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Abstract As known from nearly incompressible elasticity, selective reduced integration
(SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D
and 3D solid elements. This method of finite elastoviscoplasticity is discussed as are its
well-known limitations. In this context, an isochoric-volumetric decoupled material behavior
is assumed and thus the additive deviatoric-volumetric decoupling of the consistent algorithmic
moduli tensor is essential. By means of several numerical examples, the performance of
elements using selective reduced integration is demonstrated and compared to the performance of
other elements such as the enhanced assumed strain elements. It is shown that a minor
modification, with little numerical effort, leads to rather robust element behaviour. The
application of this process to so-called solid-shell elements for thin-walled structures is also
discussed.

1. Introduction
It is a well-known fact, that the three-dimensional standard linear eight-node
displacement element (here denoted as Q1) exhibits severe locking for nearly
or fully incompressible material. Rubber elasticity or metal plasticity
are examples for nearly incompressible material behavior. Rubber is
characterized by a large ratio of the bulk modulus to the shear modulus. In
metal plasticity the plastic deformation is isochoric, i.e. fully incompressible,
and the compressible part is a result from elastic deformations only, which
remain small in many applications. In both cases reliable results with the
standard Q1 element cannot be expected. Due to the volumetric locking
behavior of the Q1 element, additional measures are necessary to overcome this
problem. Various methods are known from literature and are currently
discussed. Among others, a brief review of some of these methods is given in
the following as a reference for the developments shown in this contribution.
Our focus is particularly on the capabilities concerning finite non-linear
deformations:
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(1) The Q1/P0 element proposed by Simo et al. (1985) is based on a three-
field hybrid formulation with independent constant pressure and
constant dilatation. Both, the pressure and the dilatation variables, are
eliminated by static condensation. It is well known that this element
does not pass the LBB condition. Thus as shown in Simo (1992) the use
of the Q1/P0 element is hampered by hour-glassing under certain
loading conditions.

(2) The non-linear versions of the enhanced assumed strain (EAS) element
based on suggestions by Simo (1992) and Simo et al. (1993) have been a
considerable improvement concerning bending dominated problems.
Also volumetric locking can be avoided by the appropriate choice of
parameters. However, a severe drawback of this formulation concerning
efficiency is the static condensation procedure of the internal degrees of
freedom needed at element level in every iteration of the global Newton-
Raphson solution scheme. Also additional storage is required for the
internal degrees of freedom. A second problem is, as noted by Wriggers
and Reese (1996), the occurrence of instabilities under certain loading
states in the larger deformation case. Further developments on this
method with some improvements concerning the mentioned drawbacks
are, for example, reported by Nagtegaal and Fox (1996), Korelc and
Wriggers (1996) and Glaser and Armero (1997). However, no general
stable method is available yet. Associated with the enhancement of the
strains an artificial material model dependency on the kinematic
relations is introduced. Thus stability investigations, in particular in the
large deformation regime have to take into account the material status
and behavior at a certain state.

(3) In the so-called �F method the standard deformation gradient F is replaced
by a modified deformation gradient �F � ��J=J �1=3

F with J � det F and
�J � constant. The dilatation det �F � �J is constant within the element and
is not treated as an independent variable. The mean dilatation approach,
originally suggested by Nagtegaal et al. (1974), leads with
�J � RV JdV=

R
V dV to the �F Nag element. This element recovers the Q1/P0

element identically. Using the dilatation �J � J0 � det F 0 at the element
center results in the �F Mor element by Moran et al. (1990) (see also de Souza
Neto et al. (1996) for a slightly different element). The �F elements also
show artificial instabilities in some situations (see also section 7.3.2) under
certain loading conditions in the large strain regime.

(4) The selective reduced integration method is applicable consistently only
for material models with independent isochoric and volumetric behavior.
Full numerical integration is employed for the isochoric terms while
selective reduced integration is employed for the volumetric terms of the
internal force vector and the tangent stiffness matrix (Liu et al., 1992; 1994)
for the treatment of pure elasticity at finite strains). In Hughes (1987) the
SRI is discussed for linear elasticity and some historical remarks are given.



EC
17,7

876

The main well-known advantages of the SRI method are its simplicity and the
little additional computational effort compared to the standard displacement
element. The standard structure of the internal force vector and the stiffness
matrix can be used without modifications. Only additional integration points
have to be introduced. This additional effort is relatively small, e.g. one
additional integration point at the center of a Q1 element. Using the Q1/P0, EAS
or �F elements instead of the SRI element, the modifications of the internal force
vector or the stiffness matrix can be much more time consuming. We refer to
Fried (1974), Malkus (1976), Hughes (1977; 1980; 1987) and Malkus and Hughes
(1978) for a detailed investigation of the SRI method and its equivalence with
certain mixed finite element methods. These investigations do not include the
case of finite deformation elasto-viscoplasticity as presented in this
contribution.

However, one advantage of the Q1/P0, EAS or �F elements over the SRI
element has to be kept in mind: all three elements are directly applicable with
all material models while the latter element is restricted to material models with
decoupled isochoric and volumetric behavior. Nevertheless, in nearly
incompressible rubber elasticity or in nearly incompressible metal
elastoplasticity an isochoric-volumetric decoupled material behavior can be
assumed for most practical applications and the SRI method can be employed
without any disadvantage.

Our aim is to discuss the extension of the SRI method to finite deformation
elastoplasticity resp. elasto-viscoplasticity and use it in the fully non-linear
regime. The general motivation to come back to this rather well known
strategy is its simplicity and the experience from large industrial computations
that in rather refined meshes the bending behavior is far less important
than the capabilities for almost incompressible deformations and the
robustness of the element. Thus the major points are to show, if an efficient but
reliable element can be achieved. In section 2 the basic relations for continuum-
mechanics are introduced. In sections 3 and 4 the finite plastic case and
the finite viscoplastic case are treated. It is shown that this includes also the
pure finite elastic case. In contrast to Liu et al. (1992; 1994), a formulation
in principal stretches instead of invariants is employed. In section 5 the
numerical treatment of the additive split of the stress and moduli tensors
is briefly described in order to allow a separate integration of the deviatoric and
volumetric terms. In section 7 some material laws are introduced and numerical
examples are given. Our focus is on the results obtained with the
SRI element compared to the Q1, Q1/P0 (identical to �F Nag) and �F Mor elements
in elastoplastic and elastoviscoplastic applications. In contrast to these
elements with solely modified volumetric part the EAS element contains
modified strains, which are not restricted to the volumetric part only. However,
this is not discussed in the 3D continuum examples, but the EAS-strategy
is applied to the so-called solid-shell elements with enhancements for the shear



Volumetric
locking

877

part and for the thickness direction which are necessary to achieve correct
solutions for shell type applications. Section 8 concludes with the essential
results.

