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Abstract. In this paper a new approach is presented to construct piecewise polynomial Gk-
surfaces of arbitrary topology and smoothness order k � 1 of degreeO(k). This approach generalizes
some results presented in 1997 in CAGD and in 1999 at the Saint-Malo conference, respectively.

In our construction only 4n polynomial patches are needed to �ll an n-sided hole in a generalized
Ck -(half-)box spline surface. This is achieved by coalescing certain control points while at the same
time maintaining a regular parametrization.

1. Introduction. The problem in modelling smooth surfaces of arbitrary topol-

ogy arises from surfaces that cannot be represented in box spline form. To this

category belong e.g. all surfaces of topological genus not equal to one. The reason

for this restriction is that a surface can only be represented in box spline form if it

can be approximated by a regular quadrilateral or triangular control net of the same

topological type. Thereby the regularity constraint means that exactly four or six

meshes must meet at every interior control point, respectively. Thus for arbitrary

surfaces nets including control points that do not obey this constraint must be used.

These control points are usually called irregular vertices of valence n, where n denotes

the number of meshes meeting in that particular control point.

In an arbitrary quadrilateral or triangular control net the irregular vertices are the

centres of subnets that do not correspond to box spline surfaces. So the generalized box

spline surface, which is de�ned by all regular subnets, has n-sided holes corresponding

to irregular vertices of valence n.

Constructing smooth �llings for those holes is known as the n-sided hole problem,

which has been addressed by many authors.

One approach is based on generalized subdivision schemes, where the hole is

�lled iteratively with ever smaller surface rings, see e.g. [3, 5, 6, 12]. Although it

can be proved that the resulting surfaces are smooth, they consist of in�nitely many

patches. So far no subdivision algorithms are known to generate Gk-surfaces of arbi-

trary smoothness order k � 1.

A second major approach is to explicitely construct a �nite number of polynomial

patches that join smoothly to �ll the hole. All works in this area utilize the concept of

geometric continuity as introduced by [4, 8, 9, 10]. Most of these works are concerned

with the construction of G1- or G2-surfaces, see e.g. [7, 14, 15, 16, 17, 19, 24]. The

�llings consist of a �nite number of polynomial patches of relatively low degree, namely

� 2 for G1 and � 5 for G2. Because of the complicated smoothness constraints these

constructions cannot be extended to arbitrary smoothness orders.

J. Hahn [11] proposed in 1989 a method to construct G-splines of arbitrary

smoothness order, which later was re�ned by H. M�ogerle [13]. This was achieved

by �llings of relatively high polynomial degree of O(k2).

The freeform splines of H. Prautzsch [18] overcome this problem for tensor-product

B-spline surfaces via polynomial patches whose bidegree is only linear in k. This

construction has lately been extended to triangular splines [23]. Thereby the �llings

consist of O(k2) many polynomial patches.
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A similar approach has been taken by U. Reif [20]. He uses only a (in k) constant

number of patches which are singularly parametrized.

The above list of solutions of the n-sided hole problem is far from complete, but

it may serve us to distinguish our approach from existing solutions. Our Gk-�llings

for k � 1, that we will call in the sequel p(olynomial)-patches, consist of a constant

number of triangular, polynomial patches. The degree of these patches is linear in k

and the resulting surfaces are regularly parametrized.

In this paper we �rst describe the construction of Gk-p-patches based on bivariate,

symmetric box spline over the three-directional grid, i.e. for even k (Section 2). Sub-

sequently we extend this to odd smoothness orders k using the corresponding half-box

splines (Section 3). In Section 4 we discuss special details of out method, namely how

to construct planar, regular Gk-surface rings with coalescing central control points.

2. P-Patches for Box Splines. The bivariate, symmetric box splines over the

three-directional grid shown in Figure 2.1 are recursively de�ned by

N1(u) = the hexagonal pyramid over V � [0; 1)2;

Nm(u) =

Z
[0;1)3

Nm�1(u� V � t) dt

for m � 2, where V := [v1 v2 v3] =

�
1 0 1

0 1 1

�
and t = [t1 t2 t3]

t. v1

v3
v2

Fig. 2.1. The three-directional grid.

These box splines are k-times continuously di�erentiable with k = 2(m � 1) and

over every triangle of the grid polynomial of degree d = 3m� 2. A single polynomial

segment is called a patch and a surface made up of these patches a box spline surface.

