
Experience Report: Teaching and Using

the Personal Software Process (PSP)

Lutz Prechelt (prechelt@ira.uka.de)
Barbara Unger (unger@ira.uka.de)

Oliver Gramberg (gramberg@ira.uka.de)
Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/694092

Submission to ESEC 1997

January 16, 1997

Keywords: software process, software quality,

metrics, measurement, process tools, empirical

evaluation.

Abstract

PSP is a methodology for an individual soft-

ware engineer's continuous self-improvement.

Currently, few PSP experience reports are

available from non-US sources, and hardly any

from people other than the PSP inventor Watts

Humphrey. We describe independent experi-

ences with PSP. We �nd that PSP is a vi-

able and useful approach and has quanti�able,

positive impact. Problems in teaching PSP

are in keeping students motivated and keep-

ing them focused on general ideas instead of

details. Problems in using a personal software

process are keeping enough self-discipline and

�nding proper tool support.

1 The Personal Software Pro-

cess (PSP)

The Personal Software Process (PSP) frame-

work is an approach suggested by Watts

Humphrey in 1995[1]. It describes a method-

ology that leads an individual software en-

gineer towards disciplined, well-de�ned work

with continuous self-improvement. The PSP

ideas are independent of programming lan-

guage, application domain, and team organi-

zation; they can be applied to programming as

well as to many non-programming tasks.

Humphrey suggests to learn PSP in form of a

15 week course (e�ort: one 90-minute lecture

and one exercise of 3 to 10 hours each week)

that trains a set of techniques that form the

basis of a personal software process. The stu-

dent should then vary and optimize these tech-

niques for his/her needs and introduce other

techniques if required (therefore the name Per-

sonal Software Process).

The core ideas of the PSP framework are

1. to base the process on measurements, be-

cause \many people have feelings and

opinions, but few people have data"

(Humphrey) and

2. to make the process well-de�ned, because

you can only improve what you do if you

know what you do.

For further details see the appendix.

A problem with PSP (and the PSP course) as

suggested by Humphrey is that it was more

or less designed from the perspective of but a

1



single person, and not all of its aspects easily

transfer to the needs of others. However, as

far as we know only Humphrey has published

PSP experiences in widely accessible publica-

tions, e.g. [2].

In the following we describe our experiences

with teaching and using PSP, based on our

courses for graduate students, researchers, and

professional software engineers. There is one

section on quantitative results with PSP, one

on learning PSP and teaching the course, and

one on using a personal software process.

2 Quantitative results

This section presents some quantitative results

obtained in our �rst PSP course. These results

con�rm those published by Humphrey and add

information about students' appraisal of the

PSP course.

2.1 Student performance

The course performance of 20 university stu-

dents is shown in the �gures below. Figures 1

and 2 show the development of the defect den-

sities over the 10 exercises of the course. We see

in the thick trendline of Figure 1 that the total

number of defects found during development

per 1000 lines of code decreases signi�cantly

over time and the number of defects found late,

namely in the test phase (Figure 2), exhibits a

still more pronounced decrease. Figure 3 shows

that the productivity is hardly impaired by the

PSP during the course, despite the large frac-

tion of bookkeeping e�ort involved.

But students do not only learn to produce soft-

ware with less defects, they also learn to esti-

mate more precisely how long it will take them

to deliver the product. The absolute values

of the time estimation error (in percent) are

shown in Figure 4. The trendline in this case

goes down from about 80% estimation error in

the �rst exercise to about 30% in the last. As

we see, average estimation errors are reduced

signi�cantly over the PSP course even though

the process used keeps changing from one ex-

ercise to the next.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Linear (Avg)

Figure 1: Total number of defects found per 1000

lines of code in each exercise for �rst course of univer-

sity students. Left to right: course exercises number 1

to 10. Top line: maximum defect density of all course

participants. Middle line: average defect density. Bot-

tom line: minimum defect density of all course partic-

ipants. Thick line: linear regression (trend) of middle

line.

2.2 Course evaluation by the stu-

dents

After this course, students answered a ques-

tionnaire with the following results (18 partic-

ipants). The students spent between 4 and 20

hours per week overall for the course (average:

9.7). They judged the di�culty of the lectures

slightly low on a scale from 1 (much too low)

to 5 (much too high), namely 2.8 average, the

di�culty of the exercises just right (3.1 aver-

age). On a scale from 1 (best) to 5 (worst),

they found the course very relevant for their

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Linear (Avg)

Figure 2: Number of defects found in test phase.

2



0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 3: Total productivity in lines of code per hour

over whole exercise.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Linear
(Avg)

Figure 4: Time estimation error: 100 � jTestimated �

Tactualj=Testimated

education (1.7 average), yet were only mod-

erately well motivated (2.3 average). In the

future, we hope to raise motivation by intro-

ducing reviews earlier. Overall, the course got

quite high grades: 1.7 for the lectures and 1.9

for the exercises.

