Architecture-Dependent Partitioning of Dependence Graphs

M. Beck and E. Zehendner

Dept. Mathematics & Computer Science
Friedrich Schiller University
D-07740 Jena, Germany

Abstract

Performance tuning of non-blocking threads is based
on graph partitioning algorithms that create serial code
blocks from dependence graphs. Previously existing al-
gorithms are directed toward deadlock-avoidance and
mazximization of run-length. The latter criterion of-
ten generates a high synchronization overhead. This
paper presents a partitioning algorithm for depen-
dence graphs that uses a heuristic to determine a cost-
efficient solution based on an architecture-dependent
cost function. We present empirical results based on
benchmark programs that were compiled with MIT’s
Id compiler, extended by our architecture-dependent
partitioning algorithm. The results demonstrate a re-
duction in software overhead with our architecture-
dependent partitioning algorithm, compared with pre-
viously existing partitioning methods. The execution
of the sample programs on an emulator for the Mon-
soon dataflow architecture shows a reduced number of
processor cycles.

1 Introduction

Programs that were designed to execute on von
Neumann architectures consist of serial code. Each in-
struction designates a single successor instruction that
depends on the program order and the machine status.
Instruction execution on the most advanced von Neu-
mann architectures—the superscalar microprocessors
[22] like the PentiumPro, the HP8000, or the MIPS
R10000—happens out-of-order, due to the application
of a local dataflow principle within an instruction win-
dow. However, the processor-external view of the in-
struction execution must follow the serial control flow
due to the serial program order. This requirement re-
sults in a complex microprocessor organization using
register renaming, reorder buffering, and a completion
or retirement phase during pipeline execution, that
slows down execution speed.

Although the program order is total, the execu-
tion ordering must not be such restricted. Data and

Th. Ungerer

Dept. Computer Design & Fault Tolerance
University of Karlsruhe
D-76128 Karlsruhe, Germany

control flow of the program define a partial order on
the set of instructions in the code block. Dataflow
or dependence graphs are a suitable medium to de-
scribe these dependencies. When using the dataflow
scheme, programs are compiled into dataflow graphs
that represent the data dependencies among instruc-
tions. Scheduling is data-driven: an instruction is
ready to execute as soon as all required operands are
available. The availability of operands is signaled by
tokens that conceptually are propagated on the arcs
of the dataflow graph. Dataflow architectures can be
viewed as hardware interpreters of dataflow graphs.
They use token matching prior to instruction execu-
tion. This synchronization scheme is able to exploit
all possible parallelism at instruction level but, unfor-
tunately, leads to superfluous control overhead when
executing sequences of instructions.

Arvind et al. [1] analyze the computational scheme
of dataflow architectures and compare them to von
Neumann architectures. As regards the cost of pro-
gram execution, a program code can be divided into
the so-called basic work that must be executed on each
target architecture and into an architecture-dependent
part called overhead. The sources of overhead in
dataflow architectures are the additional code for un-
folding of parallelism (several outbound arcs of a node
in the dataflow graph) and for synchronization (sev-
eral inbound arcs of a node). A conceptual source of
potential speed-up is the clipping of parallelism dur-
ing the unfolding phase, automatically resulting in less
synchronization overhead. A trade-off must be found
between the cost of unfolding parallelism and the ben-
efits from utilizing parallelism. We are thoroughly
convinced that the trade-off should strongly depend
on an architectural cost function.

To solve the overhead problem of fine-grain
dataflow, dataflow graphs can be partitioned into sub-
graphs each with its own synchronization interface and
parallel unfolding interface to the remainder graph.
Each subgraph that exhibits a low degree of paral-

lelism can be identified within a dataflow graph and
transformed into a sequential thread. By serializing
subgraphs to threads the goal of overhead reduction
can be reached.

A thread in this sense is a subset of the instruc-
tions within a procedure body such that a compile-
time ordering can be determined which is valid for all
contexts in which the procedure can be invoked. Sec-
ond, the thread should be non-blocking, i.e., once the
first instruction in a thread is executed, it is always
possible to execute each of the remaining instructions
in the compile-time ordering, without pause, interrup-
tion, or execution of instructions from other threads
[19].