2. Basic relations
As is well-known, using the finite element method for non-linear structural
analysis an iterative global solution procedure has to be performed, mostly
with a Newton-Raphson scheme. This solution procedure involves the
computation of the residuum and the consistent linearization of the equilibrium
equations at the current configuration. Herein the stress tensor and tangent
moduli tensor have to be derived from the material law. In the following our
focus is on these two tensors exclusively to set the environment to treat the
large deformation case properly. First a spatial description is adopted and then
extended to the total material description.

Using a spatial description the Kirchhoff stress tensor ����� and the Almansi
strain tensor e are the conjugate stress and strain measures. The spatial
tangent moduli tensor cj relates the increment of the Kirchhoff stress tensor
to the increment of the Almansi strain tensor �� � cj : �e. Due to isotropy
the spectral decompositions of these tensors yield the identical spatial
base eigenvectors ni. These eigenvectors result from the spectral
decomposition of the left Cauchy-Green tensor b � F � F T , where F denotes
the deformation gradient. The deformation gradient is a pure kinematic
measure, that can be computed without the knowledge of the material law.
Therefore the spatial eigenvectors are as well computable without the
knowledge of the material law.

The spectral representations of the spatial stress and moduli tensor are
given in Table I. Due to the assumption of isotropy only the principal stresses �i

and the moduli ciijj and cijij depend on the material law.

1. Compute F and spatial eigenvector base ni

2. Compute components �i; ciijj; cijij (as described in section 3)

3. Choose spatial or total material configuration:

spatial! Set

material! Compute Fÿ1 and set

4. Compute stress tensor and moduli tensor of chosen configuration:

spatial ! �����
o
�
X3

i�1

�imi
mi;material ! S

spatial ! cj
o
�
X3

i;j�1

ciijjmi
mi
mj
mj �
X
i 6�j

cijijmi
mj
�mi
mj �mj
mi�material ! Cj

Note: The additive deviatoric-volumetric split of the tensors is obtained using the split of
the components

mi � ni

mi � Fÿ1 � ni

Table I.
Spatial-material
transformation

algorithm
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Now the focus is on the total material description, that is based on the
2. Piola-Kirchhoff stress tensor S and the Green strain tensor E . The total
material moduli tensor Cj relates the increment of the 2. Piola-Kirchhoff
stress tensor to the increment of the Green strain tensor �S= Cj : �E . The
increments of the stress and strain tensors of the material description can be
determined from the spatial description by so-called pull-back transformations
(Marsden, 1983):

� E � F T ��e � F ; �S � F ÿ1 ������� � F ÿT : �1�
Using these transformations the material description as given in Table I can be
derived. As known from the spatial description only the stress components �i

and the moduli ciijj and cijij depend on the material law, while the base vectors
F ÿ1 � ni remain independent of the material law.

3. Finite elastoplasticity and the additive split
This sections deals with the determination of the stresses �i and the moduli ciijj

and cijij under the assumption of isotropic elastoplasticity at finite
deformations. Following KroÈner (1960), Lee and Liu (1967) and Lee (1969) for
the kinematics of the deformation a multiplicative split of the deformation
gradient F � F e � F p into an elastic and a plastic part is supposed. This split
involves the introduction of the determinant J e � det F e of the elastic
deformation gradient that measures the local elastic change of volume. In
spectral decompositions the principal elastic stretches �e

i , the isochoric
principal elastic stretches �̂ e

i � �J e�ÿ1=3� e
i and their logarithms � e

i , �̂
e
i are

introduced as well (see Flory, 1961).
Further derivations in this section follow rather closely the form given by

Simo and Armero (1992), Wriggers et al. (1996) and Reese and Wriggers (1997),
to which we refer for details (see also Doll, 1998). In the following, only the
aspects that are necessary for the further development are described.

The starting point of our development in isotropic finite elastoplasticity is
the additive split of the energy function:

W��e
1; �

e
2; �

e
3; �� � Ŵ��̂ e

1; �̂
e
2; �̂

e
3� � U�J e� �Wp���; �2�

which consists of three parts: an isochoric elastic part Ŵ , a volumetric elastic
part U and a plastic part Wp. The plastic part depends on the scalar internal
state variable � (equivalent plastic strain) and represents the isotropic plastic
hardening behavior of the material.

To define the range of elastic deformation a decoupled yield condition:

���; q� � �1��� ÿ �2�q� � 0 with @�� � dev @��; tr@�� � 0 �3�
in Kirchhoff stress space is assumed (here and in further considerations @
denotes the first partial derivative with respect to the indicated variable and @2

denotes the second partial derivative). The first part, �1 � �1������� � �1��1; �2; �3�,
here restricted to isotropic material behavior, represents the dependency on
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the stress derived by ����� � 2be � @beW � 2@beW � be with be representing
the elastic left Cauchy-Green tensor (see, for example, Coleman and Noll,
1963; Coleman and Gurtin, 1967; Simo, 1992). The second part �2 includes
the isotropic hardening law derived by q � @�W , (see, for example,
Lemaitre and Chaboche, 1990). The yield condition must be fulfilled in a strong
sense. As additional constraint the deviatoric character (3)2,3 of the yield
condition (as in metal plasticity) is supposed, which is essential for our
development.

The associated plastic evolution equations follow from the principle of
maximum internal dissipation, first introduced by von Mises (1928). The
evolution equations are derived using the Kuhn-Tucker conditions (see
Luenberger, 1984) and integrated with the well-known elastic predictor
(intermediate configuration fixed, current configuration moved) plastic
corrector (intermediate configuration moved, current configuration fixed)
two step algorithm (see, for example, Simo and Taylor, 1985). The elastic
predictor results in the trial elastic logarithmic stretches � e;trial

i and the trial
equivalent plastic strain � trial . The plastic corrector results in the additive
update formula:

�ei � � e;trial
i ÿ�
@�i

� and � � � trial ÿ�
@q�: �4�

The discrete plastic multiplier �
 scales the plastic flow and ensures the
fulfillment of the yield condition (3), which is included in the discrete Kuhn-
Tucker conditions:

���; q� � 0; �
 � 0; �
�������; q� � 0: �5�
Details concerning this topic are discussed in Simo and Armero (1992) and
Schellekens and Parisch (1994).

Combining equations (3) and (4) with the definitions of the logarithmic elastic
stretches the essential results for our further considerations are as follows:

@�1
�� @�2

�� @�3
� � 0; �e1 � �e

2 � �e3 � �e;trial
1 � �e;trial

2 � �e;trial
3 ;

J e � J e;trial ; �̂ e
i � �̂ e;trial

i ÿ�
@�i
�:

�6�

Due to the deviatoric character of the yield condition (6)1, the sum (6)2 of the three
elastic logarithmic stretches is unaffected by the plastic correction. The elastic
change of volume (6)3 remains constant during plastic correction and the plastic
correction (6)4 is purely deviatoric.

