Collision of Constrained Work Spaces: A Uniform Concept for Design
Interactions

Rose Sturm, Jutta A. Miille, Peter C. Lockemann
Fakultat fur Informatik, Universitat Karlsruhe
D-76128 Karlsruhe, Germany, lockeman@ira.uka.de

Abstract

1 Since participants in a design process are almost
separated in time (in addition to the usual separation in
space), databases are an ideal medium to support and
control theiwr interaction. The basic premise of the pa-
per is that each design artifact can be represented as a
destgn object which occupies a certain domain in an n—
dimenstonal work space which includes teme in order to
reflect the design stage during which certain design de-
cisions are valid. The central hypothesis of the paper is
that various kinds of interaction among designers such
as detecting the cffects of decisions by other designers
and responding to them by, e.gq., performing corrections
or retracing older states in order to resume work from
there, and such as detecting that own decisions may
affect other designers and reacting to them by explicit
notification of changes to other individuals, can all be
explained by the same concept of work space collision.
Constraints associated with the work spaces can be used
to arbitrate between the conflicts in the colliding works
spaces. The idea is applied to a variety of interaction
forms to demonstrate its validity.

1. Introduction

Design processes almost invariably engage a (small
or large) number of designers. Even though the orga-
nization of a design effort is to separate it into a num-
ber of reasonably independent and often overlapping
design tasks, there is nonetheless a fair degree of col-
laboration and, hence, interaction needed among the
designers in order to guarantee that the overall result
of the individual activities meets the common goal and
that the individual results can be integrated into the
final design product with reasonable effort.

Tthis work was supported by Deutsche Forschungsgemein-
schaft, project no. Lo 296/11.

Interaction across collaborating designers is predom-
inantly by exchanging information. If designers are
separated in space interchange of information is via
message transmission across communication channels.
If they are separated in time — be 1t minutes, hours or
days — databases must be interposed as the medium
for the interchange of information, and interaction is
initiated by changing the contents of the database and
accepted by taking note of the changes.

Interaction via databases that exclusively relies on
update and retrieval of information is too one—sided be-
cause it leaves the interaction entirely to the initiative
of the retrieving person. Contrast this with message
exchange where the person that introduces the changes
takes the initiative. What is desirable, then, is to pro-
vide some mechanism that relieves a designer from the
cumbersome and exhaustive inspection of the database
to detect changes. Instead the database should offer
mechanisms that direct the designer’s attention to the
more recent changes which seem of pertinence to him
or her. Even further, these mechanisms should provide
the designer with indications on whether these changes
have an effect on his or her own current or earlier design
decisions. Armed with these indications the designer
should then be able to take appropriate action. Con-
ceivable actions are immediate corrections, retracing
older states in order to resume work from there, or ini-
tiating dialogues with other individuals. Alternatively,
a designer who introduces changes may use these mech-
anisms to examine the database for effects on the work
of other designers, and notify these if such effects are
suspected.

The foregoing analysis already provides us with the
clues to the solution: Indicate to which part of the
database the attention should be directed, determine
the potential for an effect on the work of other design-
ers, 1f it exists determine whether there is indeed an
effect in the form of some conflict and arbitrate be-
tween them, and finally permit or initiate some action.

The idea sounds fairly familiar: It bears a close

kinship to the classical event—condition—action (ECA)
rules known from, e.g., active database systems [33, 1].
The contribution of this paper is to adapt these rules to
the area of collaborative design. It employs as its basic
premise that each design artifact can be represented
as a design object which occupies a certain domain in
an n—dimensional work space (only part of it geometri-
cal) including time in order to reflect the design stage
during which certain design decisions are valid. The
potential of conflict can then be explained in terms of
a collision of work spaces. By associating constraints
with the work spaces — effectively forming a constraint
database — the constraints can be used to determine
the actual conflicts and to arbitrate between them.

This paper 1s organized as follows. Section 2 intro-
duces the main constituents of our approach while Sec-
tion 3 identifies the main forms of interaction that are
to be supported. Section 4 develops the main support
mechanisms of work space collision and rule handling.
Section 5 shows how these are combined into the core
concepts of descriptively formulated queries and up-
dates. Section 6 deals with the issue of rule execution,
and applies the core concepts to the issue of backtrack-
ing of design decisions. Sections 7 places our approach
in the context of other work on collaboration support,
while Section 8 reports on our experiences with the ap-
proach in an application of building design, and draws
some conclusions.