This proceeding is supported by the architectural
proposals of dataflow computers using the hybrid
dataflow model [3] where a thread of instructions is
executed consecutively without matching further to-
kens except for the first instruction of the thread. Val-
ues passed between instructions from the same thread
are stored in registers instead of writing them back
to memory. These registers may be referenced by any
succeeding instruction in the thread.

The next section describes and analyses the differ-
ent strategies for dependence graph partitioning due
to Tannucci, Hoch et al., and Schauser, which are pre-
decessors and presuppositions of our own architecture-
dependent partitioning method presented in section
3. The architecture-dependent partitioning algorithm
is a heuristic for determining a cost-efficient solution
that is based on an architecture-dependent cost func-
tion. It can be proven that the algorithmic solution
does not deteriorate during the proceeding of algo-
rithm [2]. Moreover, the architecture-dependent par-
titioning criterion can be reduced to a very simple rule
in case of a hybrid dataflow architecture as target ar-
chitecture. We present empirical results in section 4
before the conclusions.

2 Partitioning algorithms

Tannucci identifies the following, partly contradict-
ing goals for partitioning algorithms [10]:

o Mazimization of exploitable parallelism: A degree
of parallelism in the application program, that is
higher than the parallelism that can directly be
utilized by the machine, is used for the hiding of
memory and network latencies in dataflow archi-
tectures.

o Mazimization of run length: Longer threads lead
to longer intervals between context switches (run
length). Run lengths which are long compared

to pipeline depth have a positive effect on short-
ening critical path time. Short run lengths tend
to create pipeline bubbles. Locality might be in-
creased by longer run lengths but parallelism is
restricted.

o Minimization of explicit synchronization: Fx-
plicit synchronization operations and instructions
necessary for the unfolding of parallelism are main
sources of overhead in dataflow architectures. Re-
striction of such overheads is a main source of
higher efficiency. However, also the degree of par-
allelism shrinks.

e Deadlock avoidance: Deadlocks must be avoided.
Two instructions whose execution order is dy-
namically determined cannot be statically sched-
uled in a single thread, otherwise potentially lead-
ing to a deadlock.

o Mazimization of machine wutilization: Partitions
can be compared on the basis of how well they
keep the dataflow processor pipeline full. In con-
trast to von Neumann architectures a pipeline
in a (hybrid) dataflow machine executes instruc-
tions of different contexts in consecutive pipeline
stages. The dataflow pipeline starves, if there are
not enough contexts available, resulting in a bad
machine utilization. This metric is architecture
dependent. It is less general than the previously
described but no less important.

Non-strict dataflow languages like Id [13] create
static and dynamic dependences between instructions,
that must be observed during the compile-time par-
titioning of dataflow graphs. Static dependences are
the “true” data dependences, while dynamic depen-
dences are caused by control dependences or by split-
phase transactions [1]. Partitioning methods may gen-
erate additional static and dynamic dependences that
are not present in the original dataflow graph and
that may cause deadlock. Safe partitioning algorithms
perform only deadlock-free transformations, thereby
generating deadlock-free partitions from deadlock-free
programs.

The creation of a graph partition that is optimal rel-
ative to a realistic weight function is NP-complete [24].
In general, only approximate solutions are determined
using iterative methods. The advantages of such al-
gorithms are their simplicity, run-time efficiency, and
prove of the safety of the solution by using only safe
transformations in each iteration step.

Existing partitioning algorithms can be classified
as depth-first or breadth-first. Depth-first algorithms

[5, 10] partition by choosing a path from an input to an
output of a (sub)graph, assembling the visited instruc-
tion nodes into a thread, removing the corresponding
nodes from the graph in the process. The algorithm is
repeated until no instructions remain unpartitioned.
Such partitionings tend to produce long threads while
breadth-first algorithms allow to control partitioning
by the degree of parallelism [12, 23].

Usually, cost functions that are easy to verify are
used to control the partitioning. How far the gen-
erated partitions satisfy the goals stated above is de-
scribed by heuristics that are empirically validated. In
the following we describe several depth-first partition-
ing algorithms in more detail.