For details of box splines see [2].

Every patch of a box spline surface is determined by a regular triangular control

net consisting of 3(k + 2)2=4 control points arranged as in Figure 2.2.

k=2 + 1 k=2 + 1

k=2 + 1

k=2 + 2 k=2 + 2

k=2 + 2

Fig. 2.2. The regular triangular net of one patch (gray) of a box spline of degree d = 3k=2 + 1.

For the modelling of arbitrary surfaces control nets including irregular vertices

are necessary. In an arbitrary trinagular net the regular subnets of the form of Figure

2.2 still determine single box spline patches. The union of all these patches make up a
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generalized box spline surface, which has n-sided holes corresponding to the irregular

vertices of valence n.

An example for a generalized box spline surface of degree 7 is shown in Figure

2.3: To the left is a control net with one vertex of valence 8 and to the right the

corresponding generalized box spline surface with one 8-sided hole.

Fig. 2.3. A triangular control net (left) with a vertex of valence 8 and the corresponding
generalized box spline surface of degree 7 and its patches (right).

Because of the size of the net in Figure 2.2 at least k+ 1 rings of regular vertices

around one irregular vertex are necessary for a one-to-one correspondence between

holes and irregular vertices. In this case every hole is surrounded by a complete box

spline surface ring consisting of (k+ 1)n patches, see Figure 2.3. In [23] we proposed

to �ll such a hole using k2n patches. Instead we will describe here how a �lling with

4n patches can be constructed.

Assume that the innermost k=2 � 1 rings of control points around an irregular

vertex coalesce with the irregular vertex. Thus the irregular vertex becomes a multiple

vertex. In every subnet, that has the form of Figure 2.4, the multiple vertex can

be replaced by a suitable regular triangular net whose vertices are all equal to the

multiple vertex. With this each of the n possible subnets determine k(k+4)=4 patches.

Together these patches form k=2 � 1 box spline surface rings in the hole, whose

innermost ring r consists of 3n patches, see Figure 2.4.

k=2 + 3

k=2 + 1

k=2 + 2

Fig. 2.4. The control net of three patches (gray) of a box spline of degree d = 3k=2 + 1 with a

multiple control point (Æ).

Now this shrinked hole can be �lled by the analogous p-patch construction of [23]:

Construction 2.1.
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Input: Ck-surface ring r consisting of 3n box spline patches of degree d bounding an

n-sided hole.

Output: Regular Gk-surface of degree 2d.

1. Plane parametrization: Construct 4n planar box spline patches x1; : : : ;x4n of degree

d with coalescing k=2 � 1 inner control point rings and C
k- and C

0-joints,

respectively, as in Figure 2.5, such that the plane parametrization x := [xi
is a regular and injective G1-surface.

x1

x2x3

xn

xn+1

xn+2

xn+3

xn+4

x4n�1

x4n

C
k

C
0

Fig. 2.5. The 4n planar patches x1; : : : ;x4n with its Ck - and C0-joints for n = 5.

2. Reparametrization: Choose a quadratic polynomial q(u; v) : R2 ! R
3 and repara-

metrize it over x1; : : : ;x4n:

pi(u; v) = q(xi(u; v)); i = 1; : : : ; 4n:

The p(olynomial)-patch p := [pi is a G
k-surface of degree 2d.

3. Adaptation: Adapt the p-patch p and the boundary r to each other, e.g. by exchang-

ing certain control points.

In Construction 2.1 one question remains which will be analyzed in Section 4:

Can a regular and injective plane parametrization with coalescing control points be

constructed (Section 4)?

Before we deal with these details, we will extend the above Construction 2.1 to

odd smoothness orders k using half-box splines.

3. P-Patches for Half-Box Splines. The bivariate, symmetric half-box splines

over the three-directional grid shown in Figure 2.1 are recursively de�ned by (cf. [21])

H
4

1 (u) =

�
1 if u 2

0 else
resp. H

5

1 (u) =

�
1 if u 2

0 else
;

H
4

m (u) =

Z
[0;1)3

H
4

m�1(u�X � t)dt resp. H
5

m (u) =

Z
[0;1)3

H
5

m�1(u�X � t)dt

for m � 2, where := f(u; v) j 0 � v � u < 1g and := [0; 1)2 n . These half-box

splines are k-times continuously di�erentiable with k = 2(m � 1)� 1 and over every

triangle of the grid polynomial of degree d = 3(m�1). A surface made up of half-box

spline patches is called a half-box spline surface.

