Adaptive Parameter Pruning in Neural Networks

Lutz Prechelt*

TR-95-009

March 1995

Abstract

Neural network pruning methods on the level of individual network parameters (e.g. connection weights) can improve generalization. An open problem in the pruning methods known today (OBD, OBS, autopruner, epsipruner) is the selection of the number of parameters to be removed in each pruning step (pruning strength). This paper presents a pruning method \textit{lprune} that automatically adapts the pruning strength to the evolution of weights and loss of generalization during training. The method requires no algorithm parameter adjustment by the user. The results of extensive experimentation indicate that \textit{lprune} is often superior to autopruner (which is superior to OBD) on diagnosis tasks unless severe pruning early in the training process is required. Results of statistical significance tests comparing autopruner to the new method \textit{lprune} as well as to backpropagation with early stopping are given for 14 different problems.

*prechelt@icsi.berkeley.edu; permanent address: prechelt@ira.uka.de
1 Pruning and Generalization

Once an input/output encoding has been chosen, there are several classes of methods for improving the generalization obtained from neural networks. The most important of these are the early stopping method [4, 8], explicit regularization [4, 9, 14], additive (constructive) learning [3], and network pruning. We consider the last technique here.

The principal idea of pruning is to reduce the number of free parameters in the network by removing dispensable ones. If applied properly, this approach often reduces overfitting and improves generalization. Pruning methods usually either remove complete input or hidden nodes along with all their associated parameters or remove individual connections, each of which carries one free parameter (the weight). This latter approach is very fine-grained and makes pruning particularly powerful.
1.1 Known Pruning Methods

The key to pruning is a method to calculate the approximate importance of each parameter. Several such methods have been suggested. The simplest one is to assume the importance to be proportional to the magnitude of a weight. More sophisticated approaches are the well-known optimal brain damage (OBD) and optimal brain surgeon (OBS) methods. OBD [2] uses an approximation to the second derivative of the error with respect to each weight to determine the saliency of the removal of that weight. Low saliency means low importance of a weight. OBS [6] avoids the drawbacks of the approximation by computing the second derivatives (almost) exactly. However, OBS is computationally very expensive, because for n weights, it requires n \(^2\) computations per pruning step to determine the saliencies.

Both methods have the disadvantage of requiring training to the error minimum before pruning may occur. For many problems, this introduces massive overfitting which often cannot be repaired by subsequent pruning. The autoprune method [4] avoids this problem. Its weight importance coefficients are defined by a test statistic \(T \) for the assumption that a weight becomes zero during the training process:

\[
T(w_i) = \log \left(\frac{\sum_p w_i - \eta (\partial E/\partial w_i)_p}{\eta \sqrt{\sum_p ((\partial E/\partial w_i)_p - (\partial E/\partial w_i))^2}} \right)
\]

In contrast to OBD and OBS, this measure does not assume an error minimum has been reached; it can be computed at any time during training. In the above formula, sums are over all examples \(p \) of the training set, \(\eta \) is the learning rate, and the overline means arithmetic mean over the examples. A large value of \(T \) indicates high importance of the connection with weight \(w_i \). Connections with small \(T \) can be pruned. [4] has convincingly shown autoprune to be superior to OBD.

Given the importance \(T \) of each weight at any time during training, two questions remain to be answered:

1. When should we prune?
2. How many connections should be removed in the next pruning step?

The first question is simple to answer: For OBD and OBS, pruning occurs when minimum training set error has been reached. For autoprune, pruning occurs when overfitting begins (here: when the validation set error increased twice during training; see below).