The goal of Tannucci’s partitioning algorithm [10]—
called method of dependence sets—is the generation of
a safe partition of the dataflow graph. The dependence
set of anode i is the set of all names of annotated nodes
from which node i is reachable traveling along static
arcs, only. Nodes with identical dependence sets are
assembled to a thread. Conceptually, it is a depth-
first traversal of each end node of dynamic arcs, form-
ing its own thread. A node is added to a thread, if
no dynamic arcs and no static arcs stemming from
nodes with a different annotation end in that node. If
a node is not added, the subgraph starting with this
node is cut and the node itself is a starting point for
a new traversal, generating a new thread. The algo-
rithm terminates when all instructions are assigned to
threads.

Hoch et al. [9] enhance Iannucci’s algorithm by a
further criterion for thread fusion. The goals of their
partitioning algorithm are the maximization of the
thread length and the minimization of the synchro-
nization between threads. In addition to Iannucci’s
annotations, all starting nodes of dynamic arcs are
marked by Hoch et al.’s partitioning. Iannucci’s de-
pendence sets are called entry sets, and the analogous
sets which are based on the starting nodes of dynamic
arcs are called ezit sets. Nodes are assembled to a
thread if either their entry sets or their exit sets are
the same. Hoch et al.’s algorithm is also safe.

Schauser [18, 19, 20] extends the ideas of Tannucci
and Hoch et al. by two proposals of partitioning al-
gorithms: iterated partitioning and separation con-
straint partitioning.

Tterated partitioning is an extension of Hoch et al.’s
algorithm. The dependence sets (Hoch et al.’s entry
sets) and demand sets (Hoch et al.’s exit sets) are com-
puted, and dependence-set and demand-set partition-
ing are applied alternately in the iterated partitioning
scheme.

During dependence-set partitioning, nodes with the
same dependence sets are assembled to threads, while
in the case of demand-set partitioning nodes with the
same demand sets are assembled. Dependence-set and
demand-set partitioning are greedy partitioning algo-
rithms: they both seek to group together nodes into
maximal subsets, where the sole criteria for grouping
nodes together is whether they depend on the same
set of inlet or outlet annotations [19]. To create a safe
partitioning, an intermediate step called subpartition-
ing is introduced, that splits threads with internal dy-
namic dependences. Thereby the dependence-set par-
titioning as well as the demand-set partitioning are
proven to be safe.

It can easily be seen that in general nodes with the
same dependence set may have different demand sets.
That is the basis for the iterated partitioning: A par-
tition of the dataflow graph is generated starting with
one of the two methods described above. Then a re-
duced graph is constructed that consists of threads as
nodes and dependences between threads as arcs. Mul-
tiple arcs between the same nodes are omitted. The
remaining arc is dynamic whenever one of the omit-
ted multiple arcs is a dynamic one. The process is
repeated with the resulting graph until a stationary
partition is reached. Each step is a safe transforma-
tion.

Although the iterated partitioning algorithm is
more powerful than dependence-set or demand-set
partitioning, in some cases it may still fail to group
nodes which can safely be merged into a single thread.
The second method of Schauser, separation constraint
partitioning, does not exhibit this limitation. It stems
from a dual approach. The previous methods place
two instructions in a thread, if specific criteria based
on the reachability of the nodes are fulfilled.

Schauser’s separation constraint partitioning com-
putes separation constraints which tell for any two
nodes whether they can be merged or not. Two nodes
are not assembled in the same thread if they are joined
by an indirect dependence. Such a dependence consti-
tutes a separation constraint that arises due to non-
strictness and long latency communication.

The separation constraint partitioning computes
separation constraints from a dataflow graph. Nodes
without a separation constraint are assembled into a
thread. Thereby a reduced graph is yielded and the
process repeated until the partitioning consists only of
threads with mutual separation constraints.

The resulting partition is not unique, in contrast to
a partition generated by one of the previously stated
methods. Threads are maximized by their length in

the sense that it is not possible to lengthen the longest
threads by adding further nodes. Only the result par-
tition is safe. Actually Schauser uses a mixture of sep-
aration constraint and of iterated partitioning for the
implementation of partitioning due to the complexity
of the algorithm.

The primary goal of the partitioning methods
stated above is the creation of a safe partition. Quan-
titative measures of the target architecture are not
considered by the algorithms. The methods tend to
create long threads with reduced interthread commu-
nication. In dataflow architectures, however, a con-
text switch is cheap. The main goal of a partitioning
should be the reduction of the synchronization cost.
The cost function for synchronization is architecture-
dependent, and is not linear in the number of arcs to
synchronize. Since execution of coarse-grained threads
causes additional cost, an analysis of the total cost is
necessary.