3 Learning and teaching PSP

After learning PSP ourselves (with a course

group of �ve) we have now tought it four

times: Twice to university students, once to ju-

nior university research associates, and once to

professional software engineers. Two of these

courses with 15 participants are still underway,

44 participants have already completed. This

section reports our teaching experiences.

The university students were German infor-

matics diploma students in their �fth semester

or above (i.e., more than half through to the

diploma). They have a solid theoretical educa-

tion but typically rather limited programming

experience. The research associates were all

candidates for an informatics doctoral degree;

they have a lot more programming experience

from larger research projects. The profession-

als were junior and senior software engineers

from a large software company.

We learned important lessons in three areas:

providing and maintaining motivation for the

course, keeping students focused on the impor-

tant things, and properly running the course.

3.1 Motivation

The �rst half of the course deals mostly with

estimating and planning, which compromises

motivation: Subjectively, the amount of book-

keeping e�ort required for PSP planning ap-

pears unreasonable for two reasons. First, the

fraction of bookkeeping e�ort in the course is

indeed large, because the exercises are rather

small. Second, at least students with little

team project experience do not recognize why

good planning is important at all.1

Therefore, we recommend to introduce reviews

much earlier in the course than [1] suggests.

Students then have the constant motivation to

strive for zero defect programs and there is no

longer emphasis on planning alone. In our next

course we plan to introduce reviews in week 3

or 4 instead of week 8.

Another motivation problem regards taking the

course at all: While our informatics students

are highly motivated to attend the course, pro-

fessional software engineers either are some-

what cynical and do not believe that anything

could help them to improve their engineering

practice, or they do not accept a course of 15

days length.

1As a result, students tend to personalize their per-

sonal software process in such a way that they \optimize

away" several of its components and do not learn them

at all.

3



To overcome this problem, we have developed

a set of questions2 which convinced every soft-

ware engineer we have encountered so far that

s/he has severe software process de�ciencies.

By linking the groups of problems addressed

in these questions to PSP course contents,

we can assure most programmers that a PSP

course could help them. Overcoming the cyni-

cism would require even harder proof of suc-

cess of the PSP course than the metrics we

currently supply. Therefore, we are currently

de�ning a controlled experiment to compare

the productivity and quality produced by PSP-

trained students compared to non-PSP-trained

students of comparable quali�cation. To re-

duce the course length we are currently devel-

oping a compact course of three modules of two

days each.

3.2 Focus

The second signi�cant problem in teaching PSP

is that students tend to concentrate too much

on the �ne details of the individual methods

suggested. For instance they concentrate so

much on the questions which values of the �0
regression parameter for time estimation are

acceptable ones, that they do not understand

why regression is used at all and which alter-

native methods are used when and why.

As some of the details are indeed complicated,

we �nd it very important to keep the students'

focus on the general ideas of PSP and on the

general ideas of how to implement them instead

of on the details of the speci�c implementation

suggested in the course. On the part of the

teacher, this requires in particular not to be

picky judging the exercises, to emphasize the

rationale of each method over its actual con-

tent, and to emphasize that all methods taught

in the course are only suggestions and must

be optimized based on personal data after the

course. University students must be supplied

with examples from industrial working condi-

tions so they can understand the rationale of

the methods suggested. Students that do not

see the big picture will probably not be able to

2http://wwwipd.ira.uka.de/PSP/documents/ques-

tions.html

make improvements on their personal software

process after the course.

3.3 Running the course

A few more remarks on how to run the PSP

course: First, we found many of the PSP slides3

to be too verbose for our teaching style and

some slides contain material that the students

already know | either from previous slides or

from other courses.

Therefore, we have prepared a much di�erent

set of slides for our courses, waiving most re-

dundant material. In particular, we combine

the lecture pairs 3/4, 9/10, and 12/13 into one

lecture each so that our course has three weeks

without a lecture (but still with an exercise).

These weeks can be used to compensate for

holidays or to carry out extended discussion of

experiences among the students.

Second, it is essential to provide su�cient room

for such discussion in normal course weeks as

well.

We reserve the �rst 10 to 15 minutes of each lec-

ture for experience reports and feedback. We

encourage students to tell success as well as fail-

ure stories. Most students �nd it very motivat-

ing to learn that their colleagues have much the

same problems as they have themselves.

Third, this mutual motivation process works

only if most or all students have already per-

formed last week's exercise.

Therefore, it is important to enforce a rela-

tively strict discipline with the time given for

the exercises; all students have to deliver their

exercise before the end of the course week, in

contrast to the liberal delivery modalities most

German students and professional software en-

gineers seem to be used to.