2. Constituents
2.1. Work spaces

Intuitively speaking it seems fairly obvious that a
design artifact occupies a physical space which must
be reflected in the corresponding informational design
object, and that the design object has an additional
temporal dimension which reflects its design stage and
hence, the period during which certain design decisions
were or are valid. In other words, each design object
occupies a certain domain in space and time, which we
refer to in the sequel as a work space. Our cooperation
with architects on database support for the design of
buildings has taught us, though, that there are consid-
erable more dimensions to such a space — and this is
probably true for other engineering activities as These
dimensions are due to certain characteristics of the cre-
ative design process [19, 20, 29].

e Design processes vary in their level of detail and
precision. Solutions are first of a sketchy nature,
for example while the architect tries out differ-
ent placements of the building. Once the solu-
tion is accepted, more detail 1s added in a stepwise

fashion. For example, the roofing material is de-
termined, the physical principle for the sewage is
settled, e.g., a sufficient gradient for natural flow
versus pumping. Given the outline of the build-
ing, the layout of the floors is added, and in do-
ing so each floor is considered separately and per-
haps on a smaller scale in order to place walls,
power wiring and outlets, water pipes and out-
lets. The level of precision 1s increased by fix-
ing, e.g., three-dimensional geometries and two—
dimensional placements.

e Design processes are iterative. Decisions are of-
ten tentative or even of a hypothetical or probing
character. They are tested and explored for their
consequences, and are as often rescinded as they
are accepted. Take a building that is to be placed
in terrain with a difficult topography, where the
total floor space i1s prescribed but there is some
latitude as to the exact outline and position, and
where the architect exploits this range so as to
minimize the cost for the foundation, water sup-
ply and sewage. In general, the iteration crosses
varying levels of detail or precision.

e Design processes are view—sensitive. Each design
expert, e.g., architect, public agency, utility com-
pany, structural engineer, sanitary engineer, air
condition engineer, concentrates on some partic-
ular part or aspect of the building, has his or her
own particular view of the building, observes his or
her own set of exterior factors, and takes decisions
from his or her own viewpoint.

In our example, these characteristics are reflected
by a multi-dimensional work space as shown in Figure
1 and called the A4 space [19, 20]. If a design object
exists in different alternatives, or on different levels of
detail or precision, it gives rise to different spaces that
often overlap in time or space. If new decisions are
taken and documented as such, the space is not over-
written but rather a new one is added with a new life
span.

The work spaces of design objects (henceforth re-
ferred to as object work spaces) reflect results (or snap-
shots) of the design process. The process itself is under
the control of the designer who must be able to move
freely between any design object or arbitrary collection
of objects, perhaps on different levels of abstraction,
and perhaps even back in time. In order to capture
the movement, each designer should be able to speci-
fy his or her current domain of interest, this again in
terms of the A4 space. We refer to such a domain of
interest as the (current) user work space.

s

X, Y,2
t

intervals of numbers
interval of numbers

scale quotient of numbers level of detall
resolution value from enumeration | precision level
association string value building section affected by the decision
role string value building functionality affected by the decision
version number current alternative if several considered in parallel
user string decision maker
composition list of identifiers list of parts
Cneta string additional descriptive information)

~

geometry of bounding box of decision space
life span (temporal validity) of decision space

Figure 1. A4 work space for the design of utility buildings

2.2. Events

If we now attach work spaces to rules, a first indica-
tion of conflict and one that allows to leave the initia-
tive with the designer initiating a change is to place an
event in a spatial dimension over and above the usu-
al temporal dimension. In our example, events must
be associated with A4 spaces, and are associated with
a subdomain delimited by exact values for the spatial
coordinates x, y, z and the time coordinate t, but are
open on the remaining dimensions.

2.3. Constraints

Design processes can be interpreted as alternating
between narrowing and widening of a decision space,
with an overall tendency towards narrowing until no
decisions have been left open. Hence, design objects
become more concrete as they evolve over time. In
building design, only few factors exist at the beginning
that constrain the decision space, such as topography,
intended utilization, municipal water lines and sewers.
Subsequent design decisions add further constraints.
These may take the form of exact values as for the
roofing material or the overall metrics for the building,
but more often they involve a reduction of ranges of
possible values such as the positions of outlets. Cer-
tain constraints exist over the entire design cycle, how-
ever, such as zoning regulations, building standards,
laws and regulations on fire protection, environmental
protection, use of hazardous materials, working con-
ditions, parking spaces. Likewise to be observed are
physical laws, such as air circulation, minimal gradi-
ents of plumbing for sewage, weights and needed sup-
port, as well as the multitude of standards on materials,
prefabricated components, wiring fuses, to name a few.