All partitioning algorithms described above are
based on Iannucci’s method of dependence sets with
a safe partition as single goal, partly enhancing Ian-
nucci’s method by the second goal of maximization
of run length. All algorithms are provable safe. The
lack of an appropriate cost function implies that run-
time efficiency deterioration cannot be excluded by the
proceeding of the algorithm. Our own architecture-
dependent partitioning algorithm states a heuristic for
determining a cost-efficient solution. It can be proven
that there is no deteriorating by the proceeding to-
wards the algorithmic solution. Moreover, in case of
a hybrid dataflow architecture as target architecture,
the architecture-dependent partitioning criterion is re-
duced to a very simple rule.

3 Architecture-dependent partitioning

We now present, a simple analytic cost model that
describes the execution of threads on a dataflow archi-
tecture. We assume a dynamic dataflow architecture
with explicit token-store (ETS) [15], where a token is
passed, in succession, through a token queue, a match-
ing unit, an instruction fetch unit, an ALU, and a form
token unit. The architecture provides a set of internal
registers that are used to store intermediate results.
The matching unit accesses the frame memory, using
the direct-matching scheme. Each instruction in the
instruction set can appear as a synchronization point
according to the direct-matching scheme, aside from
some special instructions where the matching unit syn-
chronizes a set of tokens without passing any values.
The form token unit generates up to two result to-
kens for each processed instruction. Processing of an
instruction needs a complete execution cycle, even in

case of a mismatch in the matching unit.

How a code block is executed on such an archi-
tecture? The code block consists of a set of threads.
Each thread is composed of a synchronization inter-
face, a thread body, and a parallel unfolding interface.
The leading instructions of a thread form the, usu-
ally tree-like, synchronization interface. Thread body
and parallel unfolding interface may be interleaved;
together they are organized as a totally ordered set
of instructions. The instructions for the thread body
as well as for the synchronization interface are chosen
such that, after all inbound arcs have been synchro-
nized, the instructions in the thread body and par-
allel unfolding interface can be sequentially executed
without interruption. The succession of instructions in
the synchronization interface as well as in the thread
body follows the dataflow principle. The form token
unit generates, for each processed instruction in the
thread body, a result token destined to the next in-
struction in the sequential thread; this result token is
directly passed to the matching unit in the following
cycle. Thus, for each instruction in the thread body, at
most one result token can be destined to an instruction
in another thread, except for the last instruction of a
thread, that can send up to two result tokens to differ-
ent threads. Values can be passed in registers between
instructions of the same thread body; each of these
instructions can read at most one further value from
the frame. We distinguish the following approaches to
pass values to threads:

1. Values are transferred between threads on tokens.
In this case, all instructions in the thread body
are ready for execution as soon as all tokens on
inbound arcs have been synchronized and the val-
ues passed on them have been made available to
the instructions in the thread body.

2. Values are passed between threads via an ETS
frame. Then, all instructions in the thread body
are ready for execution as soon as a precalculated
number of tokens have been synchronized and the
values in the frame have been made available to
the instructions in the thread body.

The cost of the synchronization interface and the
parallel unfolding interface, measured in the number
of processor cycles, is different for these approaches.
In this paper we only present results for the case that
values are passed on tokens; the other case is treated
in [4]. In the sequel we use the following notation:

I the set of threads of the code block (i.e., a de-
scription of the partition)

I the number of threads in the code block, I = |I|

N; the number of instructions in the body of thread
i

S; the number of tokens carrying values that are
synchronized via the synchronization interface of
thread ¢

U; the number of tokens carrying no values that are
synchronized via the synchronization interface of
thread ¢

o(S,U) the cost (measured in processor cycles) of the syn-

chronization by the synchronization interface for
S tokens carrying values and U tokens carrying
no values (if values are passed via the frame, then
S denotes the number of values needed from other
threads, covering the expenses of store resp. load
operations)

F; the number of result tokens generated by the par-
allel unfolding interface of thread i

