�BOOL��MOVE is
�	raise �INTERFACE� invalid call to getmovenn
�
�
end�

The following four routines provide code that is meant to be included unchanged in other imple�
mentations of classes that are subtypes of 	CHESS DISPLAY� Each of the four routines makes use
of a private routine showtext which is not completely coded here� Classes that include the imple�
mentation of CHESS DISPLAY must provide complete implementations of showtext�

��invalid move is
��text � STR�
��text �� �ERROR� Invalid move����try again
�
��showtext�text��
��end�

��

��thinking�white to move�BOOL� is
��text � STR�
��if white to move then
�	text �� �White
�
�
else
��text �� �Black
�
��end�
��text �� text � � is thinking ��� please wait ���
�
��showtext�text��
��end� �� of thinking
��king check�white to move�BOOL� is
��text � STR�
��if white to move then
�	text �� ���� White
�
�
else

��text �� ���� Black
�
��end�
��text �� text � � is in check�
�
��showtext�text��
��end� �� of king check
��showmove�text�STR� is
��showtext�text��
��end�

A routine declared private can only be called from code that is in the same class as the routine�

�	private showtext�text�STR� is
�
�� Optional protection against implementation errors
��raise �INTERFACE� invalid call to showtextnn
�
��end�

The following routine ask pawn xchg is included in both ASCII DISPLAY and X DISPLAY without
change� The loop �line
	���� is not terminated by means of an iter� Instead� the termination is
done by the return statement in line
��

In line

 is an example of user input� The class IN is speci�ed in the �le Library�in�sa� Among
others� IN provides a routine get str that accepts a string input from the use via the standard I�O�
device� Calls like CLASS���routine� do not refer to a particular object of the class but call the
routine on a void object�

��ask pawn xchg�CHAR is

��newpiece � STR�
��ret � CHAR�
��loop
���OUT��Do you prefer a QUEEN or a KNIGHT�nn
�
��newpiece �� IN��get str�upper�
�	ret �� newpiece�char����
�
if ret � �Q� or ret � �K� then
��return ret�
	�end�
	��OUT��Please enter QUEEN or KNIGHT�nn

��

	�end�
	�end� �� of ask pawn xchg
	��� The following routine is included unchanged in ASCII DISPLAY
	��� and replaced in X DISPLAY�
	�close is
		end�
	
end� �� of CHESS DISPLAY

�� Class ASCII DISPLAY

This concrete class is a subtype of 	CHESS DISPLAY� It provides an implementation for at least the
signatures given in the speci�cation of 	CHESS DISPLAY�

ASCII DISPLAY inherits the implementation of class CHESS DISPLAY by the include statement�
The include statement is semantically equivalent to the following editor operation� replace the
include statement by the implementation code of the included class� �Includes have to be resolved
recursively��

Without code duplication� ASCII DISPLAY inherits the implementation of the following routines�
at the include statement�

create�SAME

redraw�board�ARRAYfCHARg� ��� is replaced below
update�board�ARRAYfCHARg�
getmove�white to move�BOOL��MOVE ��� is replaced below
invalid move
thinking�white to move�BOOL�
king check�white to move�BOOL�
showmove�text�STR�
private showtext ��� is replaced below
ask pawn xchg�CHAR
close

Only the routines marked with �
�� are replaced by a speci�c implementation� To make the idea
of textual inclusion even more understandable consider the included version of create�

create�SAME�
Although originally written in CHESS DISPLAY� the routine create does not return an object of
type CHESS DISPLAY after being included in ASCII DISPLAY� Instead� create returns an object of
type ASCII DISPLAY�

	�class ASCII DISPLAY � �CHESS DISPLAY is

�include CHESS DISPLAY�

Redrawing the board on the ASCII DISPLAY is an excellent example of two nested loops� both of
which are governed by iters �lines ����� and lines �������

The iter downto� in line � is another iter from the INT class� which can be found in �le Li�
brary�int�sa� As expected� ��downto��� iteratively returns the integer value ��
� � ���� � and with
the next call terminates the surrounding loop� i�e�� the loop from line � to line ���

The iter step� in line �� is just another iter the INT class provides� Beginning at the integer
it is called upon� it will return as many integers as indicated by its �rst argument� The di�erence
between two subsequent return values is given by the second argument� If step� is called for the
ninth time� it will quit and immediately terminate the surrounding loop �line ������� Note� that for
the two nested loops� only the innermost loop is terminated�

�	

�redraw�board�ARRAYfCHARg� is

��OUT��The current board� �small characters � black pieces�nn
�

��OUT�� a b c d e f g h nn
�

��OUT�� ������������������������nn
�

�loop i�����downto�����

��OUT��i�����j
�

	loop j������i��step���
���

�OUT��
�board�j���

�end�
���OUT��j
��i�����nn
�
��end�
���OUT�� ������������������������nn
�
���OUT�� a b c d e f g h nn
�
��end� �� of redraw

The following OUT���ush in line ��
 tells the OUT class� that all characters that are bu�ered should
be output immediately� Normally� the bu�er is only �ushed� if a �n is seen in the character stream�

��getmove�white to move�BOOL��MOVE is
��move � MOVE�
�	move str � STR�
�
loop

���OUT��Please enter a move for
�
���if white to move then
����OUT�� white�
�
���else

����OUT�� black�
�
���end�
����OUT���e�g� d��d� or help�
�
���OUT���ush�
��	move str �� IN��get str�lower�
��
�� The string class provides a routine head�x�� which returns the first
����� x characters of a string�
���if move str�size �� � and move str�head��� � �help
 then
����OUT��Valid moves are�nn
�
����OUT�� ordinary move� d��d�nn
�
����OUT�� king castle � o�onn
�
����OUT�� queen castle � o�o�onn
�
����OUT�� quit � quitnn
�
���else

��	move �� �MOVE�move str
 white to move��
��
�� If the create routine of MOVE could not correctly deal with
����� the given move str move�isok returns false� If a move turns
����� out not to be quit or ok� the player is asked to try again�
���until� �move�isquit or move�isok��
����OUT��ERROR� Invalid syntax����try againnn
�
���end�
���end�
���return move�

�

���end� �� of getmove
��	private showtext�text�STR� is
��
�OUT�text��nn
�
���end�
���end� �� of ASCII DISPLAY

�
 Class X DISPLAY

The following code is kept in a separate Sather code �le �XInterf�sa�� There the class X DISPLAY is
implemented� The implementation is in a di�erent �le� to show how spreading of source code across
several �les works in Sather�

This concrete class is a subtype of 	CHESS DISPLAY� It provides an implementation for at least
the signatures given in the speci�cation of 	CHESS DISPLAY�

Due to the include statement� X DISPLAY inherits the implementation of CHESS DISPLAY in
then same way as ASCII DISPLAY has done before� Without code duplication� X DISPLAY now has

create�SAME ��� is replaced below
redraw�board�ARRAYfCHARg� ���� is replaced below
update�board�ARRAYfCHARg� ��� is replaced below
getmove�white to move�BOOL��MOVE ���� is replaced below
invalid move
thinking�white to move�BOOL�
king check�white to move�BOOL�
showmove�text�STR�
private showtext ���� is replaced below
ask pawn xchg�CHAR
close ��� is replaced below

Only the routines marked with �
�� are replaced by a speci�c implementation� The arrows marked
with indicate those routines that have been replaced in the ASCII DISPLAY explained above�

The implementation of X DISPLAY makes heavy use of the external Chess Window �XCW�
implementation� The Sather compiler is informed about the existence of the external routines in the
external class XCW which is explained on page ���

�class X DISPLAY � �CHESS DISPLAY is
�include CHESS DISPLAY�
�create�SAME is
�XCW��OpenCW��Sather Tutorial Chess
��
�return new�
�end�
	redraw�board�ARRAYfCHARg� is

XCW��RedrawCW�board��
�end�
��update�board�ARRAYfCHARg� is
��XCW��UpdateCW�board��
��end�
��showmove�text�STR� is
��XCW��ShowMoveCW�text��
��end�
��private showtext�text�STR� is
�	XCW��TextCW�text��
�
end�

�

��close is

��XCW��CloseCW�

��end�

The implementation of getmove is slightly more complicated� The external Chess Window imple�
mentation has a routine called GetMoveInCW� This routine has an array of characters as formal
parameter� This array is kept in the variable move chars� To pass the result to the create routine
of class MOVE in line �
� it must be converted into a string� The latter is stored in the variable
move str�

Several library routines are helpful here� In line � routine to val of class ARRAYfTg is used to
set each array element to the given value� The loop in lines ���	� iteratively adds characters of
move char to the string variable move str� The iter elt� returns all array elements in order and quits
at the end of the array� hence terminating the loop� Note� how elegantly both loop control and work
can be combined by use of iters�

��getmove�white to move�BOOL��MOVE is

��text � STR�

��text �� �Please move a
�

��if white to move then

��text �� text�� white

�	else

�
text �� text�� black
�

��end�

��text �� text�� piece�
�

��XCW��TextCW�text��

��move chars ��� �ARRAYfCHARg���� �� create a character array with chars�

��move str ��� �STR� �� create a string�

��move � MOVE�

��move chars�to val�� ��� �� set all chars to � �

��XCW��GetMoveInCW�move chars��

�	�� Construct string out of char array� The iter elt� returns all

�
�� characters of move chars� then quits and terminates the loop�

��loop

��move str �� move str�move chars�elt��

��end�

���� Since XCW		GetMoveInCW is guaranteed to return only

���� syntactically correct moves� no further plausibility tests

���� are required�

��move �� �MOVE�move str�lower
white to move��

��return move�

�	end� �� of getmove

�
end� �� of X DISPLAY

�� External Class XCW

XCW provides an X Window interface for chess� The corresponding C code can be found in XCW�c�
The routines are used by the implementation of X DISPLAY�

��

In this external class de�nition the interface to routines of XCW�c are speci�ed� The main
purpose of this class is to tell the Sather compiler the names and parameters of routines that can
be called� The syntax for a call is XCW���routine call��

��external class XCW is
��OpenCW�title�STR��
��RedrawCW�board�ARRAYfCHARg��
��UpdateCW�board�ARRAYfCHARg��
��GetMoveInCW�move�ARRAYfCHARg��
��ShowMoveCW�move�STR��
��TextCW�text�STR��
��CloseCW�
�	end�

Each external class is typically associated with an object �le compiled from a language like C or
Fortran� External classes do not support subtyping� implementation inheritance� or overloading�
External classes bodies consist of a list of routine de�nitions� Routines with no body specify the
interface for Sather code to call external code� Routines with a body specify the interface for external
code to call Sather code�

Each routine name without a body may only appear once in any external class and the corre�
sponding external object �le must provide a conforming function de�nition� Sather code may call
these external routines using a class call expression of the form EXT CLASS��ext rout���� External
code may refer to an external routine with a body by concatenating the class name� an underscore�
and the routine name �e�g�� EXT CLASS sather rout��

Only a restricted set of types are allowed for the arguments and return values of these calls� The
built�in value types BOOL� CHAR� INT� FLT� FLTD� FLTX� and FLTDX are allowed anywhere and on
each machine have the format supported by the C compiler used to compile Sather for that machine�

Moreover� arrays of the above basic types �except BOOL� can be passed as routine parameters�
When a Sather program calls such a routine� the external routine is passed a pointer into just the
array portion of the object� The external routine may modify the contents of this array portion�
but must not store the pointer� There is no guarantee that the pointer will remain valid after the
external routine returns�

� Class DEFAULT

One of the design decisions of Sather Tutorial Chess has been to provide both an ASCII interface and
an interface to the X Window system� To represent that in the code� there are two implementations
of a class called DEFAULT� The �rst implementation which is in the �le DefaultX�sa� can handle
both an interface to X and to the ASCII terminal�

�class DEFAULT is

�display�d�CHAR���CHESS DISPLAY is
�ret � �CHESS DISPLAY�
�if d � �X� then
��� Create an object of type X DISPLAY and return it�
��� To be more specific	 � is a short�hand for a call to
	�� the the routine create of type that follows the ��

ret �� �X DISPLAY�
�else
��ret �� �ASCII DISPLAY�
��end�
��return ret�

��

��end�
��end�

Depending on the value of d either an object of type X DISPLAY or of type ASCII DISPLAY is
returned to the caller� The call can be found in line �� of the setup routine of class MAIN� see
page ��

If X is not available� the following implementation which is kept in Sather code �le DefaultA�sa�
is used instead�

�class DEFAULT is
�display�d�CHAR���CHESS DISPLAY is
�ret � �CHESS DISPLAY�
��� Since X is not available� create ASCII�Interface only�
�ret �� �ASCII DISPLAY�
�return ret�
	end�

end�

The value of d is ignored here� In either case� an ASCII display is created and returned to the caller�
Since no reference to class X DISPLAY is in the code� the Sather compiler ignores any implementation
of that class� The Make�le makes the dependencies visible�

��

	 Type �PLAYER and Related Classes

��� �PLAYER

Similar to the situation between the abstract type 	CHESS DISPLAY and the classes ASCII DISPLAY
and X DISPLAY� the players are organized with subtyping and include as well� The abstract type
	PLAYER speci�es the common interface�

�type �PLAYER is
�getmove�b�BOARD��MOVE�
�ask pawn xchg�CHAR�
�end�

��� Class PLAYER

This is a class of type 	PLAYER� which will not be used to instantiate� There will be no objects of
type PLAYER� The main purpose of this class is to declare attributes and routines that are common
to other classes of type 	PLAYER� which include the implementation of this class�

The routine getmove does not provide a basic implementation� However� for consistency with the
interface required by 	PLAYER� a dummy implementationmust be given� The routine ask pawn xchg
provides a default implementation�

�class PLAYER � �PLAYER is
�attr iswhite�BOOL�
	create�iswhite�BOOL��SAME is

ret � SAME �� new�
�ret�iswhite �� iswhite�
��return ret�
��end�
��getmove�b�BOARD��MOVE is
��raise �PLAYER�invalid call to getmovenn
�
��end�
��ask pawn xchg�CHAR is

��return �Q��
�	end�
�
end� �� of class PLAYER

This is a good place to look at the list of available class elements� We have already encountered
routine de�nitions and include statements� Iter de�nitions are similar to routine de�nitions� All
class elements can be declared private� Private elements can only be accessed from within the
implementation of the class� Per default� class elements are public� It is worthwhile to take a closer
look at the other class elements�

const Constant attributes are accessible by all objects in a class and may not be assigned to�
Constant attributes are initialized� They are accessible even if no object of the class is created�

shared Shared attributes are variables that are directly accessible to all objects of a given type�
They are accessible even if no object of the class is created� When only a single shared
attribute is de�ned by a clause� it may be provided with an initializing expression which must

��

be a constant expression� If no initialization is given� shared variables are initialized to the
default�

attr Attributes are connected with objects� Each object of a class has an individual set of attribute
variables which re�ect the state of the object� Attributes are only accessible when an object
has been created�

��� Class HUMAN PLAYER

A human player will enter his move via the interface� This is coded in the routine getmove that
replaces the inherited dummy implementation�

If a human player has the chance to exchange one of his pawns with a queen or a knight� the
human player will enter his decision via the interface in routine ask pawn xchg�

��class HUMAN � �PLAYER is
��include PLAYER�
��getmove�b�BOARD��MOVE is
��return MAIN��display�getmove�iswhite��
��end�
��ask pawn xchg�CHAR is
��MAIN��display�update�MAIN��board�str��
��return MAIN��display�ask pawn xchg�
�	end�
�
end� �� of class HUMAN

��
 Class MINMAX

The automatic player is represented by the class MINMAX� The class is called MINMAX� since the
strategy for determining a move is based on a minmax search�

We de�ne a couple of constants �rst� The boolean constants max and min are later on used to
determine whether the minmax search is at a max� or at a min�level� The constant max depth gives
the maximal depth of the search tree� If max depth is �� then ��� all potential next moves� ��� all
reactions of the opponent player and ��� all potential future reactions to these are considered�

The best moves of phase ��� are gathered in a dynamically sized list of type FLIST� as de�ned
in the library �le Library��ist�sa� FLIST will store all moves that will eventually result in the same
board evaluation on level ����

The random number generator declared in line � is used to select an arbitrary move from
the list� MS RANDOM GEN is a class that is de�ned in the Sather Libraries� You �nd it in the �le
Library�rnd�sa The random number object is created and initialized in the create routine in line 	��

��class MINMAX � �PLAYER is
��include PLAYER�
��const max � BOOL �� true�
��const min � BOOL �� �max�
��const max depth � INT �� ��
��attr bestmoves � FLISTfMOVEg�
��shared rnd � MS RANDOM GEN�
��create�iswhite�BOOL��SAME is
�	ret ��� new�
�
ret�iswhite �� iswhite�

��

��ret�bestmoves �� �FLISTfMOVEg�
��rnd �� �MS RANDOM GEN�
��rnd�init�������
��return ret�
��end�

The getmove routine at �rst tells the viewing user that it is �thinking� �line 	
�� Then it uses the
routine minmax� which is described below� to �nd the best move� There might be more than one
move that is considered to be �best�� The list bestmoves stores all of these� If there are no available
moves� i�e�� if the list of bestmoves is empty� then the player is mate � the game is over� This is
checked in line 	�

Otherwise the random number generator returns a value in ��� ��� This is multiplied by the size
of the list of available best moves� Before multiplication� size� which is an integer value� is cast to be
of type FLTD� The product is rounded to the �oor and then cast into an integer value by the routine
int� The result is then used to index into the list of possible best moves�

Before returning the move to the caller� it is displayed in line
��

��getmove�board�BOARD��MOVE is
��ret � MOVE�

��MAIN��display�thinking�board�white to play��
�	if board�white to play then
�
�� minmax returns a value� that is nor needed� However� Sather does
���� require to use the return value somehow�
��dummy ��� minmax�board
max
max depth��

��else

��dummy ��� minmax�board
min
max depth��
��end�
��if bestmoves�size � � then

��return �MOVE��quit

board�white to play��
��else

�	ret �� bestmoves��bestmoves�size��td � rnd�get���oor�int��
�
bestmoves�clear�
��text � STR�

��text �� ret�from�str � ��
 � ret�to�str�
��MAIN��display�showmove�text��
��return ret�
��end�

��end� �� of getmove

The private routine minmax returns a �oating point value� FLT� FLT is speci�ed in the library class
FLT� See �le Library��t�sa for details�

The body of minmax has a good example of nested iter calls� The �rst loop �lines �	�����
considers all pieces on the board of my color� The inner loop �lines ������ then for each of these
pieces considers target positions of potential moves� �It is explained later on� what an ordinary move
is� Just ignore this �ag for the time being��

The move created in line �� is guaranteed to be correct� i�e�� the piece is of the correct color and
the target position is correct with respect to the basic movement rules of chess� The only condition
that is not guaranteed to hold is whether the own king is exposed to be in check after the piece is
moved� This is checked in apply move with own check test� See line ���

��

After a move has been applied successfully� we either consider the possible reactions recursively
�line ���� or evaluate the value of the board in line ���

The depth��rst search requires backtracking� This is done in line ��� by calling board�unapply move�

��private minmax�board�BOARD
minmax�BOOL
depth�INT��FLT is

��move � MOVE�
�	val
bv � FLT�
�
pos � POS�
��if minmax � max then
	�val �� ��������
	�else

	�val �� �������
	�end�
	�loop piece���board�my piece��
	�loop

	�pos ��piece�move��board
PIECE��ordinary��
		move �� �MOVE�piece
pos��
	
move�piece �� piece�
	�if board�apply move with own check test�move� then

�if depth � � then

�bv �� board�board value�

�else

�bv �� minmax�board
�minmax
depth � ���

�end�

��� If this move really is better than previous ones�

��� the list of best moves found so far is erased�

	if depth � max depth and � �minmax � max and bv � val�

or �minmax � min and bv � val��

�then

��bestmoves�clear�
��end�
���� If this move is not worse than previous ones� the move
���� is added to the list of best moves found so far�
��if depth � max depth and � �minmax � max and bv �� val�
��or �minmax � min and bv �� val��
��then

�	val �� bv�
�
bestmoves �� bestmoves�push�move��
��end�
���board�unapply move�
���end�
���end�
���end�
���return val�
���end� �� of minmax
���end� �� of class MINMAX

The following remark will be completely understandable only after the type 	PIECE and the concrete
subtypes have been presented in section �� For reasons of completeness note that line �
 is a
dispatched iter call� Depending on the concrete type of the piece�	PIECE a di�erent iter is called�

��

In Sather ����� dispatched iters are not implemented� The typecase statement can be used to
implement the intended behavior�

typecase piece
when PAWN then pos��piece�move��board
PIECE��ordinary��
when ROOK then pos��piece�move��board
PIECE��ordinary��
when KNIGHT then pos��piece�move��board
PIECE��ordinary��
when BISHOP then pos��piece�move��board
PIECE��ordinary��
when KING then pos��piece�move��board
PIECE��ordinary��
when QUEEN then pos��piece�move��board
PIECE��ordinary��
else
end�

�	

 Class MOVE

A move� i�e�� an object of class MOVE stores several facts� First of all there are the from and the
to position which are objects of class POS� The move knows about it being a castle move� Castle
moves have from and to positions that refer to the movement of the king�

During the process of analyzing a move� further information is gathered and stored in the move
object� This information is necessary to later on un�do a move� The attribute piece stores a pointer
to the piece that is moved by a move� If the move kills an opponent piece� that piece can be reached
by the attribute kills� The fact whether the kings have moved belongs to the status of the board� A
move of a king might change that status� To preserve the fact that a particular move has changed
that status� the king chg �ag has been introduced� Another �ag for un�doing moves is pawn chg� If
a pawn reaches the base line of the opponent� the pawn can be exchanged to a knight or a queen�
The pawn chg �ag indicates such an exchange� Although a board knows about the last move� the
previous move is kept in the move object�

�class MOVE is
�attr from
 to � POS�
�attr isk castle � BOOL�
�attr isq castle � BOOL�
�attr isquit � BOOL�
�attr piece � �PIECE�
	attr kills � �PIECE�

attr king chg � BOOL�
�attr pawn chg � BOOL�
��attr prev move � MOVE�

The MOVE class o�ers two create routines and is thus a good example of overloading� The �rst
version of the create routine� accepts a move in standard chess notation� e�g� �a��a��� For this version
of create it does not matter� whether the board actually has a piece on the from position since this
is checked later on� In contrast to the �rst version of the create routine� the second version deals
with an existing 	PIECE object� Since a piece has an actual position� only the destination position
is required as parameter�

This code of the create routine is written rather fail safe� The given string is checked for
conforming syntax� If there is an error� the from and to position of the move object remain void�

The �rst branch of the if�elsif cascade handles the q�castle �lines ������� The second branch
handles the k�castle �lines ����
� Then the �quit� case is considered� The fourth case �lines ���	��
and �fth case �lines 	���� both deal with ordinary moves� They check for syntax ��p����p���
and test whether p� and p� refer to existing positions of the board� The string class o�ers a substring
routine which has two parameters� It is used for example in line 	�� The �rst argument refers to
the starting position of the substring� the second argument speci�es the number of characters to be
returned� The di�erence between the fourth and the �fth case is that in the latter the the separating
��� can be omitted so that ��p���p��� is accepted�

��create�move�STR
 white to move�BOOL��SAME is

��ret ��� new�
��ret�isk castle �� false�
��ret�isq castle �� false�
��ret�isquit �� false�
��ret�piece �� void�
�	ret�kills �� void�

�

�
ret�king chg �� false�

��ret�pawn chg �� false�

��if void�move� then return ret� end�

��if move�size �� � and move�head��� � �o�o�o
 then

��ret�from �� �POS� ret�to �� �POS�

��ret�isq castle �� true�

��if white to move then

��ret�from�pos �� �e�
� ret�to�pos �� �c�
�

��else

�	ret�from�pos �� �e�
� ret�to�pos �� �c�
�

�
end�

��elsif move�size �� � and move�head��� � �o�o
 then

��ret�from �� �POS� ret�to �� �POS�

��ret�isk castle �� true�

��if white to move then

��ret�from�pos �� �e�
� ret�to�pos �� �g�
�

��else

��ret�from�pos �� �e�
� ret�to�pos �� �g�
�

��end�

�	elsif move�size �� � and move�head��� � �quit
 then

�
ret�isquit �� true�

��elsif move�size �� � then

��str from ��� move�substring��
���

��if POS��check pos�str from� then

��ret�from �� �POS� ret�from�pos �� str from�

��end�

��str to ��� move�substring��
���

��if POS��check pos�str to� then

��ret�to �� �POS� ret�to�pos �� str to�

�	end�

�
elsif move�size ��� then

��str from ��� move�substring��
���

��if POS��check pos�str from� then

��ret�from �� �POS� ret�from�pos �� str from�

��end�

��str to ��� move�substring��
���

��if POS��check pos�str to� then

��ret�to �� �POS� ret�to�pos �� str to�

��end�

�	end�

�
return ret�

��end� �� of first version of create

The routine create is overloaded in class MOVE� i�e�� there are two routines called create that
are distinguished by their list of formal parameters and�or return parameter� Whereas the create
routine given above expects a string and a boolean value as parameters� the second create routine
expects a piece and a �target� position�

�

��create�piece��PIECE
 to�POS��SAME is
��ret ��� new�
��ret�isk castle �� false�
��ret�isq castle �� false�
��ret�isquit �� false�
��ret�from �� �POS�
��ret�from�pos �� piece�position�str�
�	ret�to �� �POS�
�
ret�to�pos �� to�str�
��ret�piece �� void�
	�ret�kills �� void�
	�ret�king chg �� false�
	�ret�pawn chg �� false�
	�if piece�isking then
	�if piece�iswhite then
	�if piece�position � �e�
 and to � �c�
 then
	�ret�isq castle �� true�
		end�
	
if piece�position � �e�
 and to � �g�
 then
	�ret�isk castle �� true�

�end�

�else

�if piece�position � �e�
 and to � �c�
 then

�ret�isq castle �� true�

�end�

�if piece�position � �e�
 and to � �g�
 then

�ret�isk castle �� true�

	end�

end�

�end�
��return ret�
��end� �� of second version of create
��isok�BOOL is
��return �void�from� and �void�to��
��end�
��end� �� of class MOVE

��

� Class POS

The main secret of class POS is the internal addressing scheme for a chess board� From outside�
board positions are addressed in standard chess notation� e�g�� the position in the lower left corner
is called �a��� Internally� POS numbers the positions row�wise from � to
� which eases addressing
computations� The correspondence is shown in the following tables�
External addressing scheme�

column �a� �b� �c� �d� �e� �f� �g� �h� row

a� b� c� d� e� f� g� h� ���
a� b� c� d� e� f� g� h� ���
a
 b
 c
 d
 e
 f
 g
 h
 �
�
a b c d e f g h ��
a	 b	 c	 d	 e	 f	 g	 h	 �	�
a� b� c� d� e� f� g� h� ���
a� b� c� d� e� f� g� h� ���
a� b� c� d� e� f� g� h� ���

Internal addressing scheme�

column � � � � 	
 � row

 � � �
�
�
�
� �
	� 	� � � � � 	

	� 	� 	� 	� 		 	 	
 	�
�� �� �	 � �
 �� �� �� 	
�	 � �
 �� �� �� �� �� �
�
 �� �� �� �� �� �� �� �
� � �� �� �� �� �	 � �
� � � � 	
 � �

POS is capable of returning all board positions which are reachable from an POS object�s position by
moves in various directions� The way� iter is used for this purpose� Possible directions are vertical�
horizontal� diagonal� knight jumps and so on�

POS is declared to be a subtype of 	IS EQfPOSg� The 	IS EQ type is speci�ed in the library �le
Library�abstract�sa� The essential meaning of this subtype declaration is that POS is required to o�er
a routine with the signature is eq�x�SAME��BOOL� The existence of this routine is checked during
compilation� The analogous situation holds for 	STR� This abstract type requires the existence of a
routine str�STR that prints out a reasonable string representation of the object�

In lines ��	 is an example of a rather weird form of constant declaration� All together �� integer
constants are declared� The �rst one �knight� is assigned the value �� the next one �diag up right� is
set to � and so on� This form of constant declaration only works for integers and requires that there
is no type identi�er INT� Both

knight�INT���
 ���
and

knight �� �a�
 ���
result in errors at compile time�

The internal address of a position is stored in the private attribute absolute declared in line ��

�class POS � �IS EQfPOSg
 �STR is
�const knight �� �
 diag up right
 diag up left
 diag dn right
 diag dn left

�horizontal right
 horizontal left
 vertical up
 vertical dn

��

�north two
 south two
 ring�
��� The correct funtionality relies on the fact that diag up right to
��� vertical dn are in that order� The implementation of �PIECE		move� may
	�� depend on it�

private attr absolute � INT�
�create�SAME is

��return new�
��end�

The following routines are used to handle �internal� addresses of board positions�

��private pos�position�INT� is �� write routine
��absolute �� position�
��end�
��pos�INT is �� reader routine
��return absolute�
�	end�
�
private row�p�POS��INT is
��return �p�pos����
��end�
��private column�p�POS��INT is
��return �p�pos����
��end�

The following routines represent the �external� addressing scheme�
We discuss the routine check pos �rst� The routine digit value� which is implemented in the

CHAR library class �see �le Library�char�sa for details� returns the value of a character� For example
����digit value��� Note� that �����int�� and ����int �� ��

The routine pos in line �� is a good example for overloading� For dealing with the internal
addressing scheme� there is already a routine called pos in line ��� That routine takes an INT as its
parameter� In contrast� the following routine� accepts a STR parameter� The compiler determines�
depending on the arguments which are present at a call� which of these routines has to be called�

Because of this mechanism� there cannot be two routines that have the same parameters and are
di�erent in their return types� If such a pair would be allowed� the compiler could not �gure out
for example which type an attribute with an implicit type declaration �e�g� A��routine� is meant to
have�

Routine pos is the �rst occurrence of a pre condition in this tutorial� see line 	�� The pre
condition is a boolean expression that is checked on each call of the routine� If it is evaluated to
true� the routine gets executed� Otherwise� it is a fatal error� Analogously� a post condition could
have been declared� Note� that pre conditions are not checked by default� Checking can be invoked
with the compiler �ag �pre classes� A frequent source of syntx error is that there may not be a
semicolon behind a pre�condition because it is part of the header�

��check pos�position�STR��BOOL is
��str � STR �� position�lower�
��if str�size �� � then
�	return false�
�
end�
��row � INT �� str�char����digit value � ��
��if row � � or row � � then

��

��return false�
��end�
��col � CHAR �� str�char����
��if col � �a� or col � �h� then
��return false�
��end�
�	return true�
�
end� �� of check pos
��pos�position�STR� �� overloaded writer routine
��pre check pos�position�
��is
��str � STR �� position�lower�
��row � INT �� str�char����digit value � ��
��col � CHAR �� str�char����
��case col
��when �a� then absolute �� ��
�	when �b� then absolute �� ��
�
when �c� then absolute �� ��
��when �d� then absolute �� ��
��when �e� then absolute �� ��
��when �f� then absolute �� ��
��when �g� then absolute �� ��
��when �h� then absolute �� ��
��end�
��absolute �� absolute � � � row�
��end� �� of pos�STR�
�	str�STR is
�
ret ��� �STR�
��ret �� ret � column�
��ret �� ret � row�
��return ret�
��end�

The routine row in line
� is overloaded as well� The compiler can di�erentiate between row�INT��INT
of line �� and row�CHAR because of the di�erent number of parameters�

In the statement in line
	 the result of the computation is an integer value� The library class
INT o�ers two ways to convert integers into characters� The di�erence is best shown by means of
an example� Consider the integer value �� The conversion done by digit char returns the character
���� The other conversion is done by a routine called char which has the result that ��char � �����

The routine str�POS� is used internally to map an internal address� which might be di�erent
from self� to standard chess notation�

��row�CHAR is

��return ��absolute��� � ���digit char�
��end�
��column�CHAR is
�	col ��� absolute���
�
case col
��when � then return �a��
	�when � then return �b��

��

	�when � then return �c��
	�when � then return �d��
	�when � then return �e��
	�when � then return �f��
	�when � then return �g��
	�when � then return �h��
		end�
	
end�
	�private str�pos�INT��STR is

�ret ��� �STR�

�col ��� pos � ��

�row ��� �pos � �� � ��

�case col

�when � then ret �� �a
�

�when � then ret �� �b
�

�when � then ret �� �c
�

	when � then ret �� �d
�

when � then ret �� �e
�

�when � then ret �� �f
�
��when � then ret �� �g
�
��when � then ret �� �h
�
��end�
��ret �� ret � row�
��return ret�
��end� �� of str�INT�

The following routines return neighboring addresses in standard chess notation� If there is no existing
neighboring position for a given direction� the current address is returned�

��east�STR is

�	ret ��� absolute � ��
�
if ret�� �� absolute�� then ret �� absolute� end�
��return str�ret��
���end�
���west�STR is

���ret ��� absolute � ��
���if ret�� �� absolute�� then ret �� absolute� end�
���return str�ret��
���end�
���north�STR is
��	ret ��� absolute � ��
��
if ret � �� then ret �� absolute� end�
���return str�ret��
���end�
���south�STR is

���ret ��� absolute � ��
���if ret � � then ret �� absolute� end�
���return str�ret��
���end�

��

In addition to routines that return the address of neighboring positions in horizontal and vertical
directions� there are four routines for neighboring positions on the diagonal axes�

���northeast�STR is
��	err � BOOL �� false�
��
ret ��� absolute � ��
���if ret � �� then ret �� absolute� err �� true� end�
���if �err then
���ret �� absolute � ��
���if ret�� �� absolute�� then ret �� absolute� err �� true� end�
���end�
���if �err then
���ret �� absolute � ��
���end�
��	return str�ret��
��
end�
���northwest�STR is
���err � BOOL �� false�
���ret ��� absolute � ��
���if ret � �� then ret �� absolute� err �� true� end�
���if �err then
���ret �� absolute � ��
���if ret�� �� absolute�� then ret �� absolute� err �� true� end�
���end�
��	if �err then
��
ret �� absolute � ��
���end�
���return str�ret��
���end�
���southeast�STR is
���err � BOOL �� false�
���ret ��� absolute � ��
���if ret � � then ret �� absolute� err �� true� end�
���if �err then
��	ret �� absolute � ��
��
if ret�� �� absolute�� then ret �� absolute� err �� true� end�
���end�
���if �err then
���ret �� absolute � ��
���end�
���return str�ret��
���end�
���southwest�STR is
���err � BOOL �� false�
��	ret ��� absolute � ��
��
if ret � � then ret �� absolute� err �� true� end�
���if �err then
���ret �� absolute � ��
���if ret�� �� absolute�� then ret �� absolute� err �� true� end�
���end�
���if �err then

��

���ret �� absolute � ��
���end�
���return str�ret��

��	end�

Here are some equality tests� The �rst one is required because POS has been declared to be a subtype
of 	IS EQfPOSg� The Sather compiler considers a boolean expression p�q to be syntactic sugar for
the routine call p�is eq�q�� Analogously� p��q is taken to be p�is neq�q�� If these expressions are
found somewhere in the code� the corresponding routine has to be provided�

��
is eq�p�SAME��BOOL is
���return �absolute � p�pos��

�	�end�
�	�is neq�p�STR��BOOL is

�	�return �is eq�p��
�	�end�

�	�is eq�p�STR��BOOL is
�	�tmp ��� �POS�
�	�tmp�pos �� p�

�		return is eq�tmp��
�	
end�

The iter way� returns all reachable positions on an otherwise empty board in the speci�ed direction�

Since this is the �rst occurrence of an iter declaration� some explanations are appropriate� Iters
are declared similar to routines� The di�erence is that their name has to end with an exclamation
point �!�� Iters may only be called from within loop statements�

For each textual iter call� en execution state is maintained� When a loop is entered� the execution
state of all iter calls is initialized� When an iter is called for the �rst time� the expressions for self
and for each argument are evaluated��

When the iter is called� it executes the statements in its body in order� If it executes a yield
statement� control and a value are returned to the caller� Subsequent calls to the iter resume
execution with the statement following the yield statement� If an iter executes a quit statement or
reaches the end of its body� control passes immediately to the end of the innermost enclosing loop
statement in the caller and no value is returned from the iter�

The code in lines ������� is evaluated only at the time of the �rst invocation� If there are two
di�erent textual calls of way�� each one has a separate state and each will execute these code lines
at the �rst invocation�

In line ��� the starting position of the stepping is initialized� Note that this assignment is actually
a call of the private routine pos�INT�� The compiler considers this expression to be equivalent to
stepped�pos�absolute��

The loop in lines ��	��	� is the main part of the iter� From inside the loop potential positions
are returned to the caller� If no more positions are available� then a �quit� ends this loop� ends the
iter and ends the loop surrounding the call to the iter�

Since most branches of the case statement are similar only the �rst case �lines ��
����� is
explained in some detail� Later we will point out the di�erences of the branches for knight� pawn�
and king moves� From the current position which is kept in stepped� the northeast neighbor is

�An exception are arguments which have a trailing exclamation mark themselves� These are evaluated for every
call of the iter� But since this kind of argument is not used in Sather Tutorial Chess� the reader is referred to the
Sather Manual ���� for further discussion�

��

checked� If this position is still on the board it is returned to the caller� This is done in line ��� by
the yield statement�

After the caller has processed the new position� the next call to the iter will resume after line ����
The status is still available� i�e�� stepped keeps the position� which has been returned previously� Since
the only statement of the loop is this case� the iter will next re�execute the case and automatically
re�enter this branch� �Note� the direction is not re�evaluated and remains unchanged��

If the end of the board has been reached by moving into the northeast direction� the iter cannot
return further valid position� Hence� the iter quits in the else branch �line ��	 or ��
�� It does not
return any position� and immediately terminates the loop in the caller�

�	�way��direction�INT��POS is
�
�ret
 stepped � POS�
�
�stepped �� �POS�
�
�stepped�pos �� absolute� �� starting position
�
�count � INT �� ��
�
�loop
�
�case direction
�
�when diag up right then
�
	if stepped�column � �h� then
�

if stepped�row � ��� then
�
�stepped�pos �� stepped�northeast�
���ret �� �POS�
���ret�pos �� stepped�pos�
���yield ret�
���else
���quit�
���end�
���else
��	quit�
��
end�
���when diag up left then
���if stepped�column � �a� then
���if stepped�row � ��� then
���stepped�pos �� stepped�southwest�
���ret �� �POS�
���ret�pos �� stepped�pos�
���yield ret�
���else
��	quit�
��
end�
���else
���quit�
���end�
���when diag dn right then
���if stepped�column � �h� then
���if stepped�row � ��� then
���stepped�pos �� stepped�southeast�
���ret �� �POS�
��	ret�pos �� stepped�pos�
��
yield ret�
���else

�	

���quit�
���end�
���else
���quit�
���end�
���when diag dn left then
���if stepped�column � �a� then
��	if stepped�row � ��� then
��
stepped�pos �� stepped�northwest�
���ret �� �POS�
���ret�pos �� stepped�pos�
���yield ret�
���else
���quit�
���end�
���else
���quit�
��	end�
��
when vertical up then
���if stepped�row � ��� then
���stepped�pos �� stepped�north�
���ret �� �POS�
���ret�pos �� stepped�pos�
���yield ret�
���else
���quit�
���end�
��	when vertical dn then
��
if stepped�row � ��� then
���stepped�pos �� stepped�south�
���ret �� �POS�
���ret�pos �� stepped�pos�
���yield ret�
���else
���quit�
���end�
���when horizontal right then
��	if stepped�column � �h� then
��
stepped�pos �� stepped�east�
���ret �� �POS�
���ret�pos �� stepped�pos�
���yield ret�
���else
���quit�
���end�
���when horizontal left then
���if stepped�column � �a� then
��	stepped�pos �� stepped�west�
��
ret �� �POS�
���ret�pos �� stepped�pos�
�	�yield ret�

�

�	�else
�	�quit�
�	�end� �� way� will be continued ���

The branch of the case statement that computes the new position of a knight in lines ��	���
 is
somewhat di�erent� Instead of using a current position �called stepped�� the new positions are always
computed relative to the starting position�

A white pawn �case north two� lines �������� may move one or to steps to the north depending
on the staring row� A black pawn �case south two� lines �������� may move one or to steps to the
south depending on the staring row� A king �case ring� lines �����	�� can reach all � positions on
the ring around his staring position�

�	�when knight then
�	�ret �� �POS�
�	�case count
�		when � then ret�pos �� absolute � ��
�	
when � then ret�pos �� absolute � ��
�	�when � then ret�pos �� absolute � ���
�
�when � then ret�pos �� absolute � ���
�
�when � then ret�pos �� absolute � ���
�
�when � then ret�pos �� absolute � ���
�
�when � then ret�pos �� absolute � ���
�
�when � then ret�pos �� absolute � ���
�
�else

�
�quit�
�
	end�
�

count �� count � ��
�
�if ret�pos �� �� and ret�pos �� �
���and column�ret� �� column�self� � �
���and column�self� � � �� column�ret�
���and row�ret� �� row�self� � �
���and row�self� � � �� row�ret�
���then

���yield ret�
���end�
��	when north two then
��
if count � � and stepped �� stepped�north then
���stepped�pos �� stepped�north�
���ret �� �POS�
���ret�pos �� stepped�pos�
���count �� count � ��
���yield ret�
���if row �� ��� then quit� end�
���else

���quit�
��	end�
��
when south two then
���if count � � and stepped �� stepped�south then
���stepped�pos �� stepped�south�
���ret �� �POS�

�

���ret�pos �� stepped�pos�
���count �� count � ��
���yield ret�
���if row �� ��� then quit� end�
���else
��	quit�
��
end�
���when ring then
���ret �� �POS�
���case count
���when � then ret�pos �� north�
���when � then ret�pos �� south�
���when � then ret�pos �� east�
���when � then ret�pos �� west�
���when � then ret�pos �� northeast�
��	when � then ret�pos �� northwest�
��
when � then ret�pos �� southeast�
���when � then ret�pos �� southwest�
���else
���quit�
���end�
���count �� count � ��
���if ret�pos �� �� and ret�pos �� �
���and ret�pos �� absolute
���and column�ret� �� column�self� � �
��	and column�self� � � �� column�ret�
��
and row�ret� �� row�self� � �
���and row�self� � � �� row�ret�
���then
���yield ret�
���end�
���else
����� The else case was put in for reasons of
����� fail safe program development�
���raise �POS�way� invalid casenn
�
��	end� �� of case
��
end� �� of loop
���end� �� of way�
���end� �� of class POS

��

� Class BOARD

The two array whitexpieces and blackpieces store the pieces in the game� A piece is an object of
type 	PIECE which is explained below� Since both arrays are private� it is a secret of the board
implementation in which way pieces are stored�

The board stores information about which color is to play �white to play� and about the last
move �last move�� Moreover� the board knows whether the white or black king has been moved�
This information is necessary� because castle moves are only allowed if the king has not been moved
before�

�class BOARD is

�private attr whitepieces � ARRAYf�PIECEg�
�private attr blackpieces � ARRAYf�PIECEg�
�attr white to play � BOOL�
�attr last move � MOVE�
�attr white K moved � BOOL�
	attr black K moved � BOOL�

create�SAME is

�ret���new�
��ret�set up�
��return ret�
��end�

The private routine set up initializes the board� �
 white and �
 black pieces are placed onto the
board� the �rst player is set to be white� both kings have not moved�

��private set up is
��position ��� �POS�
��white to play �� true�
���� set up white pieces
�	whitepieces �� ������
�
position�pos �� �a�
�
��loop i�����upto�����
��whitepieces�i� �� �PAWN�position
PIECE��white��
��position�pos �� position�east�
��end�
��position�pos �� �a�
� whitepieces��� �� �ROOK�position
PIECE��white��
��position�pos �� �b�
� whitepieces��� �� �KNIGHT�position
PIECE��white��
��position�pos �� �c�
� whitepieces���� �� �BISHOP�position
PIECE��white��
��position�pos �� �d�
� whitepieces���� �� �QUEEN�position
PIECE��white��
�	position�pos �� �e�
� whitepieces���� �� �KING�position
PIECE��white��
�
position�pos �� �f�
� whitepieces���� �� �BISHOP�position
PIECE��white��
��position�pos �� �g�
� whitepieces���� �� �KNIGHT�position
PIECE��white��
��position�pos �� �h�
� whitepieces���� �� �ROOK�position
PIECE��white��
���� set up black pieces
��blackpieces �� ������
��position�pos �� �a�
�
��loop i�����upto�����
��blackpieces�i� �� �PAWN�position
PIECE��black��
��position�pos �� position�east�

��

�	end�
�
position�pos �� �a�
� blackpieces��� �� �ROOK�position
PIECE��black��
��position�pos �� �b�
� blackpieces��� �� �KNIGHT�position
PIECE��black��
��position�pos �� �c�
� blackpieces���� �� �BISHOP�position
PIECE��black��
��position�pos �� �d�
� blackpieces���� �� �QUEEN�position
PIECE��black��
��position�pos �� �e�
� blackpieces���� �� �KING�position
PIECE��black��
��position�pos �� �f�
� blackpieces���� �� �BISHOP�position
PIECE��black��
��position�pos �� �g�
� blackpieces���� �� �KNIGHT�position
PIECE��black��
��position�pos �� �h�
� blackpieces���� �� �ROOK�position
PIECE��black��
��white K moved �� false�
�	black K moved �� false�
�
last move �� void�
��MAIN��display�redraw�self�str��
��end�

Several iters are needed to return all pieces on the board that ful�ll a certain condition�
The �rst iter whitepiece� returns all white pieces� which are still alive� For this purpose� it

makes use of the iter elt� in line �� The iter is provided by the ARRAY library class �see �le
Library�array�sa�� If elt� yields an element� this element is yield to the caller if it ful�lls the conditions�
However� if elt� quits� this loop is terminated as well� no element is returned to the caller�

��private whitepiece���PIECE is
��loop p ��� whitepieces�elt��
��if �void�p� and p�alive then yield p� end�
��end�
��end�
��private blackpiece���PIECE is
�	loop
�
p ��� blackpieces�elt��
��if �void�p� and p�alive then yield p� end�
��end�
��end�

The nesting depth of iters can be increased even further� as shown in my piece below� Within
whitepiece� the iter elt� is used� An element found by elt� is returned via whitepiece� and then
returned to the caller of my piece�� Similarly� a quit of elt�� induces a quit of whitepiece�� which in
turn results in a quit of my piece�� The latter terminates the loop� that must surround every call of
my piece� in the caller�

��my piece���PIECE is
��if white to play then
��loop
��yield whitepiece��
��end�
�	else
�
loop
��yield blackpiece��
	�end�
	�end�
	�end�

��

	�private opp piece���PIECE is
	�if white to play then
	�loop

	�yield blackpiece��
		end�
	
else

	�loop

�yield whitepiece��

�end�

�end�

�end�

�piece���PIECE is

�loop

�yield whitepiece��

	end�

loop

�yield blackpiece��
��end�
��end�

One of the secrets of the BOARD implementation is the way pieces are stored� For internal purposes
it is necessary� to �nd out at which position of the arrays a particular piece is stored�

In the private routine index we use a post condition� To assure that the piece p is �dead or
alive� on board we test whether the return value result is set appropriately� i�e�� whether result is
between � and � upon return� Note� that there may not be a semicolon behind a post condition�
The conditions get checked before the routine returns� To access the value that will be returned�
Sather provides the prede�ned results expression� The type of results is determined by the result
type of the routine� If checking is desired� it has to be activated with the compiler flag �post

classes��
The loop �line �����	� is an excellent example of a loop that is controlled by multiple iters� The

�rst two iters are de�ned in the ARRAY library class� The iter ind� �line ��� returns the existing
indexes of array� As explained above� elt� �line ��� returns the corresponding array elements� For each
iteration of the loop the following condition holds� whitepieces�i� � q� Both iters can be expected to
yield the same number of times� If the end of the array is encountered� the call to ind� will terminate
the loop" elt� will not be called�

However� if the desired piece is found� it is not necessary� to continue the search� To terminate
the loop immediately� the prede�ned iter break� is called in line ���� which will always execute a
quit statement�

The same search is implemented di�erently in the else branch �line ��
�� Here we use the library
routine index of provided in the ARRAY class� �See �le Library�array�sa for details��

��private index�p��PIECE��INT
��post result�is bet��
���
��is

��ret � INT �� ���
��if p�iswhite then
�	loop

�
i��� whitepieces�ind��
��q��� whitepieces�elt��
���if p�position � q�position then

	�

���ret �� i�
���break��
���end�
���end� �� of loop
���else

���ret �� blackpieces�index of�p��
��	end�
��
return ret�
���end� �� private index

To check whether there is a piece on a given position of the board the following routines are provided�

���has piece�pos�POS��BOOL is
���ret � BOOL �� false�
���loop p���piece��
���if p�position � pos then ret �� true� end�
���end�
���return ret�
���end�
��	has white piece�pos�POS��BOOL is
��
ret � BOOL �� false�
���loop p���whitepiece��
���if p�position � pos then ret �� true� end�
���end�
���return ret�
���end�
���has black piece�pos�POS��BOOL is
���ret � BOOL �� false�
���loop p���blackpiece��
��	if p�position � pos then ret �� true� end�
��
end�
���return ret�
���end�
���has my piece�pos�POS��BOOL is
���if white to play then
���return has white piece�pos��
���else
���return has black piece�pos��
���end�
��	end�

The following two routines return a pointer to a piece at a given position of the board� The routine
comes in two versions� The latter can process POS arguments by reducing them to STR parameters
which are then processed by the �rst version�

��
piece�str�STR���PIECE is
���ret � �PIECE�
���position ��� �POS�
���position�pos �� str�
���loop p���piece��

	�

���if p�position � position then ret �� p� end�
���end�
���return ret�
���end�
��	piece�p�POS���PIECE is
��
return piece�p�str��
���end�

For interface purposes� a board can represent the status of all pieces in an ASCII representation�
The character array is used to transmit the board situation to the ASCII DISPLAY and via the
X DISPLAY to the external class XCW�

���str�ARRAYfCHARg is
���ret����ARRAYfCHARg�����
���loop

���ret���upto������ �� � ��
���end�
���ret���� �� �n���
���loop p���self�whitepiece��
��	if �void�p� and p�alive then
��
ret�p�position�pos� �� p� g�
���end�
���end�
���loop p���self�blackpiece��
���if �void�p� and p�alive then
���ret�p�position�pos� �� p� g�lower�
���end�
���end�
���return ret�
��	end�

After these helper routines and iters have been implemented� the central routines are presented�
The routine pos in check tests whether a given position could be reached in the next move by the
opponent�

In this routine there is again a good example of nested iter calls� The �rst loop �line ��������
considers all pieces of the opponent player� The inner loop �line �������� then for each of these
pieces considers target positions of potential moves� �Is is explained later on� what a move is if the
�ag for check test is set� Just ignore the �ag for the time being��

The call piece�move��� in line ��	is a dispatched iter� See page �	 for an alternative implemen�
tation that works with earlier releases of the Sather ��� compiler�

��
pos in check�p�POS��BOOL is
���ret � BOOL�
�	�pos � POS�
�	�ret �� false�
�	�loop piece���opp piece��
�	�loop
�	�pos ��piece�move��self
 PIECE��for check test��
�	�if p�pos then
�	�ret �� true�

	�

�		break��
�	
end�
�	�end�
�
�if ret then break�� end�
�
�end�
�
�return ret�
�
�end� �� of pos in check

The routine my king isin check returns true if the king of the current color �white to play� is in check�
After an otherwise valid move of a piece� the own king is not allowed to be exposed and to be in
check�

�
�my king isin check�BOOL is
�
�piece � �PIECE�
�
�loop

�
	piece �� my piece��
�

until��piece�isking��
�
�end�
���return pos in check�piece�position��
���end� �� of my king isin check

Boolean expressions are evaluated with a short�circuit semantics� For an and this means that the
second operand is only evaluated if the �rst operand was true� For an or the second operand is
evaluated only if the �rst one was false� In routine check n apply move we make use of this to ensure
that a move is applied to a board only if it is valid�

Routine move valid so far checks whether a given move is valid with respect to the current state
of the board� The only circumstance which is not checked is whether the move would expose the
own king to be in check�

���check n apply move�move�MOVE��BOOL is
���return �move valid so far�move� and apply move with own check test�move���
���end� �� of check n apply move
���private move valid so far�move�MOVE��BOOL
���pre �move�isquit
��	is
��
ret � BOOL �� false�
����� A valid move must start at a position where one of my pieces is����
���if has my piece�move�from� then
���p���piece�move�from��
����� ��� and it must be a valid move with respect to the mobility of the
����� piece at the current state of the board�
���if p�valid move�move�to
self� then
���ret �� true�
����� Since the move seems to be valid� the moving piece is stored
��	�� in the move object� That eases future access to the moving piece
��
�� and allows for un�doing of moves�
���move�piece �� p�
���end�
���end�
���return ret�

	�

���end� �� of move valif

The move is applied to the board in routine apply move with own check test� The routine returns
false� and leaves the state of the board unchanged� if an otherwise valid move would expose the own
king to be in check�

First of all in lines �����	� it is checked whether the move would kill an opponent piece� The
normal circumstances for this are that the moving piece moves to a position that is occupied by an
opponent piece� Chess has one special rule due to which a piece can be killed without moving to its
former position� It is called an �en passant� move� This special case can only occur if two pawns
are involved� My pawn can kill an opponent pawn that sits immediately east or west of my pawn�
if the other pawn has done an initial double move in the immediately preceding move� �That�s why
the last move is considered to be part of the state of a board��� If these conditions hold� my pawn
can move diagonal so that his new position is �behind� the opponent pawn�

Special action is required in case of castle moves� A castle move works as follows� If the king
and a rook both are in their initial positions� if there is no piece in between them� if the king has
not been moved in the game� and if the two positions next to the king in the direction toward the
rook are not in check� then the king moves two positions towards the rook and then the rook jumps
over the king and is put immediately next to the king� A castle move is a k�castle� if the king moves
to the rook whose initial position is closer� Otherwise it is called q�castle� because due to the initial
queen position� the distance to the rook is larger� Chess only allows castle moves� if the king has not
been moved earlier in the game� The board keeps track of king moves in the two �ags white K moved
and black K moved� To enable un�doing of moves� a move knows whether it causes a change of a
K moved �ag� See lines �	��
� for the K moved �ags and lines �
����
 for the implementation of
castle moves�

Another special rule in chess allows to exchange a pawn against a queen or a knight when it
reaches the base line of the opponent� Theoretically� a player could have � queens� This rule is
implemented in lines �	��
��

���apply move with own check test�move�MOVE��BOOL
���pre �move�isquit and move valid so far�move� and �void�move�piece�
���is

��	ret � BOOL �� true� �� Will be false if the move is invalid due to
��
�� exposure of own �king in chess�
���p��PIECE��move�piece� �� to be moved
���r��PIECE� �� may be killed
����� Case �	 Kill with normal move
���r �� piece�move�to�� �� If it exists� it can only be opponent piece�
����� Otherwise the move would not be valid�
����� Case �	 En Passant�
���if void�r� and �void�last move� and p�ispawn
���and �void�last move�piece� and last move�piece�ispawn
��	and � last move�to � p�position�east
��
or last move�to � p�position�west�
���then

���if � p�iswhite and white to play
���and p�position�row � ��� and last move�from�row � ����
���or � �p�iswhite and �white to play
���and p�position�row � ��� and last move�from�row � ����
���then

���r �� last move�piece�

		

���end�
��	end�
��
if �void�r� then
���move�kills �� r�
���r�alive �� false�
���end�
���p�update position�move�to��
����� Deal with king moves�
���if p�isking then
���if white to play and �white K moved then
���white K moved �� true�
��	move�king chg �� true�
��
end�
���if �white to play and �black K moved then
���black K moved �� true�
���move�king chg �� true�
���end�
���end�
����� Deal with pawn exchange�
���if �p�ispawn and p�iswhite and white to play and p�position�row�����
���or �p�ispawn and �p�iswhite and �white to play and p�position�row�����
��	then
��
case MAIN��player�ask pawn xchg
���when �Q� then
���whitepieces�index�p�� �� �QUEEN�p�position
PIECE��white��
���when �K� then
���whitepieces�index�p�� �� �KNIGHT�p�position
PIECE��white��
���else
����� Do it fails safe�
���raise �BOARD�apply move�pawn exchange invalid case entrynn