The application of the stress formula on the energy function (2) leads to the
following decoupled principal stress components:

�i � �dev
i � �vol ; �dev

i � @�̂ e
i
Ŵ ÿ 1

3

X3

k�1

@�̂e
k
Ŵ ; �vol � J e@J eU

� �
J e�J e;trial : �7�
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Using the results (6)3 and (6)4 it is evident that the volumetric stress is
unaffected by the plastic correction but the deviatoric stress depends on the
plastic correction.

The application of the procedure proposed in Reese and Wriggers (1997) on
the energy function (2) leads to the decoupled principal components:

ciijj � cdev
iijj � cvol

iijj ; cdev
iijj � ÿ2�ij�

dev
i �@�e;trial

j

�dev
i ; cvol

iijj � ÿ 2�ij�
vol�@

�e;trial

j

�vol;

cijij � cdev
ijij � cvol

ijij ;

cdev
ijij � ���̂e;trial

i �2 ÿ ��̂e;trial
j �2�ÿ1���̂e;trial

j �2�dev
i ÿ ��̂e;trial

i �2�dev
j �;

cvol
ijij � ÿ�vol ;

limit case : �̂e;trial
i ! �̂e;trial

j : cdev
ijij �

cdev
iiii ÿ cdev

jjii

2
; cvol

ijij �
cvol
iiii ÿ cvol

jjii

2

�8�

of the moduli tensor. It must be emphasized, that the additive split of the
stresses (7) leads directly to the additive split of the stress derivatives:

@
�e;trial

j

�i � @�e;trial

j

�dev
i � @

�e;trial

j

�vol ;

@
�e;trial

j

�dev
i � @

�e;trial

i

�dev
j � no explicit expression;

@
�e;trial

j

� vol � �vol � �J e�2@2
J eJ eU

h i
J e�J e;trial

�9�

which appear in the moduli ciijj. The volumetric part in equation (9)3
is unaffected by the plastic correction. Because the volumetric stress (7)3
is explicitly dependent on the trial elastic stretches, the derivation can
be carried out and the explicit expression (9)3 can be obtained. Due to the
plastic correction, no explicit expression can be obtained for the
elastoplastic deviatoric part (9)2. This problem is the subject of the following
paragraph.

To obtain a quadratic convergence rate within the global Newton-Raphson
solution scheme, the linearization of the material law must include the
elastic predictor-plastic corrector algorithm (Simo et al., 1985; Simo and Taylor,
1986). This linearization (see, for example, Simo and Armero, 1992),
involves the computation of the derivative @

�e;trial

j

�i, that includes a modified
modulus:

��@2
�e�eW�ÿ1 ��
@2

� ���ÿ1 with �e � ��e1; �e2; �e3�T ; � � ��1; �2; �3�T : �10�

Due to the decoupled energy function (2), the second derivative:

@2
�e�eW � @2

�e�eŴ � @2
�e�eU �11�

can be decoupled too. Inserting equation (11) in equation (10)1 the inversion



Volumetric
locking

881

destroys the advantage of an additive split, which was the starting point in
equation (11). Therefore no explicit additively decoupled expression (9)1 is
obtainable, especially no explicit expression for the deviatoric part (9)2 can be
obtained. However, the deviatoric part can be determined numerically by a
rearrangement of equation (9)1:

@
�e;trial

j

�dev
i � @

�e;trial

j

�i ÿ @�e;trial

j

� vol: �12�

The explicit expression for @
�e;trial

j

�vol is given in (9)3 and can be evaluated in a
straightforward fashion, whereas @

�e;trial

j

�i is numerically computable following
standard procedures. Then, with the knowledge of (12), all terms in (8) are
computable. Finally, inserting the decoupled components (7), (8) into the stress
and moduli tensors given in Table I results in a decoupling of these tensors, i.e.
����� � ����� dev � ����� vol , cj � cj dev� cj vol and S � Sdev � Svol , Cj � Cj dev� Cj vol (see also,
for a special case of a material law, Simo, 1988).

Finite elasticity. The relations mentioned above include the pure elastic case
by simply setting F p � 1, �
 � 0, � e;trial

i � � e
i and � � 0 (for further details see,

for example, Chadwick and Ogden, 1971; Ogden, 1984; Reese, 1994; Crisfield,
1997).

4. Extension to finite elastoviscoplasticity
The finite elastoviscoplastic case is contained in the basic relations mentioned
above by application of a few modifications. All inelastic deformations are now
pure viscoplastic deformations, i.e. F vp replaces F p in the multiplicative split of
the deformation gradient. It should be noted, that time dependent viscous
material behavior occurs only in the presence of plastic yielding. Our
formulation is of the Perzyna-type viscoplasticity (see Perzyna, 1963; 1971) and
is motivated by the considerations of Miehe (1993). For an extensive discussion
of algorithms we refer to Runesson et al. (1999).

In contrast to the plastic case mentioned above, the evolution equations are
now derived using the penalty method, described in Luenberger (1984) as an
approximate method. The fulfillment of the yield condition (3) is enforced by a
penalty term:

�2
0

�
����������; q�� with ��������; q� � max�0; �������; q�=�0�

and @�������j���0 � 0

�13�

in the maximization process of the internal dissipation. The constant positive
scalar stress �0 > 0, here the first yield stress, is used to make the yield condition
dimensionless. The penalty factor �2

0=� of the dimension of the internal dissipation
ensures the exactness of the method, if the positive scalar viscosity parameter
tends to zero, i.e. � ! 0. For the description of the viscoplastic material behavior
the dimensionless penalty function � has to be prescribed. The integration of
the evolution equations is carried out with the standard predictor-corrector
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algorithm and leads to the identical update formula (4) as in the plastic case. The
corresponding viscoplastic multiplier can be computed from the residual equation:

RB � ÿ �

�t
�
 � �0@������� � 0; �14�

that follows directly by rearrangement of the loading condition:

�
 � �0

�
�t@�������: �15�

The residual equation (14) replaces the discrete Kuhn-Tucker conditions (5) of
the plastic case. The time increment �t shows the explicit time dependency of
the formulation. In general the evaluation of the viscoplastic multiplier �

must be performed iteratively. Using the residual equation instead of the loading
condition circumvents the ill-conditioning known from some other algorithms
for viscoplasticity in the limit case of rate independent plasticity when �! 0
(for details, see Doll, 1998 and Runesson et al., 1999, resp.). Inserting the
viscoplastic multiplier instead of the plastic multiplier in the equations mentioned
above allows to switch from the plastic formulation to the viscoplastic
formulation.