1.2 An Open Problem: How Much To Prune?

The second question, however, has not yet been answered satisfactorily. The authors of OBD suggest to delete "some" parameters. The authors of autoprune at least suggest a concrete pruning schedule: remove 35\% of all parameters in the first pruning step and 10\% in each following step. Such rules of thumb, however, are not satisfying, because obviously they cannot always be optimal. The following section presents a pruning method, called lprune, based on autoprune that tries to solve the problem. It computes the pruning schedule dynamically during training, adapting to the evolution of the weights and to the amount of overfitting observed. Subsequent sections present and discuss a set of empirical results obtained for lprune.
2 Adaptive Pruning: The lprune Method

2.1 Observations

The lprune method builds on a number of observations made for the distribution of the T coefficients during training:

1. The distribution of the values is roughly normal.
2. During training, both the mean μ_T and the variance σ_T of the distribution tend to increase.
3. When pruning occurs, the variance suddenly drops and the mean suddenly rises.
4. Afterwards, the variance increases again and the mean decreases again. After a while, normal development continues as in (2) above.

Figure 1: Four pruning coefficient histograms from the same training run (glass1 problem with pivot architecture) in epochs 2, 40, 42, and 100. Horizontal axis: coefficient size, grouped in classes of width 1. Vertical axis: absolute frequency of weights with this coefficient size. The right vertical line is the arithmetic mean of the coefficient sizes, the left vertical line is 0.5 times that. The area under the curve left of the left line thus indicates what would be pruned at that point for $\lambda = 0.5$ when a pruning step would occur. In the run shown, pruning occurred after epoch 40.

See figure 1 for an example of this behavior. The observations suggest that a certain fraction of the mean of the coefficient distribution can be used as a threshold for pruning. All
connections whose T is below the threshold are pruned. Early during training the fraction of these connections is rather small, because the variance is small. Once the weights have evolved and differentiated, the variance is larger and it is safe to prune a larger fraction of the connections. After a pruning step, immediate further pruning should remove only a few connections, if any, since the remaining weights have to differentiate again before the important ones can safely be distinguished from the less important ones. This reduction of pruning strength is ensured by the reduced variance after pruning and is further pronounced immediately after pruning due to the larger mean of the distribution (see epoch 42 vs. 40 in figure 1).

2.2 Approach

From these observations, the following rule seems reasonable for determining how many connections to prune:

\[
\text{At each pruning step, prune all those connections } i \text{ whose weights } w_i \text{ satisfy } T(w_i) < \lambda \mu_T \text{ for some } \lambda \in [0 \ldots 1]
\]

Experimentation with this method shows, however, that no fixed value of λ results in good adaptation of pruning strength. We have to choose λ dynamically as well. The key factor for determining an appropriate value of λ is the amount of overfitting that is observed for the network. The higher the overfitting, the more should be pruned, and the higher λ must be.

2.3 Definitions

To formalize this notion we define “overfitting” quantitatively, as well as some other concepts that can be used to express criteria for stopping or triggering pruning.

Let E be the objective function (error function) of the training algorithm, for instance the squared error. Then $E_{tr}(t)$ is the average error per example over the training set, measured after epoch t. $E_{va}(t)$ is the error on the validation set and is used to determine overfitting. $E_{te}(t)$ is the error on the test set; it is not known to the training algorithm but characterizes the quality of the network resulting from training.

The value $E_{opt}(t)$ is defined to be the lowest validation set error obtained in epochs up to t:

\[
E_{opt}(t) := \min_{t' \leq t} E_{va}(t')
\]

Now we define the *generalization loss* at epoch t to be the relative increase of the validation error over the minimum-so-far (in percent):

\[
GL := GL(t) := 100 \cdot \left(\frac{E_{va}(t)}{E_{opt}(t)} - 1 \right)
\]

The generalization loss directly characterizes the amount of overfitting.
A high generalization loss is one candidate reason to stop training or to perform a pruning step. This leads us to a class of triggering criteria: Stop or prune as soon as the generalization loss exceeds a certain threshold. We define the class GL_α as

$$GL_\alpha : \text{satisfied after first epoch } t \text{ with } GL(t) > \alpha$$

However, we might want to suppress stopping or pruning if the training is still progressing very rapidly. When the training error still drops quickly, generalization losses may have a higher chance to be "repaired". To formalize this notion we define a training strip of length k to be a sequence of k epochs numbered $n + 1 \ldots n + k$ where n is divisible by k. The training progress (in per thousand) measured after such a training strip is then

$$P_k(t) = 1000 \cdot \left(\frac{\sum_{t' \in [t-k+1 \ldots t]} E_{tr}(t')}{k \cdot \min_{t' \in [t-k+1 \ldots t]} E_{tr}(t')} - 1 \right)$$

that is, “how much was the average training error during the strip larger than the minimum training error during the strip?”