@(F') the cost (measured in processor cycles) of gen-
erating F' result tokens by the parallel unfolding
interface

o and ¢ are architecture-dependent cost functions
for an optimum coding of the synchronization inter-
face and the parallel unfolding interface, relative to the
chosen approach to transfer values between threads.
In our basic model, that covers the mandatory fea-
tures of dynamic dataflow architectures, ¢ is defined
by ¢(F) = max(F — 2,0); function o is depicted in
Fig. 1. Under these conditions, the number of proces-
sor cycles needed to execute a single thread i is given
by T; = o(S;,U;) + N; + ¢(F;). The cost for executing

I
the complete code block is T'(I) = > T;.
i=1

Now we study the effects of generating a new par-
tition of a code block by merging some threads; we
confine ourselves to the merging of only two threads.
Some formulae derived in [4] imply that the synchro-
nization interface constitutes the main source of ad-
ditional overhead introduced by coarsen the partition.
In consequence, the synchronization cost function pro-
vides us with an architecture-dependent criterion to
decide whether merging of threads would be advan-
tageous. Such a criterion can—and should—be used
in every partitioning algorithm that iteratively deter-
mines the final partition by merging some threads.

As an example of our proposed proceeding, we show
how to modify the iterated dependence-demand-set

Model Synchronisation costs

costs

0 4
2 3 4 5
6 7 8 o
arcs not carrying values 10

Figure 1: Synchronization cost function o of the basic
model

partitioning algorithm of Schauser et al. [18]; we fol-
low Schauser [19] in our terminology. Assume the code
block has been decomposed into disjoint basic blocks;
the latter represent our program as directed acyclic
subgraphs that are connected through their interfaces.
We annotate these graphs with inlets and outlets, as
described in [19].

The algorithm annotates all end nodes of dynamic
dependencies with unique names. As mentioned
above, the dependence set of a node i is the set of
all names of annotated nodes from which node i is
reachable traveling along static arcs, only. If node 7 is
itself an endpoint of a dynamic dependence, its own
name is added to its dependence set. The analogous
sets which are based on the starting nodes of dynamic
arcs are called demand sets [19].

Whereas Schauser in one partitioning step merges
all nodes with identical dependence set resp. demand
set, we only merge two threads if the Schauser crite-
rion holds and the synchronization cost function in-
dicates that this merging will be useful. Such merg-
ing does not change the actual dependence set resp.
demand set, thus the newly generated thread can im-
mediately participate in further merging transforma-
tions. Also, two nodes are not assembled in the same
thread if they are joined by an indirect dependence
(separation constraint [20]).

Architecture-dependent threads (partition-
ing algorithm)

1. Count the number of inbound arcs of each node in
the basic block, separately for arcs carrying values

resp. arcs carrying no values; then calculate the
value of function o for each node.

2. Determine the dependence sets of all nodes.

3. Choose an arbitrary pair of nodes i and j with
identical dependence set, and merge them if the
following conditions hold:

e there is no separation constraint between
node ¢ and node j

e merging nodes ¢ and j results in a node k
with

o(Sk,Uk) <o(Si,Us) +0(S;,U;) (%)

Repeat step 3 until the partition becomes station-
ary.

4. Determine the demand sets of all nodes.

5. Choose an arbitrary pair of nodes ¢ and j with
identical demand set, and merge them if the fol-
lowing conditions hold:

e there is no separation constraint between
node ¢ and node j

e merging nodes ¢ and j results in a node k
with

o (S, Ur) < o(S;,Us) +0(S;,Uj) *)

Repeat step 5 until the partition becomes station-
ary.

6. Repeat steps 1-5 until the partition eventually
becomes stationary.

The proposed merging criterion prevents additional
synchronization cost. However, we have the impres-
sion that this criterion might be hardly practicable, in
particular if few mergings would be refused. Thus we
also derived a more handy test, that can be applied
under certain conditions.

The course of the function ¢ has a jump whose po-
sition (S + T = 3) and height (Fig. 1) depend on the
capabilities of the matching unit in the target archi-
tecture. The height of this jump prevents a merging of
threads that have more inbound arcs carrying a value
than can be coded within a single instruction to the
matching unit. We can take advantage of this fact
and simplify our merging criterion: Threads should
not be merged if the synchronization interface of the
new thread generated from them could not be coded
as a single instruction. If we substitute this simpli-
fied merging criterion into the partitioning algorithm

described above (formulae marked by an asterisk), we
always end up with a final partition that uses fewer
cycles than the initial nonpartitioned code block.