5. Numerical treatment of the additive split
The additive split of the stress tensor and the moduli tensor permits a different
treatment of the deviatoric and volumetric part numerically. In the context of
finite element calculations the use of different numerical integration schemes is
proposed in (Liu et al., 1992; 1994). Full numerical integration is employed for
the deviatoric terms while selective reduced integration is employed for the
volumetric terms of the internal force vector and the tangent stiffness matrix.
This procedure avoids volumetric locking phenomena, which occur in the
treatment of nearly incompressible elasticity, e.g. rubber with ratio bulk
modulus/shear modulus� 1, in combination with pure low-order displacement
based finite elements. Performing reduced integration one order below full
integration is recommended.

To assess the SRI scheme in practical applications for elastoviscoplastic
material the decoupled stress tensors and moduli tensors are implemented with
a three-dimensional non-linear eight-node displacement Q1 element (see, for
example, Liu et al., 1994), and with a number of non-linear four(eight)-node
displacement solid shell elements from which the so-called ANS3Dq and the
eas3Dq elements are taken as typical representatives (see Hauptmann, 1997;
Harnau et al., 2000). The Q1 element is formulated with respect to the spatial
configuration and the ANS3Dq resp. the eas3dq elements are formulated with
respect to the total material configuration. At each integration point the history
variables (here be, � in the plastic and viscoplastic case) must be stored. For
example, performing selective reduced integration for the Q1 element one
integration point at the element center has to be added to the eight standard
Gauss-points. The notations: Q1/d8v8 is the fully integrated element with
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2� 2� 2 integration for all terms (identical to the Q1 element). Q1/d8v1 means
selective reduced integration, i.e. full 2� 2� 2 integration for the deviatoric
part and reduced 1� 1� 1 integration for the volumetric part. It should be
mentioned, that due to plastic incompressibility J � J e � J e;trial the volumetric
part can be computed without return mapping, i.e. without knowledge of be, �.

6. Removal of artificial instabilities by a simple mixed integration
From numerical examples it is known that under certain loading conditions
using the SRI elements artificial instabilities occur, so-called hour-glass modes.
Such an artifact was also observed by Wriggers and Reese (1996) for the EAS-
elements under certain loading conditions. Glaser and Armero (1997) suggest a
procedure to overcome this deficiency, however the effort needed seems to be
rather high and the removal is only guaranteeing a stable procedure. This is also
the case for the suggestions of Reese et al. (1999) and Reese and Wriggers (1999).

The task now is how to avoid hour-glassing, thus gaining stability back with
little effort. It is known, that the standard Q1 element, here identical with the Q1/
d8v8 element, shows no hour-glassing but volumetric locking. Thus a mixed
selective integration rule combining the reduced volumetric locking behavior of the
Q1/d8v1 element with the full integration of the Q1/d8v8 element removes the
instability but also reintroduces some locking back into the problem. Mixed
integration rule means that the selectively reduced integrated volumetric part is
multiplied by � and added to the volumetric part fully integrated at the eight Gauss
points and multiplied by �1ÿ ��, see similar approach by Moran et al. (1990). The
latter part should lead to a stabilization of the stiffness matrix and should preserve
its rank. To obtain a quadratic convergence rate within the global Newton-
Raphson solution scheme the mixed integration is employed in the computation of
the internal force vector as well as in the computation of the tangent stiffness
matrix. The volumetric weight factor � 2 �0; 1� sets the limits for � � 1 to the Q1/
d8v1 formulation and for � � 0 to the Q1/d8v8 formulation. The mixed integrated
element Q1/d8v1-� is denoted by the attachment of the letter �. It must be noted
that the stabilized Q1/P0-element of Crisfield and Norris (1999) appears to rely also
on a similar `̀stabilization'' factor. This factor has to be chosen depending on the
problem, which could be done investigating eigenvalues; however, the simplicity
remains by a heuristically chosen constant factor allowing an efficient procedure. It
is a definite disadvantage that the value for the weight factor has to be chosen
before the computation is started, though it is in principle problem dependent and
usually not known in advance. In particular the incompressibility indicator,
denoted as K=�� in section 7.2 has some influence on the size of this volumetric
weight factor. Standard values are discussed in the various examples following
and ways of how to proceed in different cases can be deduced.

Removal of hour-glassing by modification of the �F elements
As a further alternative the modification �F � � ��J=J�z=3

F with z 2 �0; 1� is
proposed here to obtain hour-glass free �F elements. This modification leads to
a mixed determinant �J� � det �F � � �J zJ 1ÿz. The sum of the exponents is
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always 1. Using z � 1 the original formulation with constant determinant
�J� � �J over the whole element is identically recovered. Using z � 0 results in
the standard Q1 element. This approach is similar to the selectively mixed
integrated element Q1/d8v1-� in the sense, that one part of the volumetric
behavior, here �J z, is treated as constant while the other part of the volumetric
behavior, here J 1ÿz, is treated as non-constant. Looking at the value � (see the
numerical examples in section 7) it seems to be a good recommendation to
choose the value z near one, such that within the element the constant part �J
dominates over the non-constant part J , e.g. z � 9=10 yields �J � � �J 9=10J 1=10.
The proposed modification can be interpreted as multiplicative version of the
modification suggested by Moran et al. (1990). However, the proposed
modification is neither implemented nor tested yet.

7. Numerical examples
In the following first the used material laws are introduced. Then a number of
numerical simulations is carried out to demonstrate the merits and limits of the
SRI method and the mixed integration in the case of elastoviscoplasticity. It
should be mentioned in advance, that in all numerical analyses a quadratic
convergence of the global Newton-Raphson scheme is observed, unless
otherwise noted.

7.1 Used material laws
To describe the elastoviscoplastic material, which is the most general material
considered here, a decoupled energy function (2), a yield condition (3) and a
penalty function (13) have to be prescribed. The elastoplastic material is
obtained by setting the viscosity to zero. The elastic material is obtained by
setting the first yield stress to infinity. All functions, that describe the non-
linear behavior of the materials considered in the numerical examples, are
given in the following.