Consequently, a design space is circumscribed by a
number of constraints — external factors and earlier de-
sign decisions [19, 20, 29], and a constraint is valid in

one or more work spaces. A conflict arises in fact if a
constraint becomes violated in a work space due to a
design decision taken by the proprietor of the space or
by a collaborating designer.

The notion of work space can also serve as vehicle to
group constraints. For example, different experts with
their different objectives and views will in all likelihood
contribute their own specific and often predetermined
set of constraints. We may collect such a set into an
A4 space (constraint space), where the constraints are
assembled into the composition dimension while most
other dimensions remain open.

3. Interaction

3.1. Retrospective interaction

Retrospective interaction refers to interaction that
is entirely due to the initiative of a designer who did
not originate certain changes but may be forced to re-
act to them. Retrospective interaction must, therefore,
rely on the inspection of the design database. As men-
tioned in the introduction, this is a cumbersome affair
as long as one must exhaustively search the database
for recorded changes. It becomes much more efficient
if one could perform a selective search. The traditional
means for such a search is querying the database in or-
der to circumscribe a certain sphere of interest where
an interaction could have a potential effect.

As noted in Section 2.1, such a sphere of interest
can be captured by the concept of user work space. In
turn, the design objects that may potentially have an
effect are the ones whose object work spaces somehow
overlap the user work space or, as we say, collide with
the user work space.

3.2. Prospectiveinteraction

By contrast, prospective interaction refers to inter-
action that relies on the initiative of the originator of
a change. It is his or her responsibility to draw the at-
tention of other designers to the change. If the affected
designers are unknown a kind of broadcast mechanism
must be pursued in place of a more direct message ex-
change. As mentioned in the introduction, the tradi-
tional means in databases is for the originator to raise
an event. In turn, designers who expect to be affected
by the changes should subscribe to the corresponding
events.

In our approach, subscription is handled by a combi-
nation of two facilities. The first is to identify the types
of events that one may potentially have to respond to.
The second is to select among the raised events only
those that fall within the current sphere of interest,
i.e., the current user work space. By assigning events
a spatial and temporal dimension (Section 2.2), events
are easily associated with work spaces. The association
can be viewed as a special case of work space collision
where the affected work spaces are those that overlap
the event space (usually a point space). Within each
work space one may then identify the design objects
that merit close inspection because their work spaces
collide with the event space.

3.3. Reaction

Even after those object work spaces have been iden-
tified which merit closer attention, the detection of
the changes of importance may still require meticu-
lous comparisons. The designer would gain help if
the database system pointed out to him or her where
changes occurred that affect his or her own decisions.
A standard mechanism for this purpose is checking the
constraints in his or her user work space — his or her
own decisions — for violations due to the decisions of
other designers.

Constraint checking must take into account, though,
that due to the tentative character of design decisions
the designer will tolerate at times a certain degree of
contradictions among decisions or between decisions
and externally imposed constraints such as regulations
or availability of needed resources. Consequently, the
designer must be able to exercise control over the tol-
erance level.

Once a violation has been detected the designer
must take some action. Actions may range from enter-
ing into a dialogue with the originator of the change to
an independently performed repair. One particularly
interesting repair action is the restoration of an earlier

state of work spaces by rescinding certain decisions (se-
lective backtracking). Taking back decisions may again
have to be confined to a specific work space. For exam-
ple, consider a floor with its placement of walls, power
wiring and outlets, water pipes and outlets. Conflicts
between wiring and pipes may force the architect to
rescind some of his or her earlier decisions. Hence, a
selective backtracking action can again be expressed in
terms of work space collision.

Backtracking may in turn cause new interactions be-
cause the changed work spaces may affect the work
spaces of other designers who may have to employ
querying or constraint checking.

4. Interaction mechanisms
4.1. Collisions

Work space collision occurs if the values or inter-
vals overlap in at least one of the dimensions. Hence,
what constitutes a collision depends on the definition
of overlap for the various dimensions. The definition
clearly is different for continuous and discrete dimen-
sions, and one must distinguish between ordered and
unordered values. Take ordered dimensions where one
may define some sort of interval arithmetic. Its opera-
tors depend on the value type. For example, overlap of
intervals is handled differently depending on whether
one deals with real numbers, integers, or time based
on some calendar system. For unordered values there
is no notion of interval so that overlap is simply defined
as the coincidence of values.

constraint space3

[1]

user work area

constraint space 1
m E2

constraint space 2
B E3

HEl

Figure 2. Collision of events with work spaces

The collision concept will be illustrated in the re-
maining sections. For a precise treatment see [30]. We
use simplified two-dimensional spatial arrangements
for work spaces so that a collision can be depicted as
a simple spatial overlap. As a first example, though,
consider the collision of event spaces with work spaces.