In [4] we studied the impact of several architectures
on the partitioning algorithm; in the sequel we direct
our discussion toward the Monsoon architecture [15].
Function ¢ there is identical to the one of our proposed
basic model; function o is depicted in Fig. 2. In the
following section we analyze some sample partitions
and show experimental results.

Monsoon Synchronisation costs

costs

0 4
23 4
6 7 8 o
arcs not carrying values 10

Figure 2: Synchronization cost function o of Monsoon

4 Experimental work

In this section we compare the performance of our
partitioning algorithm to the algorithms of Schauser
[19], i.e., iterated partitioning and separation con-
straint partitioning. The algorithms given by Schauser
aimed at a partition of a code block into threads that
should be as long as possible (second Iannucci cri-
terion) and thus reduce interthread communication
(third Tannucci criterion).

As an example we used a program for the solution
of the heat diffusion problem, written in the dataflow
language Id [13]; the code of this program can be
found in [25]. We compiled and executed this pro-
gram within the programming environment ID World
[11] of the MIT. The latter comprises an Id compiler
that produces code for the Monsoon dataflow machine
[15], an emulator of Monsoon, and a collection of di-
agnosis tools. The Id compiler generates a dataflow
graph from the program. All partitioning algorithms
we investigated use cycle-free directed graphs. Cycle-
containing graphs are first decomposed into cycle-free
subgraphs before any of these methods can be applied.

We studied in detail the partitioning of one cycle-
free subgraph from the dataflow graph that corre-
sponds to the following fragment of the program:

| [i,u2] = A[i,u2] ||i <- 1141 to ul-1

For the different partitions we generated code that
could be executed on the Monsoon. Relevant param-
eters of this code are

e the number and the length of the threads

e the number of arcs connecting the threads, and
their synchronization cost

e the dynamic length (measured in processor cy-
cles) of the partitions, excluding latencies

The results of our analysis are given in Tab.
1. Schauser’s partitioning algorithms generate long
threads but at the expense of a high synchroniza-
tion cost. The threads generated by our algorithm
have shorter average length than with Schauser’s al-
gorithms, and thus are more suited to hide the latency
of split-phase transactions.

So far we compared partitions destined to the same
architecture. In the sequel we relate the partition pro-
posed by us for the Monsoon with partitions destined
to other hybrid dataflow architectures. To study this
problem, we constructed a testbed.

The basis of our experimental environment is still
the ID World environment [11]. This system gener-
ates monasm code (i.e., Monsoon machine code). The
monasm code can be emulated in the ID World envi-
ronment. Since we were interested in comparing dif-
ferent hybrid dataflow architectures, we developed a
stand-alone emulator whose behavior can be adapted
to several architectural properties through parame-
ters. This emulator is based on the instruction set
of the Monsoon. The specification of the Monsoon ar-
chitecture has been preserved as far as possible, with
the following exceptions:

e Our emulator supports 256 registers.

e SVC. instructions do not call handler functions
but implement their functionality, blocking the
pipeline during a prescribed number of cycles.

e We can emulate any number of processors and
structure memory elements, as long as this num-
ber is a power of 2.

e We disregard network conflicts; network instruc-
tions can be penalized with latencies.

The instruction set and the specification of the vari-
ous units in the processing element have been adapted

to the needs of different architectures. Here we focus
on provisions that are directed towards a cheaper syn-
chronization. Besides Monsoon, we distinguish three
further modes of operation:

1. The 2.5-address machine. This mode adopts the
separation of match offset and operand offset as
in the Epsilon project [7]. The matching unit can
address two operands in the frame independently.
Results are passed in registers.

2. The 3-address machine. The matching unit is as
in the 2.5-address machine. Results can be writ-
ten back to the frame.

3. Load-store-architecture. From the EM project
[17] we adopted the RISC-like execution of the
instructions. The matching unit serves two pur-
poses: implementing the direct-matching scheme
as well as reading/writing values from/to the
frame (the emulator differs from the EM project
in this respect).