The energy function I with

Ŵ � ����̂e
1�2 � ��̂e

2�2 � ��̂e3�2�; U � K�ln J e�2=2;

Wp � H�2=2� ��1 ÿ �0�� � �ÿ1��1 ÿ �0� exp�ÿ��� with � > 0
�16�

is taken from (Simo, 1992) . The elastic terms Ŵ and U are as introduced by
Hencky (1933). The plastic term Wp yields a saturation type hardening law, see
Simo et al. (1985) and Simo (1988). Herein the constants are the shear modulus
�, the bulk modulus K , the first yield stress �0, the saturation yield stress �1,
the linear hardening modulus H and the saturation exponent �. For the energy
function (16) in combination with the von Mises yield condition, introduced in
equation (18), an explicit expression for @

�e;trial

j

�i can be derived (see Simo and
Armero, 1992). Because the derivative @

�e;trial

j

�vol � K is known, an explicit
expression for @

�e;trial

j

�dev
i is obtainable from equation (12).
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The energy function II with

Ŵ �
X3

m�1

�m

�m
�exp��m�̂

e
1� � exp��m�̂

e
2� � exp��m�̂

e
3� ÿ 3�

with �m�m > 0;
X3

m�1

��m�m� � 2�;

U � K���� 1�ÿ1�J e���1 � �
ÿ 1�ÿ1�J e�ÿ�
ÿ1����� 
�ÿ1

ÿ K��� 1�ÿ1�
ÿ 1�ÿ1

with � > 0; 
 > 1;

Wp � H�2=2� �a� 1�ÿ1H2�
�a�1�

�17�

contains a three-term isochoric elastic energy function Ŵ of the Ogden type
(Ogden, 1972a; 1972b). Herein the isochoric elastic stretches replace the elastic
stretches of the original function. The volumetric elastic energy function U is
proposed in Doll and Schweizerhoff (1997). The elastic parts Ŵ and U contain
the moduli �m and the exponents �m, � and 
. The conditions for these
constants of the energy function occur due to physical considerations. The
plastic term Wp in function (17) is taken from Reese and Wriggers (1997). It
consists of a linear hardening law with a non-linear extension (hardening
modulus H2 and exponent a).

The yield condition

� � kdev�����k ÿ
�������
2=3

p
��0 � q� � 0

with kdev �����k � ���dev
1 �2 � ��dev

2 �2 � ��dev
3 �2�1=2

�18�

covers the case of plasticity with isotropic hardening (�0 . . . first yield stress, q
. . . isotropic hardening law) and is well-known from metal plasticity. The
deviatoric character of the yield condition (18), which is essential for our
development, is evident.

The penalty function

����� � 1

1� ! ��
��1�! �19�

goes back to Perzyna (1963; 1966) and leads to a residual equation (14) of the
exponential type with exponent !. It should be noted, that the rate independent
plastic case is identically recovered without ill-conditioning, if the exponent
! � 1 and the viscosity �! 0 are chosen.

7.2 Compression of a block
This example is adopted from van den Bogert et al. (1991), Liu et al. (1992; 1994)
dealing with rubber-like materials. Our purpose is to show the application of
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the SRI scheme to the finite deformation elastoplastic case. Results concerning
the nearly incompressible elastic case are omitted with reference to Liu et al.
(1992; 1994).

The compressed block considered here is of the dimension 10� 10� 10mm.
The material behavior is prescribed by the energy function I given in equation
(16) and the yield condition (18). The material data are given in Table II. The
resulting isotropic plastic hardening law is linear.

The computations are performed with regular discretizations of n� n� n
brick elements per eighth of the block taking advantage of symmetry in three
planes (see Figure 1(a)). The compression is imposed by a constant vertical
displacement of the upper surface with the horizontal displacements fixed. On
the symmetry planes only in-plane sliding is allowed. The total vertical
compression of 20 percent is attained after ten displacement increments, each of
2 percent. As seen from Figure 2 the load-compression curves for the
Q1/d8v8 element with all meshes are well above the curves for the Q1/d8v1
element, i.e. as expected the fully integrated element behaves stiffer than the
selectively reduced integrated element. Mesh refinement from n� 4 to 8 and 16
lowers the load-compression curves of the Q1/d8v8 element while refinement
from n � 4 to 8 does not lead to significantly different curves for the Q1/d8v1
element. Already coarse meshes give rather accurate solutions in combination
with the Q1/d8v1 element.

For n � 16 the Q1/d8v1 element does not converge in the global solution
scheme. For this problem the Q1/d8v1 element seems to be more sensitive than
the Q1/d8v8 element. The reason is that in the fine mesh the fixed size of the
displacement increments is large in relation to the decreased characteristic
single element length, which causes large single element deformations and as a

Figure 1.
Compressed block, 8 � 8
� 8 element mesh

Constant
� (� N/mm2) K (� N/mm2) �0 (� N/mm2) H (� N/mm2) �1 (� N/mm2) �

Value 80.1938 164.21 0.45 0.1 0.45 1010

Table II.
Material data for the
compressed block
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consequence a reduction of the convergence rate. For the finest mesh small
displacement increments of 1 percent lead to a convergent solution in the
beginning of the analysis up to 15 percent. In the interesting region the curve is
nearly indistinguishable from the curves for the coarser meshes with n � 4, 8
and Q1/d8v1. The steeper slope of the curve in the first load step and the kink
at 1 percent are only results of the reduced step length and are not of further
interest. For both increments of 1 percent and 2 percent the first load step falls
directly into the plastic region, i.e. the kink in the curves does not display the
elastic plastic limit. The reason for the brake-down of the solution beyond 15
percent compression is the loss of convexity of the deformed corner element
geometry, which is depicted in Figure 1(c) for the coarser mesh n � 8. In the
considered compression range up to 20 percent this effect does not occur using
the Q1/d8v8 element, because the inherent volumetric locking prevents such
large deformations of the corner element, see Figure 1(b).

Alternative analyses are carried out using the �F Mor element described in
Section 1. Within the numerical accuracy these results are indistinguishable
from the results obtained with the Q1/d8v1 element and therefore omitted in
Figures 1 and 2. As already described the general �F -formulation is based on a
modified deformation gradient with a constant determinant �J over the whole
element. This modification does not influence the deviatoric stress and moduli
tensors, i.e. these tensors are identical for both element formulations.
Especially, for �F Mor � ��J=J�1=3

F with J � det F and �J � J0 � det F 0 at the
element center the Q1/d8v1 formulation is identically recovered for the
decoupled energy functions. Then also the volumetric stress and moduli
tensors are identical for both element formulations. For the pure elastic case the
identity �J � J0 � J e

0 is straightforward. For the elastoplastic case with
deviatoric plastic yielding this identity holds as well, because J p

0 � det F p
0 � 1

Figure 2.
Compressed block. Load

versus compression
obtained with the

Q1/d8v8 element and
Q1/d8v1 element for

various meshes
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has to be taken into account. Using the Q1/P0 element, which is identical to the
�F Nag element, all results obtained with the Q1/d8v1 element can be confirmed
within a small tolerance.

As mentioned above, the SRI scheme was used in Liu et al. (1992; 1994) for
nearly incompressible elastic material behavior with K=�� 1, i.e. for a very
large ratio of the bulk modulus and the shear modulus. The material constants
taken from Table II yield a ratio K=� � 2 that is not as large; thus the elastic
material is not close to being incompressible. The volumetric locking
possibility, observed in our example, stems from the plastic material behavior,
which is purely deviatoric and therefore totally incompressible. The plastic
behavior reduces the `̀ shear''-stiffness of the material. In the linear elastic case
the shear modulus is defined as � � �=
, where � is the shear stress and 
 is
the elastic engineering shear strain. In the elastoplastic case (here for simplicity
with the additive split of strains) this formula can be rewritten as
�� � ��=��
 e ��
 p�, where �� can be interpreted as `̀ local elastoplastic''
shear modulus. If plastic deformations are present, a small increase of ��
normally yields a large increase of �
 p, i.e. �� becomes small. Using now K=��
as incompressibility indicator it is evident that K=�� can be large although
K=� is small.