3provided by Humphrey on the teacher's disk, which

is a supplement to the PSP book.

4



4 Using a personal software

process

Although a personal software process is very

useful in principle, its use is hampered by a

number of severe problems. We discuss each of

the most important ones in a separate section.

4.1 Lack of discipline

The single most important lesson we learned on

using PSP is this: Properly using and improv-

ing a personal software process requires a lot

of discipline; more than many people appear

to be able to come up with.

Often, introducing appropriate PSP support

tools (see also Section 4.2) will reduce the prob-

lem. For some people, the solution to the prob-

lem might be to �nd a group of colleagues that

also use a personal software process. Such a

group can keep up a process of mutual motiva-

tion, much similar to our PSP course groups.

For others this might still not be su�cient. The

key to successful PSP use for them might be to

drop most of the standard PSP elements and

use only what appears most useful for them.

The latter is the mode of PSP use that all three

authors apply 18 months after their own PSP

course. For instance, we all do not use plan-

ning, because in a research setting this is rarely

practical and often superuous.

4.2 Tool support

As mentioned above, the bookkeeping required

for measurements, gathering historical data,

planning, and process improvement data anal-

ysis is a nuisance. Manual bookkeeping costs

time, detracts from the main task, and pro-

vokes errors.

The bookkeeping issues to be addressed in a

personal software process are the following:

1. making measurements (time per phase,

product size, defects),

2. collecting and organizing historical mea-

surement data,

3. analyzing historical data for process un-

derstanding and improvement,

4. computing plans and predictions from es-

timates and historical data.

Therefore, for industrial use of a personal

software process, support tools are required.

We have experimented with two measurement

tools, several kinds of spreadsheets for data

collection and analysis, and one specialized

analysis program. You can �nd pointers to

all these tools on the PSP resource page

http://wwwipd.ira.uka.de/PSP/.

4.2.1 Titrax

Titrax (or TimeTracker, formerly known as

Timex ) is a simple X11 freeware timekeeping

program by Harald Alvestrand; see the screen-

shot in Figure 5. The user de�nes a number of

Figure 5: Screenshot of Titrax timekeeping tool

activities and the program measures the num-

ber of minutes the cursor spends on each. The

user has to click once each time s/he changes to

a di�erent activity. Titrax produces one small

time sum �le per day and can produce week-

wise summaries. We have built an extension

to produce summaries for particular activities

or groups of activities over arbitrary periods of

time.

In our experience, Titrax is a nice tool for gen-

eral timekeeping but is not �ne-grained enough

for PSP use. Gathering defect correction time

data with Titrax would be painful. Some of us

use Titrax in their normal daily work but we

all prefer psplog (see Section 4.2.3) for actual

PSP time and error logging.

5



4.2.2 Spreadsheets

Humphrey o�ers a set of Excel spreadsheets on

a support disk as a supplement to the PSP

book. These spreadsheets support collecting

and organizing the measurement data for the

10 exercises of the PSP course, but they are

too inexible and specialized for general pro-

fessional PSP use.

We have written a large Excel spreadsheet that

is more powerful and exible; it supports parts

of the estimation procedures and allows to se-

lect subsets of the data for use.

This spreadsheet can be a useful tool for pro-

fessional PSP use in many cases. However, it is

so large that it is di�cult to master, and still is

often not exible enough or requires too much

handwork.

4.2.3 psplog

In order to simplify the task of logging time and

error data, we implemented a logging feature

called psplog in the Emacs editor. It automates

window switching and time stamp insertion on

a single keypress. Figure 6 shows an excerpt

from a psplog bu�er.

This simple editor extension has proven a very

helpful and practical tool. It is very exible

and su�ciently robust for professional use. The

tight integration into the editor allows for accu-

rate and most �ne-grain time and error logging

with a minimum of user detraction and e�ort.

4.2.4 evalpsp

To process the data gathered with psplog we

have written a Perl script called evalpsp. It

parses one or several psplog �les and produces

many sorts of statistics and summary tables in

ASCII format, e.g. time spent per phase or

per error type, number, percentage, or cost of

errors introduced or removed per phase, etc.;

14 tables overall.

evalpsp makes the analysis of time and (in par-

ticular) defect data so simple that it becomes

convenient to review such data for individual

projects or in summary from time to time.

The data produced by evalpsp is a good ba-

sis for �nding candidate elements for process

improvement. However, it would be helpful to

get the consistency checking that is performed

by evalpsp done during data gathering, i.e., in-

tegrated into psplog , as data gathering errors

are the easier to resolve the earlier they are de-

tected.

4.2.5 Tool perspective

The above tools provide reasonable support for

data gathering and error data analysis. Less

disciplined users will at times �nd parts of their

gathered data missing or in disorder, because

the tools can neither enforce correct data gath-

ering (or any data gathering at all) nor do they

perform early consistency checking. However,

disciplined users will �nd the available tools

su�cient.