In addition to the emulator we developed a code
generator. We partition the Monsoon assembly code
generated by the ID World environment. A compiler
backend is used to generate threaded code for the var-
ious modes of operation of the emulator.

Our simulation results compare our method to
partition Monsoon code with Schauser’s iterated
dependence-demand-set partitioning on idealized com-
peting architectures and with non-partitioned Mon-
soon code. We used the benchmark programs fib, sorts
[21], and speech [16] to compare the generated code on
the basis of the following two criteria:

e The number of tokens in the system measures the
quality of the generated code. (Good code intro-
duces few tokens.)

e The shortest path is correlated to the resulting
degree of parallelism and thus to the possibility
of hiding latencies.

The three sample programs have been processed
on the emulator for 1 to 16 processors (and 1 to 16
structure memory elements). Fig. 3 shows the results
of the emulation for the program speech; for a de-
tailed review of all results see [4]. The results prove
that iterated partitioning can not diminish the over-
head of fine-grain dataflow without additional cost.
Only after optimizing the architecture parameters we
achieve threaded code that executes at the same speed
as fine-grained code. One way out would be to hide

the synchronization cost by decoupling the match-
ing from the processing, as in *T [14] or the De-
coupled Graph/Computation model [6]. Architecture-
dependent partitioning generates code with a cost of
about 80% of that of fine-grained code. Thus we
reached our goal to reduce the overhead without addi-
tional cost. The reduction in the degree of parallelism,
caused by the partitioning, apparently had no nega-
tive effect on the utilization of the pipeline during our
experiments.

critical path "speech”

Load_store

3 Addr

cycles

2.5 Addr
Monsoon_th

Monsoon

Arch. dependent

8PE 16 PE

Figure 3: Speed-up of benchmark speech

5 Conclusions

In this paper, we presented a new architecture-
dependent partitioning algorithm to create non-
blocking threads from dependence graphs. Previously
published partitioning algorithms are directed toward
deadlock-avoidance and maximization of run-length,
and often generate a high synchronization overhead.
In contrast, our partitioning algorithm uses a heuris-
tic to determine a cost-efficient solution based on
an architecture-dependent cost function. It can be
proven that the algorithmic solution does not deteri-
orate during the proceeding of the algorithm. More-
over, the architecture-dependent partitioning criterion
can be reduced to a very simple rule in case of a hy-
brid dataflow architecture as target architecture. We
presented empirical results based on benchmark pro-
grams compiled with an extension of MIT’s Id com-
piler. The results demonstrate a reduction in software
overhead with our architecture-dependent partition-
ing algorithm, compared with previously existing par-
titioning methods. The execution of the sample pro-
grams on an emulator for Monsoon shows a reduced
number of processor cycles.

The technique of cost functions can not only be
used to assess the merging of threads but is also appli-
cable to analyze other known methods for the reduc-
tion of overhead in dataflow architectures. We plan to
compare with hybrid methods some modifications of
the fine-grain dataflow principle, like the TUP instruc-
tion [8]. The goal of these investigations is an evalua-
tion of various performance-improving techniques for
dataflow architectures.

Multithreading techniques and fine-grain paral-
lelism are playing an increasingly important role in
processor microarchitectures and in optimizing com-
pilers. The synchronization overhead we encoun-
tered in non-blocking threads generated from depen-
dence graphs is inherent to fine-grained parallel mul-
tithreaded execution. The reduction of software over-
head due to architecture-dependent partitioning may
also be applicable outside the scope of non- strict
dataflow languages and hybrid dataflow architectures.

References

[1]

[10]

[11]

[12]

[13]

[15]

[16]

Arvind, D. Culler, and K. Ekanadham. The price of
asynchronous parallelism: an analysis of dataflow ar-
chitectures. CONPARSS, pages 541-555, September
1988.

M. Beck. Architekturabhdngige Partitionierung von
Datenflussgraphen, Dissertation. Friedrich-Schiller-
Universitat Jena, 1997.

M. Beck, T. Ungerer, and E. Zehendner. Classifica-
tion and performance evaluation of hybrid dataflow
techniques with respect to matrix multiplication.
Workshop PARS, pages 118 —126, April 1993.