7.3 Necking of a circular bar under extension
This example is adopted from Simo and Armero (1992), de Souza Neto et al.
(1996), Simo (1992; 1988), Schellekens and Parisch (1994), MuÈller-Hoeppe (1990)
among others. The geometry of the circular bar is chosen as follows: total
length 53.334mm, radius 6.413mm at the ends of the bar, radius 6.105mm in the
symmetry plane. Starting from the ends of the bar to the central symmetry
plane, a linear reduction in the radius along the length is imposed. This
geometric imperfection induces plastic yielding in the symmetry plane and
avoids an initially homogeneous stress state. Simulations, where the necking of
an initially geometric perfect bar is induced by the thermo-mechanical
coupling, are considered, e.g. in Simo et al. (1993) and Miehe (1993), but are not
the subject of the present contribution.

The material behavior is prescribed by the energy function I given in (16),
the yield condition (18) and the penalty function (19). The material constants
are given in Table III. The viscosity � with a unit Ns/mm2, not contained in
Table III, will be discussed later.

The following investigations are based on two different finite element
meshes. Due to symmetry only one eighth of the bar has to be discretized. The

Table III.
Material data for the
circular bar

Constant
�

(� N/mm2)
K

(� N/mm2)
�0

(� N/mm2)
H

(� N/mm2)
�1

(� N/mm2) � !

Value 80.1938 164.21 0.45 0.12924 0.715 16.93 1
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first mesh consists of 120 brick elements and is used for elastoviscoplastic
investigations with variable viscosity �. The second mesh consisting of 960
brick elements is identical to the mesh considered in Simo (1992). Within the
present contribution the focus is on the rate-independent plastic case (� very
small) with special interest in the hour-glassing occurring at a certain loading
state, which was also observed in Simo (1992) for the Q1/P0 element.

7.3.1 Necking problem using a coarse mesh with 120 elements. The
discretization is shown in Figure 3(a). It consists of 12 brick elements in each
cross section and ten brick elements in axial direction. Loading is applied by an
extensional axial displacement w of the bar ends, where in-plane displacements
are allowed. Here w is the elongation of the half specimen. Starting from time t
� 0s up to time t � 0.7s the axial displacement w � _wt is applied within 70
equal time steps �t � 0.01s at a constant displacement rate of _w � 10mm/s
(unit s means seconds). For t > 0:7s the axial displacement is held fixed at
w � 7mm, such that viscous effects can lead to some relaxation. The time step
size �t � 0:01s remains unchanged then. Inertia effects are assumed to be
negligible.

The subject of this investigation is to study the behavior of the Q1/d8v8 and
Q1/d8v1 element formulations in combination with viscoplastic effects. In
Figures 4 and 5 the total axial force in the bar is plotted versus the time. The
curves obtained with the Q1/d8v8 element are shown in Figure 4. The curve
related to the small viscosity parameter � � 10ÿ8 can be taken as the time
independent plastic limit curve of the problem. All load curves for viscosities
� > 10ÿ8 should be above this limit curve, because with larger viscosity
parameters the load should be larger due to the viscous overstress. When � is
chosen to 10ÿ1 resp. 10ÿ2 the relaxation process for t > 0:7s becomes clearly
visible. However, for all considered viscosities the relaxed loads are fairly close to
each other, some are nearly identical. The curves � � 10ÿ3 . . . 10ÿ8 are almost
not distinguishable within the accuracy of the plot, i.e. the plastic limit case is
already obtained for rather moderate viscosity parameters. As visible from the
load curves in Figure 4 and the mesh in Figure 3(b), the fully integrated Q1/d8v8
element behaves very stiff and does not allow necking at all.

Figure 3.
Necking bar, 120

element mesh
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The curves resulting from computations with the Q1/d8v1 element are shown
in Figure 5. Now the necking phenomenon ± a steep decrease of the load curve
after the limit point is passed ± can be described, as also shown in Figure 3(c). It
must be noted, that the load curve of the time independent case � � 10ÿ8

compares very well to the results described in Simo (1992). The SRI method
reduces volumetric locking correctly as the steep decreasing load curves show.
It is also visible that the viscous effects appear to be more evident for the SRI
computations than for the fully integrated element. For t > 0:7s the relaxation
of the overstress is also larger than for the fully integrated counterpart.

Figure 5.
Necking bar, 120
element mesh. Axial
load versus time
obtained with the
Q1/d8v1 element for
various viscosities �

Figure 4.
Necking bar, 120
element mesh. Axial
load versus time
obtained with the
Q1/d8v8 element for
various viscosities �
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Furthermore the curves obtained with different viscosity parameters are more
distinct. In particular the loads after relaxation are different. In Figure 5 the
curve for � � 10ÿ2 is not as close to the plastic limit curve as its counterpart in
Figure 4. The curve for � � 10ÿ3 nearly coincides with the plastic limit curve in
Figure 4, which is not the case for its counterpart in Figure 5. Using the 120
element mesh the results obtained with the Q1/d8v1 element do not exhibit any
artificial instability (� hour-glassing) (see Figure 3(c) for the plastic case.

7.3.2 Necking problem using a fine mesh with 960 elements. The mesh,
shown in Figure 6(a), consists of 48 elements in each cross section and 20
elements in axial direction with increased mesh density near the symmetry
plane to capture the necking effects. Here the rate independent plastic case is
considered. The viscosity � � 10ÿ6 is chosen to be very small, i.e. the used time
increment size has no significant influence on the final results. Loading is
applied by the following extensional axial displacement w of the bar ends: five
equal increments �w � 0:56mm up to w � 2:8mm, 15 equal increments
�w � 0:08mm up to w � 4mm and ten equal increments �w � 0:3mm up to
w � 7mm.

As the fully integrated Q1/d8v8 element cannot describe the necking
phenomenon, only the selectively reduced integrated Q1/d8v1 element is used
for the 960 brick element mesh. In Figure 7 the total axial force in the bar is
plotted versus the elongation of the half specimen. The lowest curve is obtained
using the pure Q1/d8v1 element. This curve is nearly identical to the curve
obtained by Simo and Armero (1992) with the Q1/P0 element. As mentioned
above, the �F Mor element yields the same results as the Q1/d8v1 element, if
isochoric-volumetric decoupling is assumed. All these elements, i.e. the Q1/P0
or �FNag element and the Q1/d8v1 or �F Mor element, have one identical property:
the volumetric terms in the element are treated as constant. Looking at the
deformed mesh in Figure 6(b) it is evident, that the �F Mor and Q1/d8v1 element
show considerable hour-glassing from some deformation state on as is already
known from the Q1/P0 element (see Simo, 1992). It seems also, that starting at
the boundaries, where the element edges are held fixed (e.g. in the central
symmetry plane of the bar), a rather fine mesh is necessary until hour-glassing

Figure 6.
Necking bar, 960

element mesh
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can develop. It must be noted that the Q1/P0 elements show identical results up
to w � 5:8mm, however, at larger elongation severe hour-glassing occurs and
the final solution w � 7mm is not obtainable for the applied load increments.