We also show that the definition of what constitutes a
collision depends on the particular circumstances and
concomitant reaction.

In Figure 2 an event (event_type, position) has a
point space in the user work space. Spaces 1, 2 and 3
are spaces associated with three different constraints,
and E1, E2 and E3 are events arising in the shown work
area. space3 lies entirely outside the work area and will
never be affected by events within the user work area.
E1 does not collide with any of the other two constraint
spaces and, hence, will not cause any constraint check.
E2 collides with spacel and will cause further exam-
ination of the corresponding constraint (provided its
underlying event type agrees with the event type of
E2). Likewise, the rules of both spacel and space2 are
candidates for a check on the occurrence of E3. That
space2 does not completely fall within the work area is
of no significance here. Now suppose that in our case
study spaces 1 and 2 represent two zones in a building
together with the layout of their pipes for the water
supply, with the overlap symbolizing a vertical shaft
for the water main. Suppose further that the designer
redesigns the shaft by, say, enlarging the diameter of
the water main. Then there is at least a possibility
that piping in the two zones must be revised.

Let event E1 signify that the designer moves an elec-
tricity outlet somewhere outside the two zones. If it
was outside before as well, then clearly there is no ef-
fect on the two zones. If it was inside, though, it is no
longer obvious that piping in the two zones remains
unaffected. Hence, another interpretation of events
seems better suited, namely one which associates with
an event the entire work space, 1.e. treats the event as
a tuple (event_type, work_space). In such a case event
E1 indiscriminately affects spaces 1 and 2. We notice
again that we must provide even within the same ap-
plication more than one way on how to define and deal
with collisions.

4.2. Rules

Rules codify the subscription mechanism for
prospective interactions: They must identify the event
types to which a designer wishes to pay attention to,
the work space within which an event of the given type
indicates a potential effect, a constraint that would
have to be checked to determine whether such an effect
does indeed exist (thus in essence mediating between
the work spaces and, hence, designers involved), and
specify an action to be taken (which may range from
notifying the user of the result of the constraint check
to invoking some automatic reaction). Figure 3 shows
the general format, basically an event—condition—action

(ECA-) rule which has been extended by a spatial
clause.

in work space

on set of event types
if constraint

do set of actions

Figure 3. Rule format.

Rules can easily be extended to deal with retrospec-
tive interaction as well: Associate with queries a spe-
cial event type, and raise for a given query an event
(event_type, user_work_space).

Since each constraint is associated with a constraint
space within which it is valid, and such a space may
cover a number of object work spaces, rules are also the
means to describe constraints. Essentially the declara-
tion of constraints and subscriptions are merged into a
single concept.

5. Queries and updates

5.1. Queries

Queries are the basic mechanism for retrospective in-
teraction. As noted before, in our environment queries
are characterized by specifying a search work space
(query space), e.g., a user work space, and are resolved
by determining the object work spaces with which the
query space overlaps. This approach corresponds to a
descriptive formulation of set—oriented retrieval well—
known from database systems [9]. The view of query
processing as the detection of a collision of spaces also
bears a close relationship to the various data structures
and algorithms that support multi-attribute queries
such as grid files or multi-dimensional trees [28]. Par-
ticularly illustrative are structures that directly sup-
port spatial queries in connection with geographic in-
formation systems [22]. The similarity also suggests
that the access path techniques developed for multi—
attribute queries could easily be adapted to query pro-
cessing that reflects the collision concept.

Figure 4 gives a simple visualization. In it the query
space collides with three object work spaces. Several
kinds of query processing are conceivable. For example,
all colliding objects may be recovered, or only those
that entirely lie within the query space, or all objects
that are covered by the query space to more than 50%
(however this is computed).

Indeed there is a more general aspect to our ap-
proach: Anything that can be represented as a work

space can be the subject of retrieval by a query, with a
specific choice of the type of collision processing. This
introduces an element of orthogonality into query pro-
cessing. For example, since a query is itself determined
by a space a query could be used to recover a set of
pertinent queries. Queries could be used to examine
constraint spaces. Constraints could be checked on
queries, or be attached to queries.

objectl object3

object4

object2

query space

object5

Figure 4. Visualization of query processing

5.2. Updates

The ultimate source of all interaction are updates to
the design database. Since a designer operates within
a work space, his or her updates are confined to his
or her current work space. Updates may not just set
values on one or more dimensions but may combine
work spaces, as when the designer wishes to attach a
predefined constraint space to his or her current work
space, effectively merging the two. The current work
space may overlap with the current or potential work
spaces of other designers and thus defines the potential
for interaction.

