
BRST Quantization of String Theories

Applying REDUCE to High Energy Physics

Werner M. Seiler
y

Institut f�ur Theoretische Physik, Universit�at Karlsruhe
D-7500 Karlsruhe 1, West Germany
BITNET: BE04@DKAUNI2

A REDUCE package for commutator calculations in supersymmetric theories (including ordered products) and

for in�nite sums is presented and applied to the computation of anomalies in string theory.

1. Introduction

While the use of computer algebra in general relativity has become fairly common, most

applications in high energy physics concern Feynman diagrams. Examples which tend more

to model calculations are rare: Castellani reports about a package for supergravity2), other

authors tried REDUCE in superspace formalism6;8).

In this paper, we present a package written in REDUCE 3.37) for commutator calculations

in supersymmetric theories, for the handling of ordered products and for the simpli�cation

of in�nite sums. As an application, anomalies (or Schwinger terms) of constraint algebras in

string theory are computed. For commutator calculations Cecchini and Tarlani3) (see also

their contribution to this workshop) recently presented a COMMON LISP program. But in

our case, it is important, for the further processing of the results, to integrate the package

into a computer algebra system like REDUCE.

We start with a very short description of the physical background. The following two

sections describe shortly the REDUCE package SUPERCALC implemented for the calculations.

A more explicit description can be found elsewhere9;10). First, we consider the computation

of commutators and the handling of ordered expressions, then we regard the simpli�cation of

sums. The last section shows a concrete example and gives some conclusions.

2. String Theory

In the last years, string theory has attracted a lot of interest as a possible candidate

y
Supported by Studienstiftung des deutschen Volkes

New address: Institut f�ur Algorithmen und Kognitive Systeme, Universit�at Karlsruhe



for an uni�ed theory. A striking feature of this theory is the existence of a so-called critical

dimension: A consistent quantization is possible only for one special dimension of space-time.

The physical ideas of string theory can be found in the \bible"5). Here, we concentrate on

the computational aspects of quantization within the BRST formalism. Our basic objects are

the Fourier modes of the fundamental �elds of the theory. They obey canonical commutation

relations, for the bosonic string, for example,

[�m; �n] = m�m+n;0 : (1)

The string Lagrangian is degenerate and gives rise to constraints. Their Fourier modes

Lm =

1X

�1

: �m�n�n : (2)

generate the famous Virasoro algebra with relations

[Lm; Ln] = (m� n)Lm+n +
D

12
(m3

�m)�m+n;0 : (3)

The colons denote normal ordering de�ned by the pairings

�m�n =m�(m)�m+n;0 : (4)

These expressions already show all characteristics of the calculations: We always deal with

bilinear currents like the Lm's; because of the ordering, central extensions or anomalies arise

in the algebras of constraints.

In supersymmetric models, the number of modes and therefore the size of the algebras

increases. We must work with fermionic modes, too then. Further modes (so-called \ghosts")

are introduced by the BRST theory. We call the quantization consistent, if the anomalies

vanish. This condition determines the space-time dimension D.

To compute the commutator between ordered expressions, we need the theorem of Wick1),

expanding a product in a sum of ordered products:

A1A2 : : : An = : A1A2 : : : An : +

+
X

one pairing

: A1 : : : Ai : : : Aj : : : An : +

+
X

two pairings

: A1 : : : Ai : : : Ak : : : Al : : : Aj : : : An : + : : :

(5)

A similiar formula exists for the product of two ordered products.



3. Commutator Calculations

For commutator calculations and the handling of ordered expressions, SUPERCALC pro-

vides three procedures: bracket, wick and ordprod. bracket uses only the basic, algebraic

properties of a graded commutator (with the exception of ordered products, where the de�-

nition of a commutator is used):

[A;B] = (�)�A�B [B;A] ; (6a)

[A +B;C] = [A;C] + [B;C] ; (6b)

[AB;C] = A [B;C] + (�)�B�C [A;C]B (6c)

(�A denotes the grading of the operator A). Hence, it can also be used for other structures

like Poisson or Jacoby brackets. The fundamental commutation relations are introduced to

SUPERCALC by means of LET rules. If the switch zerocomm is set, only the nonvanishing

commutators must be given. Any commutator without a de�ning LET rule is then eliminated

at once by the simpli�er.