In Figure 7 the load-elongation curves obtained with the mixed integrated
element for values of � � 0.995, 0.99, 0.95, 0.9 are plotted. Decreased weight
factors � lead to increased element stiffness and vice versa. For all used �-
values no hour-glassing occurs, i.e. the stabilization preserves clearly the rank
of the stiffness matrix. Here the value � � 0.99 ± as also for many other
examples ± proved to be a reasonable choice not affecting the stiffness overly
much. As seen in Figures 6(c) and 7 no hour-glassing occurs and the load-
elongation curve is only slightly above the curve for Q1/d8v1 element. A
similar result is obtained by Simo and Armero (1992) using the Q1/E4 element
which did not show hour-glassing for this loading.

The above simulations of the time independent plastic limit case are carried
out using the viscoplastic formulation with a small viscosity �. This small
viscous effect is not visible in the final results presented here, however as is
well known from the literature the computational performance of the global
Newton-Raphson scheme is considerably improved. This is particularly
helpful, as using the pure plastic formulation in combination with a pure
displacement controlled loading it is hard to pass the limit point without
convergence problems in the global solution scheme. Using the viscoplastic
formulation with small viscosity instead almost no convergence problems with
reasonable step-size are obtained. As mentioned in section 4 the special choice
of the residual equation circumvents the ill-conditioning at small viscosities, an
observation also reported for a similar algorithm in Runesson et al. (1999).

Figure 7.
Necking bar, 960
element mesh. Axial
load versus elongation
obtained with the
Q1/d8v1-� element for
various volumetric
weight factors
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7.4 Elongation of a latex strip
This example is chosen to demonstrate the developed procedures for a
structure with highly non-linear elastic and elasto-plastic material including a
reversal of the loading. In Reese and Wriggers (1997) a three-term Ogden
material (Ogden, 1972a) with compressible extension (Ogden, 1972b) and von
Mises yield condition (von Mises, 1913) with non-linear isotropic plastic
hardening law is used to describe the rate independent behavior of latex
rubber. In our contribution the behavior of latex rubber is described by the
functions (17), (18) and (19). The elastic material law becomes identical to the
one used in Reese and Wriggers (1997), if �!1 (LameÂ-constant), K !1,
� � 1, 
! 1 with 
 > 1 are chosen (concerning the volumetric energy
function, see Doll and Schweizerhof, 1997). The material constants are given in
Table IV. The ratio K=� > 104 ensures nearly incompressible behavior already
in the elastic region. The small value � for the viscosity implies time-
independent plasticity.

The three-dimensional strip has the dimension 100� 100� 10mm. Due to
symmetry only one eighth has to be discretized with a regular mesh of
25� 4� 1 solid elements, see Figure 8(a). Loading is applied by a given
horizontal displacement u at the strip ends. First the maximum displacement
u � 150mm (400 percent of initial length) is reached within 300 uniform steps.
Then the initial displacement u � 0mm is recovered by reverse loading
(`̀ unloading'') with 300 uniform steps. The vertical and normal displacements of
the strip ends are always held fixed.

In Figure 9 the longitudinal force-elongation curves are plotted; the
hysteresis effects as a consequence of the plastic deformation are obvious. The
selectively reduced integrated Q1/d8v1 element yields the curve with the
lowest values of the force. The mixed integrated Q1/d8v1-� element leads ± as
expected ± to increasing loads with decreasing volumetric weight factor �

Table IV.
Material data for the

latex strip

Constant Value

�1 (� N/mm2)
�1

�2 (� N/mm2)
�2

�3 (� N/mm2)
�3

K (� N/mm2)
�


�0 (� N/mm2)
H (� N/mm2)
H2 (� N/mm2)
a
!
�

0.9394
1.3
ÿ1:6 � 10ÿ3

ÿ3:6
1:5 � 10ÿ4

7.46
104

1
1.001
3.6
75
1:1 � 105

6.83
1
10ÿ4
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indicating the volumetric locking. Somewhere in the range of � < 0:7
convergence of the global solution scheme is no longer achieved and the
maximum displacement cannot be reached for the chosen step length due to the
mentioned locking, which can also be observed from the result for the fully
integrated Q1/d8v8 element, where no further deformation beyond 50mm was
possible. As volumetric locking leads to larger loads, i.e. larger stresses which
are only admitted for increased equivalent plastic strains � in the hardening
part Wp in (17), the hysteresis effects are more pronounced for the elements
with increased locking. The latter is visible for the hysteresis curve for
� � 0:70 in Figure 9. Due to plastic deformation the force becomes zero before
the initial displacement u � 0mm is recovered for all � � 0:70 .

Figure 8.
Latex strip, eighth of
strip



Volumetric
locking

895

Two representative meshes for the reduced integrated and mixed integrated
elements at maximum elongation u � 150mm are depicted in Figure 8(b) and
(c) to demonstrate the influence of slight volumetric locking on the behavior. As
the vertical and normal displacements at the strip ends are held fixed, non-
homogeneous deformations occur mainly in this area and the effect of the
integration scheme for the volumetric terms is most important there. Due to
volumetric locking the deformation of the Q1/d8v1-0.7 element is
overconstrained and a non-physical deformation behavior near the strip ends is
observed. In contrast, the Q1/d8v1 element leads to the expected physical
result. Decreasing � < 0:7 ± thus increasing volumetric locking ± the non-
physical behavior increases until the global solution scheme diverges. Near the
symmetry plane, where the deformation is nearly homogeneous, volumetric
locking effects are less important. It should be noted, that due to the complete
three-dimensional modeling and behavior of the strip with different thinning,
the shown areas of the meshes in Figure 8(a)-(c) cannot be identical. In Figure
8(d) the equivalent plastic strain is plotted. Plastic deformations occur in the
interior of the strip. At the strip ends the deformations remain elastic.

The Q1/d8v1 element exhibits mild hour-glassing at the strip ends, see
Figure 8(b). Using a small stabilization instead with � � 0:99 this effect
vanishes completely without changing the load-elongation curve too much (see
Figure 9). It is obvious, that for smaller ratios K=� the results obtained with the
Q1/d8v1-� element for various �-values would differ less from each other.