In set—oriented descriptive languages updates resem-
ble queries and indeed have in common with them an
identification of objects, in this case those that are to
undergo changes. Consequently, in our environment
updates designate a query space which in turn deter-
mines by collision the objects to be changed. For ex-
ample, to delete object work spaces from the database,
one provides a query space that contains them. To
modify for selected work spaces the values along cer-
tain dimensions one follows the same selection proce-
dure. Insertion of a new space, though, falls outside
the scope of the collision mechanism.

In the case of prospective interaction, one would also
have to raise corresponding events. One could also take
a more precautionary action by using the same query to
identify work spaces of other designers with a potential
for conflict due to constraint violations.

Due to the temporal dimension of work spaces, ma-
jor design decisions result in all likelihood in a new
decision space for the affected objects. Deleted objects

must be preserved if there is a chance that their space
may become the target of later backtracking in histo-
ry. Modifications and insertions may later have to be
rescinded, hence the old work space must be retained
and a new one constructed. In our case study, a cor-
responding versioning mechanism sets for an old space
the upper boundary of the t—interval to the time of
change, and for a new space the lower boundary to
that time value. Figure 5 illustrates in successive steps
of insertion, deletion and modification the situations
with constraint spaces (note that for the sake of illus-
tration the space has been split into geometric area and
time interval).

6. Selected issues
6.1. Rule execution options

As noted in section 4.2, subscriptions and con-
straints are treated uniformly and are maintained in
the form of ECA rules tied to some validity space.
Rules, or triggers, are known from active database sys-
tems as a means for constraint checking [5, 6, 7, 33].
Consequently, one would expect to carry over the exe-
cution semantics and facilities from these systems.

However, there are some differences. To the best of
our knowledge the use of constraint checking by rules
as a means for controlled interaction is new (it was
first discussed by the authors in [29]). Tt is reflected in
the rules by including work spaces as a separate clause
rather than as part of the constraint clause. This ex-
tension even provides some technical benefit: Search-
ing the rules affected by a given event is more limited
and, hence, much faster. This particular aspect has
also been a motive in the association of rules with con-
texts in SAMOS and Sentinel. SAMOS takes contexts
into account by supporting event parameters that re-
strict complex events to relevant categories such as a
specific transaction or a particular user [10]. Sentinel
provides rule evaluation contexts which differ in the set
of relevant events contributing to complex events [8].

Traditionally, constraint checks and, hence, rules
may be activated or dectivated [1]. Since we include
the dimension of time in our notion of work space, ac-
tivation and deactivation is simply achieved by defining
a new space (with the time dimension changed) with
each such constraint because collision takes place only
for those spaces whose time dimension collides with the
time of the event.

By manipulating the time of an event one can
achieve interesting effects. For example, since accord-
ing to section 5 we maintain the history of spaces, one
could explore which effects a given event might have

(d1,el,cl,al)
[t0,*]

(d2,e1,c2,a2)
[t0.*]

(d3,e3,c1,a2
[t0.1]

change at time t1
(insert)

(d1,el,cl,al)
[t0,%]

(d2,e1,c2,a2)
[t0,"]

(d4,el,c3,a3)
[t1,t3] (d3,e3,c1,a2
[to,t2]

(d4,e2,c3,a4)
[t3,]

change at time t3
(modify)

(d1,el,cl,al) (dl,el,cl,al)
[t0,*] [t0,%]
change at
(d2,e1,c2,a2) time t2 (d2,e1,c2,a2)
[t0.1] - t0."]
(delete)
(d4,e1,c3,a3) (d4,e1,c3,a3)
[t1,%] (d3,e3,c1,a2 [t1,%] (d3,e3,c1,a2
[t0,*] [t0,t2]

Figure 5. Successive states of a constraint space after insertion, deletion and modification (in that
order). Letter codes are d for area, e for event, c for constraint and a for action; * is open boundary.

The time intervals are shown separately.

had in the past in order to find out how many incon-
sistencies were tolerated at some earlier time. Or one
could hold an event for some time in order to execute
it once certain constraints have been reactivated, al-
though to carry events over into the future requires
some persistence mechanism for events.