Note that this progress measure is (intentionally) high for unstable phases of training, where the training set error goes up instead of down. The progress is, however, guaranteed to approach zero in the long run unless the training is globally unstable (e.g., oscillating).

In the following we will always assume strips of length 5 (i.e., $k = 5$) and measure the cross validation error only at the end of each strip.

Another class of triggering criteria relies only on the sign of the changes in the generalization error. These criteria say “stop or prune when the generalization error increased in s successive strips”:

$$UP_s : \text{satisfied after epoch } t \text{ iff } UP_{s-1} \text{ was satisfied after epoch } t - k$$

$$UP_1 : \text{satisfied after first end-of-strip epoch } t \text{ with } E_{va}(t) > E_{va}(t - k)$$

(The name UP is a mnemonic for “error went up”.) This class of criteria is independent of E_{opt}. It is preferable over GL_α for triggering pruning steps, because pruning always results in an intermediate increase of GL. The next pruning step should however occur not when GL is high, but when it increases.

2.4 Algorithm

Initial experiments showed that an appropriate way to adapt λ is to increase it with growing GL, saturating at some maximum value. This leads to the following adaptation rule for λ:

$$\lambda := \lambda(GL) := \lambda_{max}(1 - \frac{1}{1 + \frac{GL}{\alpha}}) \quad \lambda_{max} := 2/3 \quad \alpha := 2$$

![Plot](image-url)
The given values of λ_{max} and α were found by educated guess after a small number of experiments with 4 of the 42 example problems used below. These parameters are only moderately critical; the values given here are certainly not exactly optimal.

The complete lprune algorithm ('lambda-prune') can now be formulated as

```
REPEAT
    Train network for one epoch;
    IF epoch number MOD k = 0 THEN
        Compute $E_{va}$, $E_{opt}$, and $GL$ using the validation set;
    END;
UNTIL $GL > 5$; (* i.e., apply normal early stopping *)
Reset network to the state that exhibited $E_{opt}$;
(* Now begin training with pruning: *)
REPEAT
    Train network for one epoch and compute $T(w_i)$ values;
    IF epoch number MOD k = 0 THEN
        Compute $E_{va}$, $E_{opt}$, and $GL$ using the validation set;
        IF $U P_2(t)$ satisfied AND no pruning k epochs ago THEN
            Prune all connections $i$ whose weights $w_i$ satisfy $T(w_i) < \lambda(GL) \mu_T$;
        END;
    END;
UNTIL $t > 5000$ OR $P_k(t) < 0.1$ OR
        ( At Least 25 Epochs trained since last pruning AND $GL > 100$ AND $P_k(t) < 0.4$)
```

The constants 5000, 0.1, 25, 100, and 0.4 are not critical and make a conservative stopping criterion for the whole process. The result of the training is the network that exhibited the lowest validation error E_{opt}. Note that in order to implement this scheme, only one duplicate weight set is needed.

3 Results And Discussion

This section first describes the experimental setup used and the overall behavior observed for the pruning algorithms. It then presents and interprets the results of a quantitative comparison of the algorithms.