7.5 Bending of a thin square plate
This example is chosen to show the effect of the proposed algorithms on thin
shell type structures at large deformations and is adopted from BuÈchter et al.
(1994), Seifert (1996) and Miehe (1997). The square plate has a ratio thickness/

Figure 9.
Latex strip. Axial force

versus elongation
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length t/l� 2.54/508� 1/200. Due to the symmetry of the plate only a quarter is
discretized with a uniform mesh of 9� 9 shell elements, see Figure 10(a). A
uniform reference load p0 � 3:94 � 10ÿ3N/mm3 normal to the plate is applied.
This specific volume-type loading is identical with an area load of 10ÿ2N/mm3

divided by the plate thickness applied on the mid-plane. All edge displacements
of the lower surface normal to the plate are held fixed while the in-plane
displacements are free. Because the edge displacements of the upper surface are
completely free, `̀ edge-rotations'' may occur.

The applied shell elements are so-called ANS3Dq resp. eas3Dq 8-node `̀ solid-
shell'' elements which are three-dimensional continuum elements with specific
enhancements to avoid locking in thin shell applications (for detaills, see
Hauptmann, 1997; Hauptmann and Schweizerhof, 1998). The displacement
interpolation is bilinear in in-plane direction and quadratic in normal shell
direction. The ANS3Dq and the eas3Dq elements are formulated in the total
material description using the 2. Piola-Kirchhoff stress tensor S and the Green-
Lagrange strain tensor E , i.e. the corresponding transformation has to be
applied. According to Dvorkin and Bathe (1984) the assumed natural strain
concept is employed for the transverse shear strains. Following the
developments of Simo and others (Simo, 1992; Simo et al., 1993) the in-plane
membrane and bending strain terms are enhanced by a five-term incompatible
strain function for the eas3Dq element. Because the deformation gradient is the
driving variable for the algorithms presented in sections 3 and 4 a modified
deformation gradient F mod has to be computed from the assumed strain tensor
EANS resp. in addition to the enhanced strain tensor E eas for the eas3Dq
element. Here F mod � R �U mod is composed of the unmodified rotation tensor
R � F �U ÿ1 and the assumed right stretch tensor U mod � �2Emod � 1�1=2.

The material behavior is described by the energy function (16), the yield
condition (18) and the penalty function (19). In Table V the material data are

Table V.
Material data for the
thin square plate

Constant
�

(� N/mm2)
K

(� N/mm2)
�0

(� N/mm2)
H

(� N/mm2)
�1

(� N/mm2) � ! �

Value 26,538 57,500 248 0 248 1010 1 0, 10ÿ6

Figure 10.
Thin square plate,
ANS3Dq/d4v1 element
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given. The resulting isotropic material law is representing an elastic perfectly
plastic behavior. The viscosity is assumed to be negligible and the results for
� � 0 and � 10ÿ6 are compared. Both values for the viscosity � yield identical
solutions and identical global convergence rates.

The ANS3Dq (� ANS3Dq/d4v4) resp. the eas3Dq elements are fully
integrated with six Gauss-points in thickness direction and four Gauss-points
in in-plane direction. The ANS3Dq/d4v1 resp. the eas3Dq elements employ full
integration for the deviatoric part and reduced integration for the volumetric
part, i.e. for the latter six Gauss-points in thickness direction and one center-
point in in-plane direction. Loading is applied by arc-length control with a load
factor � that scales the reference load p � �p0. In Figure 11 the load-deflection
curves are plotted. The ANS3Dq/d4v1 element leads to results very close to the
results found in BuÈchter et al. (1994), Seifert (1996) and Miehe (1997). It is
clearly visible, that the full integration with the ANS3Dq/d4v4 element exhibits
volumetric locking. In the elastic region at small load factors the curves are
nearly identical. As soon as plastic deformation is present, the stiffening
behavior of the ANS3Dq/d4v4 element can be seen. The mesh of the deformed
plate obtained with the ANS3Dq/d4v1 element is shown in Figure 10(b). In the
plate corners large deformations occur. As depicted in Figure 10(c) these
deformations are elastoplastic while the deformations in the center of the plate
remain purely elastic. In this example no hour-glassing has been observed. The
eas3Dq/d4v4 element leads to larger deformations when the locking of the
ANS3Dq/d4v4 element is appearing, thus when the plastic behaviour is more
dominant. However, it does not fully remove volumetric locking, as becomes
visible when again selective reduced integration is applied, see the eas3dq/d4v1
element. This obvious difference which leads to fairly large differences in the
displacements in this coarse mesh can be attributed to the non-linear effects
which cannot be removed by the five-parameter in-plane enhancement of the
strains.

Figure 11.
Thin square plate. Load
factor � versus vertical

center displacement
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It is obvious that the used 9� 9 mesh taken to compare with BuÈchter et al.
(1994), Seifert (1996) and Miehe (1997), is by far not a converged mesh.
Nevertheless, the locking effects are more visible in such coarse meshes.
Further investigations of this example have been performed with refined
meshes to obtain more accurate reference solutions (see, for example,
Hauptmann and Schweizerhof, 1998; Harnau et al., 2000).

8. Conclusions
If an isochoric-volumetric decoupled material behavior is assumed, the stress
tensor and the consistent algorithmic moduli tensor can be additively
decoupled into deviatoric and volumetric parts. For the general finite
deformation case the splits of these tensors are derived for elasticity, plasticity
and viscoplasticity in a spatial and in a total material description. Standard full
integration leads to volumetric locking for isochoric deformations, in particular,
in elements with non-rectangular shape. Using a one-point integration for the
volumetric term, the well known selective reduced integration, the volumetric
locking is completely removed, even for the elements with mixed hybrid
formulation as the enhanced strain elements. All the selective reduced
integrated elements do not show any kinematics resp. hour-glassing in the
small deformation range, however under certain loading conditions and large
deformations they exhibit hour-glassing similar as observed by Reese and
Wriggers (1996), for the pure EAS-formulation. A simple but very efficient
remedy is to introduce a mixed integration of the volumetric term by adding
back a little of the stiffening fully integrated volumetric part by introducing the
so-called Q1/d8v1-� element. Though a parameter must be chosen on
experience, thus almost from heuristics only, the examples computed suggest
that a small parameter is sufficient ± an experience also expressed by Crisfield
and Norris (1999).

To overcome the hour-glassing of the �F elements a modification similar to
the mixed integration introduction of the volumetric term of the SRI elements is
proposed.

The applicability of the SRI scheme to thin shell problems is also
demonstrated using the solid-shell elements. In thickness direction an identical
integration rule is chosen for the deviatoric and the volumetric terms. In in-
plane direction selective reduced integration is employed for the volumetric
term as for the solid elements improving the results considerably for the
structural parts with isochoric deformation. For a more detailed discussion of
the solid-shell elements with different interpolation and the removal of
volumetric locking resp. the kinematics occurring at some loading state and
their possible removal we refer to Harnau et al. (2000).
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