After an event was recognized to apply to an ECA
rule, the time at which its condition and action parts
are executed can be controlled by coupling modes [1].
This has been uncritical so far because the the only
type of action we allow is notification of the user. We
permit a variety of responses when a check of the con-
dition fails: No notification (ignoring the check), notifi-
cation only if explicitly desired, immediate notification
and continuation of regular processing, immediate no-
tification with interruption, refusal of the user activity
that gave rise to the event. Clearly then, the tolerance
level for inconsistencies can be adjusted by updates to
the rule via either or both the time dimension of its
work space and the action.

6.2. Selective backtracking

Backtracking has a long tradition in databases. Its
main use is to maintain the atomicity of transactions
[3]. A single instance of the past, the before-image,
is kept until the transaction has successfully complet-
ed, then it is discarded. If one employed a version-
ing mechanism, more of the history remains available.
Therefore, Lausen [18] extended versioning to databas-
es. By far the closest to our intentions as far as the
temporal dimension is concerned are temporal databas-
es [31, 23, 27, 32], since one may view backtracking as
querying the past and, as shown in section 5.1, collision
is a form of querying.

Since our notion of space is multi-dimensional, we
can use more than the time dimension for backtracking
and thus be both, more general and more selective than
traditional backtracking. In principle, the selection can
again be done by collision: Define a backtracking space,
and then select all spaces which collide with this space.

Figure 6 illustrates the concept for a t4, 10 < ¢4 < ¢1.

In the figure all four constraint spaces collide with
the backtracking space. Three of them collide on time
and geometry. Spaces d1 and d2 remained the same
over the entire time range and thus are not changed
by backtracking so that even the fact that the back-
tracking space splits d1 has no effect. In space d3 the
upper boundary has been reset to the open boundary
”* because at time t1 the update time t2 must still
have been unknown. Space d4 collides on geometry
alone so that it merits closer inspection.

Clearly, the area within the backtracking space is
no longer valid. But what about the area outside the
backtracking space? The specific actions to be taken
are highly application—dependent. For example, in our
case study we distinguish between closed constraints
which if valid in a space are valid in each subspace, and
open constraints if otherwise. Physical laws are closed
constraints, whereas a design decision such as that the
room size must not fall below a certain value is not.
For open constraints the only meaningful solution is to
roll back the entire space, even the portion outside the
backtracking space. In such a case d4 would have to
vanish in its entirety. For closed constraints, however,
it may make sense to leave the area outside the back-
tracking space intact and to roll back only the portion
inside. Figure 6 illustrates this case (the outside por-
tion has been renamed d5). One somewhat confusing
result of selective backtracking is that the overall de-
sign space is composed of spaces with different validity.

7. Related approaches

To summarize our approach, interaction is deter-
mined dynamically by employing work space collision
and constraint checking to establish the potential and
the actual interaction, respectively. We leave a high
degree of freedom to the strategy for the desired collab-
oration. One may choose arbitrary dimensions for the
work spaces, associate different semantics with what
constitutes a collision, allow different interpretations
for a conflict, decide when to activate and deactivate
rules and choose among different coupling modes and
different options even for standardized corrective ac-
tions. By deciding on the order and concurrency of
event processing an event handler can impose its own
strategy on the collaboration. Likewise, the application
of events into the past or the future and selective back-
tracking of constraints would have to follow a strategy
accepted and understood by all participants.

One may view our approach as a generalization and
amalgamation of various other approaches Two were
already mentioned above, active databases and ver-

sioned or temporal databases. Shared work spaces are
also a means for computer—supported interaction in
CSCW where each participant in collective work may
directly observe the results of others [12, 14, 16, 4].
Limitations are the rather small set of data, that can
directly be observed, and the fairly rigid discipline on
how to resolve conflicts and how to pass control among
the collaborating partners, usually with a low degree
of concurrency.

Interaction by detection of constraint violations
could be viewed as some sort of management—by-—
exeption. In it, interaction is mainly corrective in that
conflicts must be recognized as soon as they occur, and
some automatic action triggered or the situation com-
municated to the participants. It is a typical solution to
the management of long-living transactions in shared
design databases [13] but also plays a role in CSCW
[17]. Again, these solutions impose a fairly rigid disci-
pline on the collaboration in order to meet the overrid-
ing goal of consistency, and if they consider history this
rarely goes beyond the needs of transaction recovery or
compensation.

Shared work spaces, though limited to geometry, al-
so seem a natural approach to simultaneous engineer-
ing. And indeed, this is an approach taken by [11]
where cooperation semantics may be formulated with
the aid of interfaces to the spaces. Such semantics
may also be based on common product models for the
spaces [15, 24]. Other approaches to structuring work
work spaces are found in [26] with multiple views on
objects: the shared part of visualization data, the un-
derlying representation, and organizational data about,
e.g., versioning, access rights; in [2] with relationships
between different application protocols; and in [25] and
[21] with communication relationships between distinct
databases and views.