3.1 Experiment Setup

Extensive benchmark comparisons were made between autoprunge, lprune, and static backpropagation with early stopping. 14 different problems were used, all from the PROBEN1 benchmark set [10], a collection of diagnosis problems. Most of these problems stem from the UCI machine learning databases archive. The problems have between 8 and 120 inputs, between 1 and 19 outputs, and between 214 and 7200 examples. 9 of the problems are classification tasks using 1-of-n output encoding (cancer, carid, diabetes, gene, glass, heart, heartc, horse, soybeam, and thyroid), 4 are approximation tasks (building, flare, hearta, and heartac); all problems are real datasets from realistic application domains.
All runs were done using the RPROP weight update rule [12], squared error function, and the RPROP parameters \(\eta^+ = 1.2, \eta^- = 0.5, \Delta_0 \in [0.05 \ldots 0.2]\) randomly per weight, \(\Delta_{max} = 50, \Delta_{max} = 0\), initial weights from \([-0.1 \ldots 0.1]\) randomly.\(^1\) RPROP is a fast backpropagation variant that is about as fast as quickprop but more robust in the choice of parameters. RPROP requires epoch learning, i.e., the weights are updated only once per epoch.

In three different random ways, the examples of each problem were partitioned into training set (50%), validation set (25%), and test set (25% of examples), resulting in 42 datasets (cancer1, cancer2, cancer3, card1, card2, card3 etc.). Each of these datasets was trained with its pivot architecture network topology [10], as well as with the noshortcut pivot architecture network topology, which is derived from the former by excluding all connections (except bias connections) that do not go from one layer to the immediately following layer. For each of the 42 datasets and each of the two network topologies for each dataset, 30 runs were made with autoprune, 30 with lprune, and 30 with backpropagation with early stopping using the GL5 stopping criterion; more than 7500 runs overall.

After each of these runs, the error \(E_{te}\) of the resulting network was measured.\(^2\) For each dataset, the autopruning sample of 30 such test set errors was compared to the corresponding lprune sample and the backprop sample using the t-test. For correct application of the t-test, it was necessary to use the logarithm of the test error (since only this has normal distribution), to remove a few outliers above and below (1.1% of all runs for autopruning and 2.0% for lprune), and to apply the Cochran/Cox correction for the unequal variances case. The results of the tests are shown in tables 1 to 4.

3.2 Qualitative Behavior

Each significant pruning step leads to a large sudden increase of \(GL\), followed by a rapid decrease. Whether the decrease leads to a lower or higher \(GL\) than before pruning depends on whether the pruning occurred at the right time and in the right strength. To employ the \(UP_2\) triggering criterion means to accept the view that pruning should occur whenever a substantial deterioration of generalization behavior (as measured noisily by the validation set error) begins. It would probably be better in some cases to wait longer before pruning, because during certain phases in training overfitting occurs but vanishes automatically later. It is not at all clear, however, how such a situation should be detected at its beginning. Therefore, \(UP_2\) seems to be a reasonable way to determine when to prune. The pruning strength of autopruning, however, is often not appropriate.

Since early stopping is performed as the first phase of the pruning algorithm (for both autopruning and lprune), these training methods take significantly, but not prohibitively longer than training with static networks and early stopping. In the setup chosen, typically three to five times as many epochs are trained. However, epochs after pruning consume less time, since the network is smaller and the total number of epochs could be reduced by

\(^1\)Note that RPROP requires a modification in the way the \(T(w_i)\) are computed, because the weight change is not proportional to \(\partial E/\partial w_i\).

\(^2\)Caveat: In the experiments, the data of the validation set was never used for actual gradient training. In a real application, one would not want to waste valuable data points in this manner.
using a faster stopping criterion than the extremely conservative one chosen in the given setup.

In the example autoprun run shown in figure 2, the network tolerates the 35% pruning of the first pruning step, yet is ruined by the second pruning step many epochs later, which removes only 10% of the weights. Towards the end of the training run, the network is always overpruned, since a very conservative stopping criterion is used.

For lprune, the situation is a bit different. As long as overfitting is only moderate, the pruning strength is usually small. The same is true when the weights have not yet sufficiently evolved since the last pruning step or since the beginning of training. On the other hand, when overfitting is large, pruning can be quite severe in lprune.