A straightforward recursive implementation of the rules (6a-c) leads to a fairly ine�cient

algorithm. bracket tries to improve the e�ciency by �rst computing the complexity of each

argument, and starting with the more involved one. For the most common cases | sums,

products and powers | special procedures are called, working iteratively.

wick expands a product of operators into a sum of ordered products following the theorem

of Wick (5); ordprod does the same for a product of ordered products. A depth-�rst approach

is used to generate all terms. This algorithm possesses the highest complexity of the whole

package. For a low number n of factors, the number of terms in the expansion is growing

approximately exponentially, for a large number with nn. (For n = 5 we get 25, for n = 8

already 763 summands!)

4. Sums

Most operators of string theory are de�ned as in�nite sums. Kronecker �'s and step

functions occur in the commutators and pairings of the modes. To handle such expressions,

SUPERCALC provides the operator ssum(s,n,l,u) and the procedure evalsum to simplify

terms with ssum. Here s denotes the summand, n the index and l,u the lower resp. upper

bound.

The simpli�cation of elementary sums (at present: summands linear or quadratic in the

index) is integrated into the REDUCE simpli�er and hence performed automatically. For more

complex cases, evalsum must be invoked. This procedure tries six simpli�cation rules. The



�rst three consider single sums: The summand is checked for an even or odd symmetry, sums

over expressions containing a Kronecker � are evaluated, and the bounds are adjusted in sums

with step functions.

The other three rules work on linear expressions in ssum. First, sums over ranges of equal

size are collected into a single sum to give REDUCE a chance to simplify the summand. For

sums over summands of the same type, two cases are considered: Either the sums cancel each

other partially, or their ranges are adjacent. Both times a single sum is generated. All three

rules search automatically for index shifts allowing their application.

evalsum makes no use of summation theory. It is a completely heuristic approach which

su�ces for the sums in our calculations. For multiple sums the evaluation can be very time-

consuming, because every level must be investigated seperately. The elementary sums are

computed by a kind of table look-up. Hence, an extension of this list is easily possible.

Besides the main procedures presented in this and the preceding section, SUPERCALC

must tackle a lot of minor problems. In particular, a legiable output is important. Further

points are e.g. e�ective control of LET rules and the distinction between integer and half integer

indices.

5. An example

The following �gure contains a complete session computing the algebra (3). To get the

simplest form of the result, we must give some hints with LET rules. A completely automatic

calculations (which also detects the necessary index shifts!) would be very di�cult to program.

Especially the recognition of the Virasoro operator in the �nal expression, which is very easy

in our example, requires nontrival pattern matching in the case of superstrings.

setgreater(m,0);
Time: 3 ms
pp:=bracket(normord(alpha(m-j)*alpha(j)),

normord(alpha(n-k)*alpha(k)));
PP := DELTA *DELTA *THETA(-J+M)*THETA(J)*J*(-J+M)

-J-K+M+N,0 J+K,0
+DELTA *DELTA *THETA(-K+N)*THETA(K)*K*(K-N)

-J-K+M+N,0 J+K,0
+DELTA *THETA(-J+M)*:ALPHA *ALPHA :*(-J+M)

-J-K+M+N,0 J K
+DELTA *THETA(-K+N)*:ALPHA *ALPHA :*(K-N)

-J-K+M+N,0 J K
+DELTA *DELTA *THETA(-J+M)*THETA(J)*J*(-J+M)

-J+K+M,0 J-K+N,0
+DELTA *DELTA *THETA(-K+N)*THETA(K)*K*(K-N)

-J+K+M,0 J-K+N,0
+DELTA *THETA(-J+M)*:ALPHA *ALPHA :*(-J+M)

-J+K+M,0 -K+N J
-(DELTA *THETA(K)*K)*:ALPHA *ALPHA :

-J+K+M,0 -K+N J



+DELTA *THETA(-K+N)*:ALPHA *ALPHA :*(K-N)
J-K+N,0 -J+M K

+DELTA *THETA(J)*J*:ALPHA *ALPHA :
J-K+N,0 -J+M K

+DELTA *THETA(J)*J*:ALPHA *ALPHA :
J+K,0 -J+M -K+N

-(DELTA *THETA(K)*K)* :ALPHA *ALPHA :
J+K,0 -J+M -K+N

Time: 1378 ms
for all x such that not freeof(x,n) let

delta(m+n,0)*x=delta(m+n,0)*sub(n=-m,x);
Time: 15 ms
qq:=evalsum ssum(pp,j,-aleph,aleph);
QQ := -(2*DELTA *THETA(-K)*THETA(K+M)*K)*(K+M)