A regular hexagonal net is the dual of a regular triangular net. Every patch of

a half-box spline surface is determined by a regular hexagonal control net, which is

dual to a triangular net in Figure 2.2, consisting of (3k2+12k+ 11)=2 control points.
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For the modelling of arbitrary surfaces also arbitrary hexagonal control nets are

necessary, which are the duals of arbitrary triangular nets. Thus an arbitrary hexag-

onal control net contains so-called irregular meshes, which are n-sided with n 6= 6.

The union of all patches determined by the regular subnets of an arbitrary hexagonal

control net make up a generalized half-box spline surface. This surface has n-sided

holes corresponding to the irregular, n-sided meshes.

Due to the size of the control net of a single patch, there must be for a one-to-

one correspondence of holes to irregular meshes at least k + 1 rings of control points

between two rings of control points, that belong to two irregular meshes. Under

this assumption every hole is surrounded by a complete half-box spline surface ring

consisting of (k + 2)n patches.

Analogous to the box spline case we will assume that the innermost (k � 1)=2

rings of control points around an irregular mesh and the vertices of the irregular mesh

coalesce in a multiple vertex. This de�nes (k � 1)=2 additional surface rings in the

hole, whose innermost ring r consist of 3n patches. For this surface ring r a p-patch

can be constructed using Construction 2.1 if all involved patches are half-box spline

patches.

Remark 3.1. For more details on p-patches for half-box splines see [22].

4. The Plane Parametrization. To prove that a regular and injective plane

parametrization x with coalescing inner control points can be constructed, we de�ne

a control net that determines such a plane parametrization. First we discuss with the

box spline case and afterwards the half-box spline case.

Let C be a control net which consist of k=2+2 rings of control points around one

irregular vertex of order n. The inner k=2 � 1 rings of control points coalesce with

the irregular vertex. The control net C is generated by rotating the net segment C1 in

Figure 4.1 around the origin by 2(i� 1)�=n; i = 1; : : : ; n.
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Fig. 4.1. The net segment C1 with cn := cos(�=n); sn := sin(�=n).

Then C determines a generalized box spline surface ring with 3n patches of degree

d = 3k=2 + 1. These patches are the patches xn+1; : : : ;x4n of the wanted plane

parametrization x. Every regular subnet X i of C of the form of Figure 2.4 determines

a segment xi := xn+3i�2 [ xn+3i�1 [ xn+3i for i = 1; : : : ; n. Because the segment
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xi is generated from x1 by a rotation around the origin by 2(i� 1)�=n, it suÆces to

analyze x1 for regularity and injectivity. This is conveniently done using the B�ezier

representation of x1.

We demonstrate this for the case k = 2 exemplarily. The B�ezier points of x1 are

shown in Figure 4.2.
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Fig. 4.2. The B�ezier points of x1 for k = 2 with cin := cos(i�=n); sin := sin(i�=n); i = 1; 3.

The di�erences of neighbouring B�ezier points converge to the directional deriva-

tives with respect to �v1;�v2 or �v3, if the B�ezier net is re�ned by the de-Casteljau-

algorithm. Due to the form of X 1 is follows that none of these directional derivatives

vanishes. Furthermore, a computation with Mathematica gives the following intervals

B1; B2 and B3 for the angles between the 1-axis and the directional derivatives with

respect to v1;v2 and v3, respectively:

B1 �

( �
� 60Æ; 0Æ

�
for n = 3�

� 45Æ; 0Æ
�

for n � 4
;

B2 �

( �
60Æ; 120Æ

�
for n = 3�

0Æ; 180Æ
�

for n � 4
;

B3 �

( �
0Æ; 60Æ

�
for n = 3�

0Æ; 45Æ
�

for n � 4
:

If x1 were not regular, all three directional derivatives would be linearly depen-

dent. In this case they would have either the same or the opposite orientation, i.e.

the angle between them and the 1-axis would be either the same or enlarged by 180Æ.