In the example lprune run shown in figure 3, this behavior leads to several small pruning steps (the first four remove 2%, 3%, 3%, and 5% of the connections, respectively) that manage to keep overfitting low over a longer training period and finally reduce the validation error. In this example, lprune is superior to autoprun.

The behavior observed in this example is not prototypical, though. Very different error curves and pruning sequences occur as well. However, one observation prevails: pruning with a static schedule sometimes destroys the generalization ability of the network unnecessarily. In the case of the schedule used in autoprun this is usually because of too heavy or too fast pruning. Significantly lower pruning strengths could avoid this, but would exhibit another problem: namely that overfitting cannot be reduced as fast as it builds up. Therefore,
pruning with very small pruning strength and static schedule would probably be similar to OBD, which has been shown inferior to autoprune in [4]. Adaptive pruning schedules are clearly necessary.

3.3 Quantitative Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>pivot architectures</th>
<th>noshortcut pivot architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>building</td>
<td>L 0.0</td>
<td>—</td>
</tr>
<tr>
<td>cancer</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>card</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>diabetes</td>
<td>—</td>
<td>A 2.5</td>
</tr>
<tr>
<td>flare</td>
<td>—</td>
<td>A 7.3</td>
</tr>
<tr>
<td>gene</td>
<td>A 0.0</td>
<td>A 0.0</td>
</tr>
<tr>
<td>glass</td>
<td>—</td>
<td>L 2.3</td>
</tr>
<tr>
<td>heart</td>
<td>A 5.5</td>
<td>A 0.4</td>
</tr>
<tr>
<td>heart_a</td>
<td>—</td>
<td>A 0.1</td>
</tr>
<tr>
<td>heart_ac</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>heart_c</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>horse</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>soybean</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>thyroid</td>
<td>—</td>
<td>L 6.2</td>
</tr>
</tbody>
</table>

Tables 1 and 2: Comparison of autoprune ("A") to lprune ("L") using the pivot architectures and noshortcut pivot architectures, respectively. Compares test set errors E_t for variants 1, 2, 3 of each problem. The entries show differences (in samples of 30 runs each) that are statistically significant on a 10% level and the corresponding p-values (in percent). Low p-values indicate high significance. The letter indicates which algorithm is better; a dash means that no significant difference was found.

Table 1 (pivot architectures): 26 times no significant difference, 10 times A better, 6 times L better.
Table 2 (noshortcut pivot architectures): 27 times no significant difference, 10 times A better, 5 times L better.

As we see in tables 1 and 2, lprune is better in some cases and autoprune is better in others. For 2 of the 14 problems, there is never a significant difference. How often autoprune is better than lprune and vice versa, depends on the particular selection of datasets and should thus not be overemphasized. However, there is a weak pattern in the results: autoprune tends to be better for problems that have overly large networks, for instance the gene problems that have 120 input units (and more so with shortcut connections than without). On the other hand, lprune is often better when pruning is delicate, for instance for the building, glass, and thyroid problems that have only 14, 9, and 21 inputs, respectively.

An explanation of this effect is that lprune is unable to perform heavy pruning very early during training when overfitting is only small. However, such heavy pruning is what would be needed to perform well on e.g. the gene problems and it is what autoprune does. On the other hand, the static pruning schedule of autoprune is too rigid. It prunes too much in situations where waiting for further weight differentiation is required despite the fact that overfitting has begun. Such situations are recognized by lprune and its pruning removes
only very few weights, if any. Thus, lprune solves a part of the pruning schedule problem, namely adapting pruning strength to the stage of development of the weights. The rest of the problem is still unsolved, namely determining the absolute number of weights that should be pruned.