8. Implementation and Experiences

Our approach was developed within a joint project
with architects on database support for concurrent de-
sign of utility buildings that conform to a fairly rigid
standard in terms of rastered layout and building com-
ponents. Architects, utility companies, structural en-
gineers, sanitary engineers, air condition engineers,
among others, must collaborate under conditions of
short development cycles where much of the experts’
work must go on concurrently. Design conflicts must
either be avoided or be brought out in the open imme-
diately so that they can be cleared up. Just consider
how wiring and plumbing affects the placement of in-
terior walls and vice versa.

For the CAAD environment we use a three-layered

(dl,el,cl,al) (dl,el,cl,al)
[t0,*] [t0,*]
(d2,e1,c2,a2) (d2,e1,c2,a2)

[t4,t4] [t0,] N [t0,]
(d4,e1,c3,a3)

[t1,t3] (d3,e3,c1,a2) (d5,e2,c3,24) (g3 e3,c1,a2

[t0,t2] (t3."] [t0,]

(d4,e2,c3,a4)

[t3,4] [

Figure 6. Selective backtracking to time t4, t0 < ¢4 < ¢1. Notation is as in Figure 5.

implementation architecture. The topmost layer — the
representation layer — reflects the user’s perceptions of
the design process, design objects and design spaces.
An elaborate user interface developed by the archi-
tects allows users to deal with all dimensions of the A4
space, not just with the geometrical confines. In par-
ticular, events, constraints, actions may be visualized.
In case of collaboration the overlap of spaces may be
visualized by popping in on the screen the foreign con-
straints that may be affected by one’s own actions. The
next lower level implements the execution engine for
event detection, collision handling, constraint check-
ing and all the subsequent actions. The lowest lev-
el provides the implementation platform. It includes
an object—oriented database management system, and
performance enhancing data structures such as multi—
dimensional indexes for identifying the colliding spaces.

Considerable work especially for plumbing and
wiring was delegated to expert system programs. This
was a major motivating force in the direction of for-
malizing the design process and coming up with a suf-
ficiently uniform model. One of them, the MIDI expert
tool [34], covers all room-building” components, e.g.,
structure, facade, interior walls, and wiring. Design
constraints were jointly developed with the architects
and stored in the database. A user interface for inter-
acting with the constraints was added to MIDI. The
system was then applied to design tasks for multi—
storied office buildings. Response times in these ex-
amples were in the range of less than a minute for the
constraint checks. This is partly due to the spatial lo-
cality of the constraints that results from the modelling
of constraints in work spaces.

The examples so far have not been extensive enough
to render final judgment on how well our concept would
scale up. Nonetheless, we believe that a major attrac-
tiveness of the collision concept lies in its orthogonality
to a variety of situations and the strict separation of

a uniform basic collision recognition mechanism from
a collision processing facility which may be subjected
to a strategy tailored to the demands of a particular
situation.

References

[1] The ACT-NET Consortium. The Active Database
Management System Manifesto: A Rulebase of
ADBMS Features. To appear in ACM SIGMOD
Record 25 (1996), No.3

[2] R. Anderl, A. Wasmer. Methoden zur Modellinte-
gration im Produktentwicklungsprozef. it+ti, 37(5),
1995, 18-23

[3] P. Bernstein, V. Hadzilacos,and N. Goodman. Con-
currency Control and Recovery in Database Sys-
tems. Addison—Wesley 1987

[4] M.P. Case, S.C.-Y. Lu. Discourse Model for col-
laborative design. Computer-Aided Design, 28 (5),
1996, 333-345

[5] S. Ceri, J. Widom. Deriving production rules for
constraint maintenance. Proc. 16th Int. Conf. on
Very Large Data Bases 1990, 566-577

[6] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca.
Constraint enforcement through production rules:
Putting active databases to work. IEEE Data Engi-
neering 15 (1992), 1-4, 10-14

[7] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca. Au-
tomatic generation of production rules for integri-
ty maintenance. ACM Trans. Database Syst. 19
(1994), 367-422

[8] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-
K. Kim. Composite Fvents for Active Databases:
Semantics, Contexts and Detection. Proc. 20th Int.
Conf. on Very Large Data Bases 1994, 606-617

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. J. Date, H. Darwen. A Guide to the SQL Stan-
dard. 3rd ed. Addison—-Wesley 1993

S. Gatziu, K. R. Dittrich. FEvents in an Active
Object—Oriented Database System. In N.W.Paton,
M.H.Williams (eds.): Rules in Database Systems.
Workshops in Computing Series, Springer 1994, 23-
39