Note that the set

( B1 \ B2 \ B3 ) [ ( B1 \ R(B2) \ B3 ) [

( B1 \ B2 \ R(B3) ) [ ( B1 \ R(B2) \ R(B3) )
(4.1)
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is empty for n � 4, where R(B) denotes the interval that results form the interval

B by adding 180Æ to both interval bounds. So always two directional derivatives are

linearly independent. Therefore x1 is globally regular for n � 4.

For n = 3 the set (4.1) is not empty. One re�nement of the B�ezier net with the

de-Casteljau-algorithm results in a �ner B�ezier net for x1. The B�ezier points of the

�ner net are computed by convex combinations of the old B�ezier points. Thus the

intervals for the angles between the directional derivatives and the 1-axis shrink, i.e.

the new intervals are subsets of the interior of the old intervals. Obviously for these

new intervals the set (4.1) is empty.

This proves that x1 is regular for n � 3.

To prove injectivity of x1 let a and b be to di�erent points in the parameter

domain of x1 and assume that x1(a) = x1(b). Then x1(ta + (1 � t)b); t 2 [0; 1]; is a

closed curve on x1, whose tangent must cover an angle of at least 180Æ. This tangent

can be represented as a linear combination of v1 and v3. Without loss of generality

set a � b = �v1 + �v3 with �; � 2 R and � � 0. For � � 0 the angles between the

tangent and the 1-axis lie in B1 [ B3 � [�60Æ; 60Æ], which is shorter than 180Æ. An

analogous result holds for � < 0. Therefore the assumption must be wrong that such

two points a and b exist and the segment x1 is injective.

Thus the surface ring de�ned by C is a regular and injective Ck-surface.

For the construction of x1; : : : ;xn note, that the three outer rings of B�ezier points

of x1; : : : ;xn are determined by the C0-, C1- and C2-transition to xn+1; : : : ;x4n, see

Figure 4.3. The common B�ezier point of all n patches x1; : : : ;xn is for symmetry

reasons the origin. Thus there remains only one B�ezier points, which can be chosen

for example as [b1 b2]
t = [1

4
c
1
n+

1
6
c
3
n;

1
12
(s1n+s

3
n)]

t, see Figure 4.3. The same argument

as above proves that x1 is regular and injective. Furthermore, this choice guarantees

that x1;x2 and xn do not overlap.
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Fig. 4.3. The B�ezier points of x1 for k = 2 with cin := cos(i�=n); sin := sin(i�=n); i = 1;3.

Summing up, we have proved the following Lemma:

Lemma 4.1. The control net C together with the B�ezier point [b1 b2]
t de�ne a

regular and injective plane parametrization x. The resulting p-patch is a regular G2-

surface.

Remark 4.2. The prove for the existence of a regular, injective plane parametri-

zation with k=2� 1 coalescing rings of control points for arbitrary even k � 4 can be

performed in a similar fashion. The prove for k = 4 can be found in [22].

For the construction of a plane parametrization in the half-box spline case we

take the dual net of the control net in Figure 4.1. The resulting hexagonal net is the
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union of two triangular nets: one control net for the half-box splines H4m and one

for the half-box splines H
5

m . These two nets determine two half-box spline surfaces

whose sum is the half-box spline surface determined by the hexagonal net.

The two triangular nets are the nets connecting midpoints of triangles of the

primal net that share a vertex but not an edge. Therefore the angles between the

directions of their edges and the 1-axis are the same as for the primal triangular

net. Because each of the two half-box spline surfaces can be transformed to B�ezier

form separately ([1]) and the B�ezier net of the complete half-box spline surface is the

average of the B�ezier nets of the separate half-box spline surfaces, the angles between

the directional derivatives and the 1-axis must lie in the same intervals as for the

corresponding box spline surface of the primal triangular net.

For k = 1 this yields that the half-box spline surface xn+1 [ � � �[ x4n of the dual

of the net C is regular and injective for n � 3. For the construction of x1; : : : ;xn note

that the two outer rings of B�ezier points of x1 are convex combinations of control

points with positive �rst coordinate of the dual of X 1. Thus these B�ezier points must

all lie right of the origin, so that the remaining B�ezier point [b1 b2]
t can be chosen

appropriately.

Lemma 4.3. For the dual of the net C the remaining B�ezier point [b1 b2]
t can

be chosen such that a regular and injective plane parametrization x is de�ned. The

resulting p-patch is a regular G1-surface.

Remark 4.4. In the same way as above the proof for G4 carries over to G
3.
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