<table>
<thead>
<tr>
<th>Problem</th>
<th>pivot architectures</th>
<th>noshortcut pivot architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>building</td>
<td>(A 0.0)</td>
<td>building (A 0.0)</td>
</tr>
<tr>
<td>cancer</td>
<td>—</td>
<td>cancer —</td>
</tr>
<tr>
<td>card</td>
<td>—</td>
<td>card —</td>
</tr>
<tr>
<td>diabetes</td>
<td>—</td>
<td>diabetes —</td>
</tr>
<tr>
<td>flare</td>
<td>A 0.0</td>
<td>flare —</td>
</tr>
<tr>
<td>gene</td>
<td>A 0.0 (A 0.0)</td>
<td>gene A 1.1</td>
</tr>
<tr>
<td>glass</td>
<td>A 8.6</td>
<td>glass —</td>
</tr>
<tr>
<td>heart</td>
<td>—</td>
<td>heart B 0.2</td>
</tr>
<tr>
<td>hearta</td>
<td>—</td>
<td>hearta B 2.4</td>
</tr>
<tr>
<td>heartc</td>
<td>—</td>
<td>heartc B 2.4</td>
</tr>
<tr>
<td>horse</td>
<td>—</td>
<td>horse B 4.7</td>
</tr>
<tr>
<td>soybean</td>
<td>—</td>
<td>soybean —</td>
</tr>
<tr>
<td>thyroid</td>
<td>A 0.4</td>
<td>thyroid A 0.0</td>
</tr>
</tbody>
</table>

Tables 3 and 4: Comparison of autoprune ("A") to backprop with early stopping ("B"). Analogous to tables 1 and 2 above.

Table 2 (pivot architectures): 22 times no significant difference, 18 times A better (3 times slightly dubious due to non-normal backprop samples), 2 times B better.

Table 4 (noshortcut pivot architectures): 18 times no significant difference, 16 times A better (4 times slightly dubious), 8 times B better.

In a second series of benchmarks, pruning was compared to backprop without pruning (using the same setup as before). The results are shown in tables 3 and 4. We see that pruning indeed usually does improve generalization significantly; a fact that is often not properly recognized. Therefore, pruning algorithms are preferable over static networks, at least in applications where small improvements of generalization do matter. This is particularly true if one uses networks with very many parameters (as is often recommended for the early stopping method): without shortcut connections, backprop is significantly better than pruning in eight of the cases (table 4), whereas with the shortcut connections this value drops to just two (table 2).

4 Conclusion

A method for adaptive calculation of pruning strength for connection pruning algorithms was described. It represents a partial solution to an open problem in network pruning, determining pruning strength. Extensive benchmarking compared adaptive and non-adaptive pruning and backprop without pruning. The following conclusions apply to the class of learning tasks covered by the experiments:
1. Training with pruning very often results in better networks than training without pruning, but rarely results in worse networks. Thus, pruning methods should be used more often than they are used today.

2. The automatic pruning strength adaptation of the lprune method can result in better networks than pruning with static pruning schedules. This is true in particular for small networks.

3. However, the lprune solution to the pruning strength problem is only partial, because lprune is unable to execute severe pruning in early training stages as it is sometimes needed, in particular for networks with overly many inputs such as those for the gene problems.

4. As the very different results for the various problems and even for the dataset permutations show, benchmarking has to be extensive and careful in order to yield significant and correct results — this is in sharp contrast to the state of the practice [11].

Acknowledgements

The research presented in this report was performed at the University of Karlsruhe, but the report itself was written at ICSI. Thanks to Walter Tidhy and Jerry Feldman for making the visit possible. Thanks to Michael Philippsen, Rainer Storn, Ben Gomes, and Alexander Linden for commenting on drafts of this report.

A Availability of Raw Data

The datasets used in the experiments are from the PROBEN1 benchmark collection, which is available for anonymous ftp from

ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz

and also from

The raw result data obtained in the experiments (one record per program run) is available electronically, too. Use either

http://wwwipd.ira.uka.de/~prechelt/nndata.html

or

ftp://ftp.ira.uka.de/pub/neuron/nndata.tar.gz

References