M+N,0
+2*DELTA *THETA(-K-M)*THETA(K)*K*(K+M)

M+N,0
-(THETA(-K)*K)*:ALPHA *ALPHA :

-K+N K+M
-(THETA(-K)*K)*:ALPHA *ALPHA :

K+M -K+N
+2*THETA(-K+N)*:ALPHA *ALPHA :*(K-N)

-K+M+N K
+2*THETA(K-N)*:ALPHA *ALPHA :*(K-N)

-K+M+N K
-(THETA(K)*K)*:ALPHA *ALPHA :

-K+N K+M
-(THETA(K)*K)*:ALPHA *ALPHA :

K+M -K+N
Time: 3068 ms
rr:=evalsum ssum(qq,k,-aleph,aleph);

2
RR := (DELTA *M*(M -1)

M+N,0
+6*SSUM(:ALPHA *ALPHA :*I:1,I:1,-ALEPH,ALEPH)

M+N-I:1 I:1
-3*SSUM(:ALPHA *ALPHA :*I:1,I:1,-ALEPH,ALEPH)

M+I:1 N-I:1
-3*SSUM(:ALPHA *ALPHA :*I:1,I:1,-ALEPH,ALEPH)

N-I:1 M+I:1
-(6*N)*SSUM(:ALPHA *ALPHA :,I:1,-ALEPH,ALEPH))/3

M+N-I:1 I:1
Time: 2934 ms
for all k let

ssum(normord(alpha(m+k)*alpha(n-k))*k,k,-aleph,aleph)=
ssum(normord(alpha(m+n-k)*alpha(k))*(k-m),k,-aleph,aleph);

Time: 32 ms
rr/4;

2
(DELTA *M*(M -1)

M+N,0
+6*SSUM(:ALPHA *ALPHA :,I:1,-ALEPH,ALEPH)*(M-N))/12

M+N-I:1 I:1
Time: 275 ms

A complete session computing the Virasoro algebra (3). The output is slightly edited

for better readibility. The exection times are those of a Siemens 7880 mainframe under

TSO. aleph is a keyword for in�nity.

Similiar problems occur in many applications of computer algebra. They demonstrate the

importance of interactive usage. But this requires reasonably execution times! In REDUCE,

we achieve this only by working in the symbolic (RLISP) mode and by a close integration

into the system. Both demand a detailed knowledge of the internal structure of REDUCE (for

which no documentation besides the source code exists).



The main reason to use computer algebra for the calculations presented here lies in the

reliability of the results. It does not take too much time to commute two bilinear currents

like (2). But the large number of similiar calculations with only slight changes (e.g. fermionic

instead of bosonic modes) inevitably leads to errors.

A comparison of this work with the results of Gorman et al.
4) leads to an interesting

point. There, a fairly general formula for the anomalies in Virasoro and related Kac-Moody

algebras is derived. But its application is more tedious than a computer-aided, brute force

calculation. An implementation of their expression would be rather di�cult and would result

in a highly specialized program, whereas the procedures of SUPERCALC can be used for many

di�erent tasks.

6. Acknowledgments

It's a pleasure to thank G�okt�urk �U�coluk for many valuable hints about REDUCE, and

Marcus Scholl for many discussions about BRST and string theory.

7. References

[1] N.N. Bogoljubov, D.V. Shirkov: Introduction to the Theory of Quantized Fields, Interscience Publisher,

New York 1959

[2] L. Castellani, Int. J. Mod. Phys. A3(1988)1435

[3] R. Cecchini, M. Tarlani, Comp. Phys. Comm. 52(1989)283

[4] N. Gorman, W. McGlinn, L. O'Raifeartaigh, D. Williams, Int. J. Mod. Phys. A4(1989)1235

[5] M.B. Green, J.H. Schwarz, E. Witten: Superstring Theory, vol. I&II, Cambridge University Press,

Cambridge (UK) 1987

[6] R. Grimm, H. K�uhnelt, Comp. Phys. Comm. 20(1980)77

[7] A.C. Hearn: REDUCE 3.3 { User Manual, RAND Publication CP78, The RAND Corporation, Santa

Monica 1987

[8] R.P. dos Santos, J. Symb. Comp. 7(1989)523

[9] W.M. Seiler: Die Bestimmung der kritischen Dimensionen von String und Superstring mit REDUCE,

master thesis (in german), Karlsruhe 1989

[10] W.M. Seiler: BRST Quantization of String Theories with REDUCE, to appear