H. Grabowski, M. Schmidt. Distributed Design —
Working in Design Spaces (in German). Prod.
CAD’92 GI Workshop, Berlin, Springer 1992, 219-
232

I. Greif (ed.). Computer—Supported Cooperative
Work: A Book of Readings. Part II: New Technolo-
gies for CSCW. Morgan Kaufmann 1988

S. Heiler, S. Haradhava, S. Zdonik, B. Blaustein,
A. Rosenthal. A Flexible Framework for Trans-
action Management in Fngineering Environments.
Ch. 4 in A.K.Elmagarmid (ed.): Database Trans-
action Models for Advanced Applications. Morgan
Kaufmann 1991, 87-121

H. Ishii, N. Miyake. Toward an Open Shared
Workspace: Computer and Video Fusion Approach
of Teamworkstation. Comm. ACM 34:12 (1991),
37-50

P. Katranuschkov. COMBI: Integrated Product
Model. In R.J. Scherer (ed.), Proc. 1st European
Conf. on Product and Process Modelling in the
Building Industry, October 1994, Dresden, A.A.
Balkema 1995.

S. Khoshafian, M. Buckiewicz. Introduction to
Groupware, Workflow, and Workgroup Computing.

John Wiley & Sons 1995

M. Kyng. Designing for Cooperation: Cooperating
in Design. Comm. ACM 34:12 (1991), 65-73

G. Lausen. Formal Aspects of Optimistic Concur-
rency Control in a Multiple Version Database Sys-
tem. Information Systems 8 (1983), 291-301

P.C. Lockemann, J.A. Miille, R. Sturm, V. Hov-
estadt. Modeling and integrating design data from
experts in a CAAD environment. In R.J.Scherer
(ed.): Product and Process Modelling in the Build-
ing Industry. A.A.Balkema 1995, 29-34

P.C. Lockemann, R. Sturm, J.A.Mille, V. Hoves-
tadt. Area—dependent constraints for design control
i a CAAD environment. In P.—J. Pahl, H. Werner
(eds.): Computing in Civil and Building Engineer-
ing. Vol.1. A.A.Balkema 1995, 755-762

B.K. MacKellar, J. Peckham, M. Doherty. A data
model for the extensible support of explicit relation-
ships in design databases. The Very Large Database
Journal, 1995

[22]

[23]

[24]

[25]

[26]

[30]

[31]

[32]

33]

[34]

B. C. Ooi. Efficient Query Processing in Geograph-
tc Information Systems. Lect. Notes in Computer
Science 471. Springer 1987

G. Ozsoyoglu, R. T. Snodgrass. Temporal and Real-
Teme Databases: A Survey. IEEE Trans. on Knowl-
ege and Data Engng. 7 (1995), 513-532

M.A. Rosenman, J.S. Gero. Modelling multiple
views of design objects in a collaborative CAD en-
vironment. Computer-Aided Design, 28 (3), 1996,
193-205

M. Rusinkiewicz, A. Sheth, G. Karabatis. Specify-
ing Interdatabase Dependencies in a Multidatabase
Environment. Computer, December 1991, 46-53

M. Saad, M.L. Maher. Shared wunderstand-
ing tn computer-supported collaborative design.
Computer-Aided Design, 28 (3), 1996, 183-192

R. T. Snodgrass (ed.). The TSQL2 Temporal Query
Language. Kluwer 1995

M. Stonebraker (ed.). Readings in Database Sys-
tems. 2nd ed. Chapter 2: Relational Implementa-
tion Techniques, Morgan Kaufmann 1994

R. Sturm, J. A. Mille, P. C. Lockemann. Tempo-
rized and localized rule sets. In T. Sellis (ed.): Rules
in Database Systems. Lect. Notes in Computer Sci-
ence 985. Springer 1995. 131-146

R. Sturm. Dynamic Rule Sets Describing Design
Lattitudes (in German). To appear: VDI Verlag,
1997

A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, R. Snodgrass. Temporal Databases:
Theory, Design and Implementation. The Ben-
jamin/Cummings Publ. Co. 1993

V. J. Tsotras, A. Kumar. Temporal Database Bibli-
ography Update. ACM SIGMOD Record 25 (1996),
No.1, 41-51

J. Widom, S. Ceri. Active Database Systems.
Morgan—-Kaufmann 1995

H. Wichmann (ed.). System-Design: Fritz Haller
Bauten - Mdbel - Forschung. Birkhauser Berlin,
1989 (in German)