However, the current tool support for han-

dling historical time, size, and error data for

PSP planning and estimating purposes lacks

exibility and integration with the data gath-

ering tools on the PSP side as well as with

project management and con�guration man-

agement tools on the team side. It might be

rather di�cult to de�ne a tool that is both

adaptable to di�erent personal software pro-

cesses, yet still neatly integrated into larger

software project tools. We are currently work-

ing on planning tools that provide at least part

of such integration.

4.3 Personalization versus standard-

ization

The �nal PSP problem concerns personaliza-

tion. On one hand, adapting and �ne tuning

the PSP techniques to individual preferences

and experimenting with new techniques will,

for many software engineers, increase the power

and quality of their personal process. On the

other hand, such improvements not only con-

sume precious worktime, with unpredictable

payo�, but also reduce the ease with which a

team can work together and can share data.

6



Jan 8 00:16:52 1997 bcr

Jan 8 00:18:16 1997 be 50 cd om wrong order and names of Jbox() params

Jan 8 00:19:09 1997 ee

Jan 8 00:35:29 1997 be 80 ds om forgot to assign xB = xBnew and yB = yBnew

Jan 8 00:35:49 1997 b

Jan 8 00:36:54 1997 e

Jan 8 00:37:09 1997 ee

Jan 8 00:44:47 1997 be 60 cd cm paintBox() must only sometimes make a jump

Jan 8 00:47:21 1997 ee

Jan 8 01:11:28 1997 ecr

Jan 8 13:11:38 1997 bcp

Figure 6: Emacs psplog bu�er with 11 event entries: begin of code review phase (bcr) on January 8th,

1997, 16 minutes after midnight, 3 begin error/end error pairs (be, ee), one interruption begin/end pair

(b,e), end code review phase (ecr), and �nally many hours later begin compile phase (bcp). The error

entries are annotated with an error class, error insertion phase, error reason (omission, commission, education,

communication etc.), and error description.

For instance if everybody has his or her own

de�nition of what belongs into a design and

what does not, it becomes more di�cult for

others to �nd design incompletenesses during

a design inspection. It also becomes more dif-

�cult to predict implementation time from de-

sign time or design document size.

Therefore, the expected bene�ts from increased

personalization of process elements have to be

weighed against the bene�ts resulting from a

single common de�nition of these process ele-

ments in a team. This is a tradeo� with no

general solution.

5 Conclusions

Our experiences with teaching and using PSP

can be summarized as follows:

� PSP is a good idea. Using a personal

software process, software engineers can

greatly improve the quality of their work

and the reliability of their plans.

� However, for most people it is not easy to

actually get PSP to work for them, mostly

because of problems with self-discipline.

� There is currently insu�cient tool support

for using a complex personal software pro-

cess. Missing tool support makes many

useful process elements too di�cult or too

costly to apply.

� When teaching PSP, it is very important

to keep the students' focus on the gen-

eral ideas and to educate them to judge

for themselves what is useful for them and

what is not.

Appendix: PSP details

The PSP base techniques can be summarized

as follows:

� Working in well-de�ned phases, e.g. plan,

design, design review, code, code review,

compile, test, postmortem.

� Measuring time spent per phase; protocol-

ing time, cost, origin, and type of each de-

fect made; measuring program size.

� Systematically collecting these data for fu-

ture use.

� Systematically estimating product size

from historical size data; estimating devel-

opment time from product size; planning

and tracking development schedules with

clear milestones.

� Introducing design and code reviews4 into

the development process; systematically

deriving checklists for reviews from histor-

ical defect data.

4These reviews, as opposed to inspections, are per-

formed by the author of the artefact alone.

7



� Analyzing defect data to �nd opportu-

nities to prevent defects even before re-

views (quality management). Estimating

number of defects to detect below-average

quality.

� Introducing systematic design notations

to improve clarity, consistency, and com-

pleteness of designs, regardless of the de-

sign method used.

� Systematically developing test cases and

protocolling the test runs.

� De�ning and documenting all process ele-

ments to improve consistency and to pro-

vide a precise meaning for all measure-

ments.

� Introducing measurements to characterize

process and product quality, in both pre-

dictive and explanatory manner.

� Introducing periodic, systematic process

improvement e�orts.

Acknowledgements

Thanks to Walter Tichy for commenting on the

draft and to Stefan H"an"sgen for the initial

psplog implementation.

References

[1] Watts Humphrey. A Discipline for Software

Engineering. SEI Series in Software En-

gineering. Addison Wesley, Reading, MA,

1995.

[2] Watts S. Humphrey. Using a de�ned and

measured personal software process. IEEE

Software, 13(3):77{88, May 1996.

8