M. Beck, T. Ungerer, and
E. Zehendner. Architecture-dependent partitioning of
dependence graphs. Berichte zur Rechnerarchitektur
8, 28, Friedrich-Schiller- Universitit Jena. Available
under ftp://ftp2.informatik.uni-
jena.de/pub/AG/OPC/Be-97-BR-3:23, 1997.

L. Bic. A process-oriented model for efficient execu-
tion of dataflow programs. J. Parallel and Distributed
Computing, 8(12):42-51, December 1990.

P. Evripidou and J.-L. Gaudiot. The USC decoupled
multilevel data-flow execution model. In: Gaudiot,
J.-L., Bic, L. (eds.): Advanced Topics in Data-Flow
Computing, Prentice Hall, Englewood Cliffs, pages
347-379, 1991.

V. Grafe and J. Hoch. The Epsilon-2 multiproces-
sor system. J. Parallel and Distributed Computing,
10:309-318, 1990.

J. Gurd, C. Kirkham, and I. Watson. The manchester
prototype dataflow computer. Communications of the
ACM, 28(1):34-52, January 1985.

e. a. Hoch, J. E. Compile-time partitioning of a non-
strict language into seqential threads. In Proc. 3rd
Symp. on Parallel and Distributed Processing, 1993.

R. Tannucci. Toward a dataflow / von Neumann hy-
brid architecture. 15th Ann. Int. Symp. Comp. Arch.,
Honolulu, pages 131-140, 1988.

R. P. Johnson. Monsoon id world user’s guide (draft).
CSG Memo 334, MIT LCS, 545 Tech. Square, Cam-
bridge, MA, 1992.

B. Lee and K. Krishna. Program partitioning for
multithreaded dataflow computers. Proc. 26th Ann.
Hawaii Intern. Conf. on System Sciences, 1993.

R. Nikhil. Id language reference manual, V. 90.1.
Technical Report CSG Memo 284-2, Laboratory for
Computer Science, MIT, July 1991.

R. Nikhil, G. Papadopoulos, and Arvind. *T: A mul-
tithreaded massive parallel architecture. 19th Ann.
Int. Symp. Comp. Arch., Gold Coast, Australia, pages
156-167, 1992.

G. Papadopoulos and D. Culler. Monsoon: an explicit
token-store architecture. 17th Ann. Int. Symp. Comp.
Arch., Seattle, pages 82-91, 1990.

A. Sah. Parallel language support for shared memory
multiprocessors. Masters thesis, Computer Science
Div., Unwversity of California at Berkeley, 1991.

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and
T. Yuba. An architecture of a dataflow single chip
processor. 16th Int. Symp. on Comp.Arch., pages 46—
53, 1989.

K. Schauser. Compiling dataflow into threads. Master
thesis, Computer Science Div., University of Califor-
nia at Berkeley, 1991.

K. Schauser. Compiling lenient languages for parallel
asynchronous execution. PhD thesis, Computer Sci-
ence Div., University of California at Berkeley, 1994.
K. Schauser, D. Culler, and Goldstein. Separation
constraint partitioning - a new algorithm for parti-
tioning non-strict programs into sequential threads.
Proc. Principles of Programming Languages, 1995.
A. Shaw. sorts.id. ID-World example suite. MIT
LCS, 545 Tech. Square, Cambridge, MA, 1991.

M. Slater. The microprocessor today. IEEE Micro,
pages 32 — 44, December 1996.

J. Strohschneider and K. Waldschmidt. Adarc: A fine
grain dataflow architecture with associative commu-
nication network. Proc. EUROMICRQ’9), Liverpool,
1994.

K. Traub. Sequential implementation of lenient pro-
gramming languages. TR-417, MIT LCS, 545 Tech.
Square, Cambridge, MA, 1988.

K. Traub. relax.id. id-world example suite. MIT LCS,
5485 Tech. Square, Cambridge, MA, 1991.

Table 1: Analysis of partitioning the sample dataflow

graph

Tterated separation constraint method of architecture-dependent
dataflow | partitioning partitioning dependence sets partitioning

number of threads 26 13 11 15 12
maximal length 1 5 7 3 5

average length 10 3.0 3.36 173 2.16
number of arcs connecting threads a7 26 22 30 26
average synchronization cost 181 153 3.00 1.06 1.25
number of processor cycles 58 25 a7 16 15