���end�
��	move�pawn chg �� true�
��
end�
����� Deal with castles�
�	�if move�isq castle then
�	�if white to play then
�	�rook ��� piece��a�
��
�	�rook�update position��d�
��
�	�else
�	�rook ��� piece��a�
��
�	�rook�update position��d�
��
�		end�
�	
elsif move�isk castle then
�	�if white to play then
�
�rook ��� piece��h�
��
�
�rook�update position��f�
��
�
�else
�
�rook ��� piece��h�
��
�
�rook�update position��f�
��
�
�end�
�
�end�

	

�
	move�prev move �� last move�
�

last move �� move�
�
��� Check whether my king is in check after application of the move
���if my king isin check then
����� Although otherwise correct this is an invalid move�
����� The original state of the board is reconstructed by calling
����� unapply move�
���ret �� false�
���unapply move�
���end�
��	white to play �� �white to play�
��
return ret�
���end� �� of apply move

The routine unapply move uses the information that is stored in last move to replay the move� i�e��
restore the board to the state it had before the application of that move� It depends on the fact
that last move is a valid move except that the king might be in check afterwards�

���unapply move is

����� Restore killed opponent piece
���if �void�last move�kills� then
���last move�kills�alive �� true�
���end�
����� Restore pawn exchange
���if last move�pawn chg then
��	newpiece ��� piece�last move�piece�position��
��
whitepieces�index�newpiece�� �� last move�piece�
���end�
����� Restore move
���last move�piece�update position�last move�from��
���if last move�king chg then
���if white to play then
���white K moved �� false�
���else

���black K moved �� false�
��	end�
��
end�
����� Restore castle
���if last move�isq castle then
���if white to play then
���rook ��� piece��d�
��
���rook�update position��a�
��
���else

���rook ��� piece��d�
��
���rook�update position��a�
��
��	end�
��
elsif last move�isk castle then
���if white to play then
���rook ��� piece��f�
��
���rook�update position��h�
��

	

���else
���rook ��� piece��f�
��
���rook�update position��h�
��
���end�
���end�
��	last move �� last move�prev move�
��
white to play �� �white to play�
���end� �� of unapply move

For the automatic player� there must be a way to assign a worth to a board� This is done as follows�
Compute the sum of the worths of all white pieces on the board� Similar� compute the worth of all
black pieces� The value of the board is the ratio of the two values�

The routine board value returns a �oating point value� FLT� which is speci�ed in the FLT library�
�See �le Library��t�sa for details��

More complex evaluation functions are known and can be used to replace the simple function
board value� For example� the degree of freedom the pieces have in their movement is an interesting
aspect that might be considered in the evaluation function�

���board value�FLT is
���white value � INT �� ��
���black value � INT �� ��
���loop p��� whitepiece��
���white value �� white value � p�worth�
���end�
���loop p��� blackpiece��
��	black value �� black value � p�worth�
��
end�
���return white value��t�black value��t�
���end� �� of board value
���end� �� of class BOARD

	�

 Type �PIECE and Related Classes

For the pieces the same structure of abstract and concrete types is used that has been used before
for players and displays� The abstract type 	PIECE speci�es the common interface� The concrete
type or class PIECE is not used to create objects� but provides common implementations that are
inherited by the real pieces �i�e�� by classes PAWN� ROOK� KNIGHT� BISHOP� QUEEN� and KING��

��� Type �PIECE

�type �PIECE is
�alive�BOOL�
�alive�set�BOOL��
�worth�INT�
�iswhite�BOOL�
�position�POS�
	valid move�to�POS
board�BOARD��BOOL�

update position�position�POS��
�update position�position�STR��
��move��b�BOARD
to piece�BOOL��POS�
�� g�CHAR�
��ispawn � BOOL�
��isrook � BOOL�
��isking � BOOL�
��end� �� of type �PIECE

��� Class PIECE

��class PIECE � �PIECE is
�	�� General constants that are used throughout the descendants of �PIECE
�
const white � BOOL �� true�
��const black � BOOL �� �white�
��const ordinary � BOOL �� false�
��const for check test � BOOL �� true� �� alters behavior of move�
���� Attributes that are specific to a PIECE
��attr alive � BOOL�
��attr iswhite � BOOL�
��attr position � POS�
���� Constants that are specific to a PIECE
�	const worth � INT �� ��
�
const g � CHAR �� � ��
��const ispawn � BOOL �� false�
��const isking � BOOL �� false�
��const isrook � BOOL �� false�
��create�pos�POS
iswhite�BOOL��SAME is
��ret ��� new�
��ret�position �� �POS�
��ret�position�pos �� pos�str�
��ret�iswhite �� iswhite�

	�

�	ret�alive �� true�

�
return ret�

��end�

��private same color�b�BOARD
p�POS��BOOL

��pre b�has piece�p�

��is

��white piece on pos �BOOL�� b�has white piece�p��

��if � iswhite and white piece on pos�

��or ��iswhite and �white piece on pos� then

��return true�

�	else

�
return false�

��end�

��end�

The following routine valid move checks whether a given move is valid for a given board situation
This is done as follows� For the from position� all valid moves are generated by calling the iter move�
in line �� It is then checked� whether the given move is in the returned set of valid moves�

��valid move�to�POS
board�BOARD��BOOL is

��ret � BOOL �� false�

��loop valid to���move��board
ordinary��

��if to�valid to then ret��true� break�� end�

��end�

��return ret�

�	end�

�
update position�p�POS� is

��position�pos��p�str�

��end�

��update position�pos�STR� is

��position�pos��pos�

��end�

��move��b�BOARD
mode�BOOL��POS is

��raise �PIECE�dummy code �move�� called
�

��end�

�	end� �� of class PIECE

��� Class BISHOP

First� constants are rede�ned that have values which di�er from those given in the PIECE imple�
mentation� The iter move� returns all valid moves given a board with other pieces� The outer
loop �lines ���
� will check the following directions� diag up right� diag up left� diag dn right� and
diag dn left� In the inner loop �lines �
��� all positions are computed a piece could reach in a
direction set by the outer loop� A position returned by way� in line �
 is valid as long as there is no
other piece occupying that position�

If there is another piece on the position returned by way� this cannot be a piece of the same
color� However� for a check�test� the occupied position is checked by the moving piece�

	�

�
class BISHOP � �PIECE is
��include PIECE�
	��� Constants that are different from PIECE implementation	
	�const worth � INT �� ��
	�const g � CHAR �� �B��
	�move��b�BOARD
mode�BOOL��POS is
	�to � POS�
	�loop direction���POS��diag up right�upto��POS��diag dn left��
	�loop to��position�way��direction��
		if �b�has piece�to� then
	
yield to�
	�elsif same color�b
to� and mode�ordinary then

�break��

�else

�yield to�

�break�

�end�

�end�

�end�

	end� �� of move�

end� �� of class BISHOP

��
 Class ROOK

The implementation of class ROOK is very similar to the code of BISHOP�

�class ROOK � �PIECE is
��include PIECE�
���� Constants that are different from PIECE implementation	
��const worth � INT �� ��
��const g � CHAR �� �R��
��const isrook � BOOL �� true�
��move��b�BOARD
mode�BOOL��POS is
���� returns all valid moves given a board with other pieces
�	to � POS�
�
�� This loop will check the following directions	
���� horizontal right� horizontal left� vertical up� vertical dn
���loop direction���POS��horizontal right�upto��POS��vertical dn��
���loop to��position�way��direction��
���if �b�has piece�to� then
���yield to�
���elsif same color�b
to� and mode�ordinary then break��
���else
���yield to�
��	break�
��
end�
���end�
���end�
���end� �� of move�

�

���end� �� of class ROOK

��� Class QUEEN

The implementation of class QUEEN is very similar to the code of BISHOP�

���class QUEEN � �PIECE is
���include PIECE�
����� Constants that are different from PIECE implementation	
���const worth � INT �� ��
��	const g � CHAR �� �Q��
��
move��b�BOARD
mode�BOOL��POS is
����� returns all valid moves given a board with other pieces
���to � POS�
����� This loop will check the following directions	
����� diag up right� diag up left� diag dn right� diag dn left
����� horizontal right� horizontal left� vertical up� vertical dn
����� It is a combination of rook and bishop�
���loop direction���POS��diag up right�upto��POS��vertical dn��
���loop to��position�way��direction��
��	if �b�has piece�to� then
��
yield to�
���elsif same color�b
to� and mode � ordinary then break��
���else

���yield to�
���break�
���end�
���end�
���end�
���end� �� of move�
��	end� �� of class QUEEN

�� Class KNIGHT

The body of the loop is slightly di�erent to the one used for ROOK� BISHOP and QUEEN� Above�
the inner loop terminated as soon as a position was encountered that was blocked by another piece�
For KNIGHT �and later on for KING� all potential position have to be considered�

��
class KNIGHT � �PIECE is
���include PIECE�
����� Constants that are different from PIECE implementation	
���const worth � INT �� ��
���const g � CHAR �� �N��
���move��b�BOARD
mode�BOOL��POS is
����� returns all valid moves given a board with other pieces
���to � POS�
���loop to��position�way��POS��knight��
��	if b�has piece�to� and same color�b
to� and mode � ordinary then

�

��
�� skip this move
���else
���yield to�
���end�
���end�
���end� �� of move�
���end� �� of class KNIGHT

��� Class PAWN

The iter move� is di�erent for the pawns� In ordinary mode� straight moves� diagonal moves and
�en passant� moves must be considered� In check test mode� straight moves are irrelevant� The
implementation ofmove� is divided in two sections by an if statement� In the then branch �line �
	�
��� the potential moves of white pawns are computed� The else branch �lines ��
��
�� is devoted
to the black pawns�

���class PAWN � �PIECE is
���include PIECE�
��	�� Constants that are different from PIECE implementation	
��
const worth � INT �� ��
���const g � CHAR �� �P��
���const ispawn � BOOL �� true�
���move��b�BOARD
mode�BOOL��POS is
����� returns all valid moves given a board with other pieces
���to � POS�
���if iswhite then
���if mode � ordinary then
����� vertical steps
��	loop to��position�way��POS��north two��
��
if b�has piece�to� then �� position and continued way blocked
���break��
�	�end�
�	�yield to�
�	�end�
�	�end�
�	��� diag up
�	�if position�column � �h� then
�	�to���POS�
�		to�pos �� position�northeast�
�	
if mode � for check test then
�	�yield to�
�
�else
�
�if b�has black piece�to� then
�
�yield to�
�
�end�
�
�end�
�
�end�
�
��� diag dn
�
	if position�column � �a� then
�

to���POS�

�

�
�to�pos �� position�northwest�
���if mode � for check test then
���yield to�
���else
���if b�has black piece�to� then
���yield to�
���end�
���end�
��	end�
��
�� en passant
���if position�row � ���
���and �void�b�last move�
���and b�last move�from�row � ���
���and � b�last move�to � position�east
���or b�last move�to � position�west�
���and �void�b�last move�piece� and b�last move�piece�ispawn
���then
���if mode � for check test then
��	yield b�last move�to�
��
else
���to �� �POS�
���to�pos �� b�last move�to�north�
���yield to�
���end�
���end�
����� no more moves�
���quit�
���else �� i�e� if isblack
��	if mode � ordinary then
��
�� vertical steps
���loop to��position�way��POS��south two��
���if b�has piece�to� then �� position and continued way blocked
���break��
���end�
���yield to�
���end�
���end�
����� diag up
��	if position�column � �a� then
��
to���POS�
���to�pos �� position�southwest�
���if mode � for check test then
���yield to�
���else
���if b�has white piece�to� then
���yield to�
���end�
���end�
��	end�
��
�� diag dn
���if position�column� �h� then

�

���to���POS�
���to�pos �� position�southeast�
���if mode � for check test then
���yield to�
���else
���if b�has white piece�to� then
���yield to�
��	end�
��
end�
���end�
����� en passant
���if position�row � ���
���and �void�b�last move�
���and b�last move�from�row � ���
���and � b�last move�to � position�east
���or b�last move�to � position�west�
���and �void�b�last move�piece� and b�last move�piece�ispawn
��	then
��
if mode � for check test then
���yield b�last move�to�
���else
���to �� �POS�
���to�pos �� b�last move�to�south�
���yield to�
���end�
���end�
���quit�
��	end�
��
end� �� of move�
���end� �� of class PAWN

��� Class KING

In the iter move� of the KING up to � neighboring positions have to be analyzed� As usual� this is
done by using the way� iter provided by the POS class� Furthermore� the king might be able to do a
castle move� If the preconditions of castle moves are ful�lled� the new position of the king is yield�
Castle moves are analyzed separately for the white king in lines ������� and for the black king in
lines �������

�	�class KING � �PIECE is
�	�include PIECE�
�	��� Constants that are different from PIECE implementation	
�	�const worth � INT �� ���� �� compared to the worth of other pieces
�	��� the king has an infinite worth
�	�const g � CHAR �� �K��
�	�const isking � BOOL �� true�
�		move��b�BOARD
mode�BOOL��POS is
�	
�� returns all valid moves given a board with other pieces
�	�to � POS�
�
�loop to��position�way��POS��ring��

	

�
�if b�has piece�to� and same color�b
to� and mode � ordinary then
�
��� skip this move
�
�else
�
�if mode � for check test or �b�pos in check�to� then
�
�yield to�
�
�end�
�
	end�
�

end�
�
��� castle moves
���spot�
 spot�
 spot�
 rook � �PIECE�
���if b�white to play and �b�white K moved and position � �e�
 then
����� q�castle
���spot��� b�piece��d�
�� spot��� b�piece��c�
�� spot��� b�piece��b�
��
���rook �� b�piece��a�
��
���if �void�rook� and rook�isrook and rook�alive
���and void�spot�� and void�spot�� and void�spot��
��	then
��
to �� �POS�
���to�pos �� �d�
�
���if �b�pos in check�to� then
���to�pos �� �c�
�
���if �b�pos in check�to� then
���yield to�
���end�
���end�
���end�
��	�� k�castle
��
spot��� b�piece��f�
�� spot��� b�piece��g�
�� rook �� b�piece��h�
��
���if �void�rook� and rook�isrook and rook�alive
���and void�spot�� and void�spot��
���then
���to �� �POS�
���to�pos �� �f�
�
���if �b�pos in check�to� then
���to�pos �� �g�
�
���if �b�pos in check�to� then
��	yield to�
��
end�
���end�
���end�
���end� �� castle moves of white king
���if �b�white to play and �b�black K moved and position � �e�
 then
����� q�castle
���spot��� b�piece��d�
�� spot��� b�piece��c�
�� spot��� b�piece��b�
��
���rook �� b�piece��a�
��
���if �void�rook� and rook�isrook and rook�alive
��	and void�spot�� and void�spot�� and void�spot��
��
then

���to �� �POS�
���to�pos �� �d�
�
���if �b�pos in check�to� then

���to�pos �� �c�
�
���if �b�pos in check�to� then
���yield to�
���end�
���end�
��	end�
��
�� k�castle
���spot��� b�piece��f�
�� spot��� b�piece��g�
�� rook �� b�piece��h�
��
���if �void�rook� and rook�isrook and rook�alive
���and void�spot�� and void�spot��
���then
���to �� �POS�
���to�pos �� �f�
�
���if �b�pos in check�to� then
���to�pos �� �g�
�
��	if �b�pos in check�to� then
��
yield to�
���end�
���end�
���end�
���end� �� castle move of black king
���end� �� of move�
���end� �� of class KING

�� Suggested Execises

� Extend Sather Tutorial Chess to print out all moves of the game in standard chess notation
after the game is over�

� If the user decides to have a computer player� the random number generator always is initialized
with the same seed� Extend Sather Tutorial Chess to ask the user for his name� Then from
this name compute a seed to initialize the random number generator�

� Introduce a new subtype of 	PLAYER that inherits the implementation of MINMAX� Call this
class ALPHABETA and implement an Alpha�Beta�Search to improve the expertise of the auto�
matic player� You might want to change the routine setup of MAIN to create an ALPHABETA
player instead of a MINMAX player�

� Change POS to be a value class� Instead of having the internal addressing scheme that
numbers the positions of the board from � to
� in variable absolute� the positions should be
represented with two integers� one for the row number and the other for the number of the
column� Obviously� nearly all routines in POS have to be changed to re�ect that choice� Other
than that the code is relatively independent of the implementation of POS� There might be
some problems when POS objects are tested to be void� Furthermore� the routine is the only
place outside of board�str that knows about the internal addressing used in POS� Note� that
the new internal addressing eases the complexity of the computation of neighboring elements
slightly� Instead of divisions and modulo operations� a routine is o! board could be used to
deal with all the necessary plausibility testing�

� See section ��	 for further suggestions�

�

References

��� Robert Henderson and Benjamin Zorn� A comparison of object�oriented programming in four
modern languages� Technical Report CU�CS�
	����� University of Colerado� Boulder� July
�����

��� Chu�Cheow Lim and A� Stolcke� Sather language design and performance evaluation� Technical
Report TR������	� International Computer Science Institute� Berkeley� May �����

��� Scott Milton and Heinz W� Schmidt� Dynamic dispatch in object�oriented languages� Techni�
cal Report TR�CS��	���� CSIRO � Division of Information Technology� Canberra� Australia�
January �����

�	� Stephan Murer� Stephen Omohundro� and Clemens Szyperski� Sather Iters� Object�oriented
iteration abstraction� Technical Report TR�����	� International Computer Science Institute�
Berkeley� August �����

�� Object�Orientation FAQ� http���iamwww�unibe�ch� scg�OOinfo�FAQ�

�
� Stephen M� Omohundro� The di�erences between Sather and Ei�el� Ei�el Outlook� ���������	�
April �����

��� Stephen M� Omohundro� Sather�s design� Ei�el Outlook� ����������� August �����

��� Stephen M� Omohundro� Sather provides nonproprietary access to object�oriented program�
ming� Computer in Physics�
���			�		�� September �����

��� Stephen M� Omohundro� The Sather programming language� Dr� Dobb�s Journal� �������	��	��
October �����

���� Stephen M� Omohundro� The Sather ��� speci�cation� Technical Report TR�in preparation�
International Computer Science Institute� Berkeley� ���	�

���� Stephen M� Omohundro and Chu�Cheow Lim� The Sather language and libraries� Technical
Report TR�������� International Computer Science Institute� Berkeley� March �����

���� Heinz W� Schmidt and Stephen M� Omohundro� CLOS� Ei�el� and Sather� A comparison� In
Andreas Paepcke� editor� Object�Oriented Programming	 The CLOS Perspective� pages ��������
MIT Press Cambridge� Massachusetts� London� England� ����� Available as ICSI TR�����	��

���� Clemens Szyperski� Stephen Omohundro� and Stephan Murer� Engineering a programming
language� The type and class system of Sather� In Jurg Gutknecht� editor� Programming Lan�
guages and System Architectures� pages �������� Springer Verlag� Lecture Notes in Computer
Science ���� November ����� Available as technical report ICSI TR�����
	�

�

