SKaLib: SKaMPI as a library

Technical Reference Manual *

R. H. Reussner
University of Karlsruhe
Department of Informatics
Germany

reussner@ira.uka.de

June 10, 1999

!This document appeared as Interner Bericht (Technical Report) 99/07 at the De-
partment of Informatics, University of Karlsruhe, Germany

Abstract

SKalLib is a library to support the development of benchmarks. It offsprings
from the SKaMPI-project [2]. SKaMPI is a benchmark to measure the perfor-
mance of MPI-operations [6]. Many mechanisms and function of the SKaMPI-
benchmark program are also useful when benchmarking other functions than
MPDI’s. The goal of SKaLib is to offer the benchmarking mechanisms of
SKaMPI to a broader range of applications. The mechanisms are: precision ad-
justable measurement of time, controlled standard error, automatic parameter
refinement, and merging results of several benchmarking runs.

This documents fulfills two purposes: on the one hand it should be a manual
to use the library SKaLib and explains how to benchmark an operation. On
the other hand this report complements the SKaMPI-user manual [4]. The
latter report explains the configurations and the output of SKaMPI, whereas
this reports gives a detailed description of the internal data structures and
operations used in the SKaMPI-benchmark.

There is also a scientific section which motivates and describes the algorithms
and underlying formulas used by SKaMPI.

Contents

1 Introduction
2 Using SKaLib

3 Mechanisms of SKaLib
3.1 Portable measurement of time
3.2 Automatic control of the standard error
3.2.1 Repetition of measurements
3.2.2 Forming a measurement
3.2.3 Interface of the ASEC module
3.3 Automatic parameter refinement
331 Algorithm
3.3.2 Estimation of the maximal error
3.3.3 Implementation and Interface
3.4 Automatic mergingof results
3.4.1 Mergingresults Lo
3.4.2 Findingresults
3.4.3 Putting it all together

4 Example: How SKaLib is used in SKaMPI
4.1 The Patterns-layer oL
4.2 Autodist-layer.

4.3 Post processing-layero oo
5 SKaMPI’s Main data structures

6 Enhancements of SKaMPI
6.1 New sections of the parameter file
6.2 New measurements

6.3 New patterns L

o oo ot <

10
10
11
11
13
14
14
14
15
15

17
17
19
20

21

7 Index of all functions 38

7.1 Module skampi o 38
7.1.1 Functionmain 38
7.2 Module autodisto 38
7.2.1 Function measuresuite 39
7.2.2 Function calculatekey 39
7.3 Module automeasure 39
7.3.1 Function aminit, 40
7.4 Module ”standard_error...” given at the beginning of function . . 40
7.4.1 Functionamfree 40
7.4.2 amcontrolend 40
7.4.3 Function am filldata 41
7.4.4 Function doublecmp 41
7.5 Modulecol e 41
7.5.1 Function colpattern 42
7.6 Module col testl 42
7.6.1 Functions coliinit_... 42
7.6.2 Functions measure_.... 42
7.7 Modulemw e 43
7.7.1 Function mw_pattern. 43
7.8 Module mw_testl e 43
7.8.1 Functions mwinit_... 43
7.8.2 Functions master_receiveready_test 43
79 Modulep2p o 44
7.9.1 Function p2p_find. maxmin 44
7.9.2 Function p2p_pattern 44
7.10 Module p2p_testl Lo 44
7.10.1 Functions p2pinit_... L. 45
7.10.2 Functions server_... 45
7.10.3 Functions client_..., 45
7.11 Module simple o 45
7.11.1 Function simplepattern 46
7.12 Module simpletestl, 46
7.12.1 Functions simpledinit_... 46
7.12.2 Functions measure_.... 46
7.13 Module datalisto 47
7.13.1 Function initdist 47
7.13.2 Functionadd, 47
7.13.3 Functionreadele 47
7.13.4 Function readitemele 48
7.13.5 Function item_addr 48

ii

7.13.6 Function item_addr_atitem 48
7.13.7 Functionisend, 49
7.13.8 Functionisstart 49
7.13.9 Function number_of elements 49
7.13.10 Function removeele 49
7.13.11 Function freedatalist 50
7.13.12Function minimum 0., 50
7.13.13Function maximum 50
7.13.14Function variance. 0. .. 51
7.13.15Function averageof lists 51
7.13.16Function average 51
7.13.17Function writetofile 51
7.13.18 Function read from file. 52
7.14 Module skampierror, 52
7.14.1 Function output_error 52
7.15 Module skampimem 0., 52
7.15.1 Function allocatemem 53
7.15.2 Function freemem 53
7.15.3 Function mem_init one buffer 53
7.15.4 Function mem_init_two_buffers 54
7.15.5 Function mem _init_two_buffers_gather 54
7.15.6 Function mem_init_two_buffers_alltoall 54
7.15.7 Function mem_init_two_buffers_attach 55
7.15.8 Function find-mml 55
7.15.9 Function mem_init_two_buffers_attach p2p 56
7.15.10 Function mem_init_two_buffers_attachmw 56
7.15.11 Function mem release.detach 56
7.15.12 Function mem_init_ mw_Waitsome 57
7.15.13 Function mem_init_ mw_Waitany 57
7.15.14 Function mem_init_col_ Waitall 58
7.15.15 Function mem_release 58
7.16 Module skampiparams. 0., 58
7.16.1 Function read_parameters 58
7.16.2 Function init_params 59
7.16.3 Function parse_parameterfile 59
7.16.4 Function linemode, 59
7.16.5 Functionsendtext 60
7.16.6 Function recv_text 60
7.16.7 Function readmextchar 60
7.16.8 Function unread nextchar 61
7.16.9 Function init_symboltable 61

iii

7.16.10 Function lookup 61

7.16.11Function insert, 62
7.16.12Function lexan oL, 62
7.16.13Function match 62
7.16.14Function parseo 63
7.16.15 Function measurement 63
7.16.16 Function variationstyle 63
7.16.17 Function scalestyle 64
7.16.18 Function int ormax 64
7.16.19 Function int_or_default 64
7.16.20 Function int_orfloat 64
7.16.21Function yesormo 65
7.16.22 Function float_or_default 65
7.16.23 Function float_or_default_or_invalid 65
7.16.24 Function initialize type 66
7.16.25 Function token tostr 66
7.17 Module skampipost 66
7.17.1 Function post_processing 66
7.17.2 Function init_post_proc 67
7.17.3 Function free_post_proc 67
7.17.4 Function freeallldists. 67
7.17.5 Function skip_tonext.meas 68
7.17.6 Function findmeas 68
7.17.7 Function read_one list of meas 68
7.17.8 Function read_all lists_of next_meas 69
7.17.9 Function combinelists 69
7.17.10 Function all finished 69
7.17.11 Function interpolatedata 70
7.17.12Function post_process, 70
7.17.13Function data_.cmp L. 70
7.18 Module skampitools 70
7.18.1 Function writetologfile 71
7.18.2 Function measurement_data_to_string 71
7.18.3 Function read_header. 71
7.18.4 Function write_header 72
7.18.5 Function write_text_tofile 72
7.18.6 Function insert_intext 72
7.18.7 Function read_from_text 72
7.18.8 Function freetext 73
7.18.9 Function readoldlogfile 73
7.18.10 Function new name 73

iv

7.18.11 Function number_of output_files. 74

7.18.12Function output_file_complete 74
7.18.13 Function output_file_postprocessed 74
7.18.14 Function createlogfile. 74
7.18.15Function create output_file 75
7.18.16 Function ExtractVersionNumber 75
7.18.17Function write_head of outfile 75
7.18.18 Function linear_interpolate 76
7.18.19 Function double clock resolution 76
7.18.20 Function initskalib. 76
7.18.21 Function perform_measurements 77
A Derivation of the standard error formula 78

Acknowledgments

This technical report mainly offsprings from my diploma thesis [3]. T would
like to express my gratitude to my advisers P. Sanders and L. Prechelt. Espe-
cially the algorithm for automatic parameter refinement is based on ideas of P.

Sanders. I would like to thank for many fruitful discussions.

Chapter 1

Introduction

During the SKaMPI-project [2] we developed many methods for accurate, reli-
able and detailed MPI-benchmarking.! Today the code of SKaMPI is reused in
several other projects. This reuse demands for a more detailed description of the
SKaMPI-internals than given in [3]. Furtheron, we think that SKaMPI code
reuse can be supported by packaging SKaMPI’s functions in a library, with a
clearly described interface. Hence, this report is both: a technical reference for
SKaMPI and a description of ”SKaMPIas a library (SKaLib)”. This library
consists of four parts: (a) precision adjustable measurement of time (section
3.1), (b) routines for automatic standard error control (section 3.2), (c) auto-
matic parameter refinement (sec. 3.3), and (d) the mechanism to summarize
the results of several runs to a single result file (sec. 3.4).

How these mechanisms are applied in SKaMPI is show as an example use of
SKaLib in chapter 4. Main data structures used in the library you can find in
chapter 5. Some ”typical” extensions to SKaMPI such as new sections in the
parameter file, new measurements, new patterns, etc. are described in chapter
6. Chapter 7 is an index of all functions used in SKaMPI. Here you can lookup
a short description of each function.

A short glossary

Before starting, lets clear some expressions.?

Single measurement: Calls of a (MPI) routine to be measured in a pattern.
(E.g., MPI_Send-MPI Recv at 1 MB message length.) The number of calls
depends from the precision requested by the user (see section 3.1 for the

calculation of precision).

1For goals of SKaMPI look at [4], for example.
2In difference to the definition given in [4] we here allow several calls to form a single
measurement. In this way the precision can be adjusted.

Measurement: A measurement is the determination of a value at an exactly
defined (set of) parameter(s). The result of a measurement is built of sev-
eral single measurements. In this benchmark the number of single mea-
surements necessary for one measurement is determined by the accuracy

requested, the time allowed, and an upper and lower bound.

Pattern: A frame, where similar measurements can be plugged in. In the
parallel case patterns are useful for the coordination of a measurement’s
processes.

Suite of measurements: Measurements varied over their common parameter.
In the report generated by the report generator every subsection repre-
sents a suite of measurements. (E.g., MPI_Send-MPI Recv from 0..16 MB
message length.)

Run: A run of the benchmark is the execution of all selected suites. (The
selection is done in the parameter file.) Usually for each run a report is

generated.

Chapter 2

Using SKaLib

Getting SKaLib

SKaLib can be downloaded from the SKaLib homepage http:
wwwipd.ira.uka.de/ skampi/skalib.html. It arrives as skalib.tar.gz.

Installing SKaLib

This file can be unpacked with the UNIX command gtar -xvzf skalib.tar.gz
(in case no gtar is available on your system, use: gunzip -c skampi.tar.gz
| tar -xf -) The directory skalib/ will be created relative to your current
directory. It contains all source files and two examples: skalib-ex (the se-
quential example) and the SKaMPI benchmark, as an example of a benchmark

using MPI, and skalib-ex.c

Compiling SKaLib

All steps required to build the SKaLib library file are performed by the makefiles
skalib-mpi.mak and skalib-seq.mak. Probably some macros in the makefile
have to be adapted to your system. Start the building process for the sequential
library with the command make -f skalib-seq.mak in the skampi directory.
Use make -f skalib-mpi.mak for the parallel version of the library. In this
case you need MPI Ver. 1.0 or higher installed.

To use SKaLib, adapt one of this makefiles. (Depending on whether to use
MPT or not.)

We resigned from creating a library with the ar command in the makefiles,
since it is highly system dependent. In principle, it is possible first to build up
a library with ar, and then to link it with your object file.

Chapter 3

Mechanisms of SKaLib

This chapter explains mechanisms of SKaLib, which are used in SKaMPI. One
common goal of all mechanisms is to improve the reliability of data and to de-
crease the influence of disturbances of any kind. As the most basic mechanism,
we will talk first about portable measurement of time (sec. 3.1). According to
the terminology given at the beginning of this report, the automatic control of
the standard error (sec. 3.2) combines single measurements to measurements.
The automatic parameter refinement (sec. 3.3) is used to form suites of mea-
surements out of measurements. To combine the results of several runs to one

result file the mechanism automatic merging of results (sec. 3.4) is used.

3.1 Portable measurement of time

For a benchmarking program the measurement of time is crucial, of course.
Portability of time measurement is hindered by the fact, that the resolution of
the clock is system dependent. In the following we present a method measuring
time with a user defined resolution on all systems, i.e., the resolution of the
result is not system dependent.

MPI offers two valuable functions: MPI_Wtime for time measurement and
MPI_Wtick which returns the resolution of the clock. When not using MPI (that
is in the sequential case) a portable way to measure time is using the ANSI C
function clock. This function returns a value of type clock_t.! The following
example illustrates the usage of clock and motivates the way SKaLib uses it.

clock_t
start_time,
end_time;

IExperience shows, that MPI_Wtime has a much better resolution than clock on most sys-
tems. So we prefer using MPI_Wtime when available.

6 CHAPTER 3. MECHANISMS OF SKALIB

double
time;

start_time = clock();

/* measure something */

end_time = clock();

time = ((double) (end_time - start_time)/((double) CLOCKS_PER_SEC);

Of course we need to know the unit of time. Since the result of clock
is system dependent, we need to divide through the constant CLOCKS_PER_SEC
which is defined in time.h.? Because we cannot assume that CLOCKS_PER_SEC is
defined as an integer value on all systems, we cast to double before the division.3
However, the main problem with the above “algorithm” is that we do not know
the resolution of clock, which not necessarily equals to CLOCKS_PER_SEC. This
may be a serious issue, because nobody guarantees, that the resolution is fine
enough the for our measurement (i.e., end_time - start_time may be zero).
Unlike MPI, ANSI C does not offer a portable function to determine the clock’s
resolution.

When not using MPI, the following algorithm is used to determine the res-

olution of clock (routine clock resolution in module skampi_tools).

clock_t
start_time,
end_time;

long int
i;

for (i = 0, start_time = clock(); ;++i)
{
end_time = clock();
if ((end_time - start_time) >=1)
break;

}

return (((double) (end_time - start_time)) /
((double)CLOCKS_PER_SEC)) ;

(Interestingly enough, omitting the counting of the index variable i let some
compilers produce bad code (even without any optimization), always returning
zero.) However, so we find the smallest possible difference between two calls
of clock in “CLOCKS”. This difference divided through CLOCKS PER_SEC is the

resolution Rgystem in seconds.

2In time.h also the constant CLK_TCK is defined, but its value seems useless on some systems.
3This is only done for safety because it is reasonable, that when CLOCKS_PER_SEC has no
integral type, than clock_t should also be no integer. But this is not guaranteed.

3.1. PORTABLE MEASUREMENT OF TIME 7

In both cases, when using MPT or ANSI C, we would like to have an equal
precision on all systems, that is a user definable precision instead of a precision
defined by the system. To a achieve a user definable resolution we have to repeat

measurements.

clock_t
start_time,
end_time;
double
time;

long int
i;

for (i = 0, start_time = clock(); i < N; ++i)
{

/* something to measure */
}

end_time = clock();
time = (((double) (end_time - start_time)) /
((double)CLOCKS_PER_SEC * N));

Since we know that the result of NV repeated measurements in the variable
time has the resolution R,ystem, we know that the resolution of one measure-
ments iS Rgystem/N. This relies on the assumption that each of the N mea-
surements consumes the same time. This assumption is not always valid on
multitasking systems. N can be determined, when the user gives a wished

resolution R sep.

N i= Roystem (3.1)
Ryser
1/Ryser is given in the constant WISHED_RESOLUTION in the file skalib_const.h.
N is stored in the global variable repetitions which is set in init_skalib.
One problem remains: The time consumed even by N measurements needs
not to be higher than R,ystem. So again we repeat our N measurements until

end _time - start_time is larger than zero.

clock_t
start_time,
end_time;
double
time;

long int
i’
a;
for (a = 0, start_time = clock(); end_time - start_time > 0; ++a)

8 CHAPTER 3. MECHANISMS OF SKALIB

{
for (i = 0; i < N; ++i)
{
/* something to measure */
}
end_time = clock();
}

time = (((double) (end_time - start_time)) /
((double)CLOCKS_PER_SEC * N * a));

3.2 Automatic control of the standard error

For each measurement, the number n of repetitions is determined individually to
achieve the minimum effort required for the accuracy requested This is achieved
through the automatic control of the standard error (ASEC).

A single measurement consists of the data measured through one call of
the routine to be measured with fixed parameters (e.g., MPI_Send with one MB
message length). Data gained in this way contains both the systematic and
the statistical error. Systematic error occurs due to the measurement overhead
including the call of MPT Wtime. It is usually small and can be corrected by
subtracting the time for an empty measurement. Additionally, we warm-up the
cache by a dummy call of the measurement routine before actually starting to
measure.

Individual measurements are repeated in order to control three sources of
statistical error: finite clock resolution, execution time fluctuations from various
sources, and outliers.

Two questions arise: (1) how many repetitions are necessary? Since we do
not want to waste expensive supercomputer time, we do not want to perform too
many repetitions. And (b) how to combine data of these single measurements
to a measurement’s result?

The first question is handled by the routine am_control_end, the second by

am_fill_data. All routines of this section can be found in module automeasure.c.

3.2.1 Repetition of measurements

In principle, not all suites of measurements are equally important for the user.
Some suites are only used for a rough overview of a function’s performance,
whereas other suites are very important for tuning an MPI implementation, or to
ponder which MPI operation to use. Therefore, the user can give a limiting stan-
dard error per suite (variable standard_error in the struct measurement_struct,
see chapter 5) (In the skampi-parameter file this variable can be set through the
parameter file.) Single measurements are repeated until the standard error of

3.2. AUTOMATIC CONTROL OF THE STANDARD ERROR 9

the performed single measurements falls below the given limit. The standard
error is a metric for the reliability of the data, whereas the standard deviation

is a metric for the dispersion of the data. The standard error o; is defined as:

%:%§ (3.2)

where n is the number of single measurements, the z; (i = 1...n) are the single

measurement’s results, Z is the mean of the z;, and o is the standard deviation:

(3.3)

The above definition for the standard error (3.2) is not used in am_control_end.

In am_control_end the standard error is calculated on the fly (i.e., after each sin-

gle measurement with updates of the variables counter (= n), result_sum all
n

(=31, z;), square result_sumall (= .. , z7), and mean value_all (= Z)
using formula (3.4).

noo (X7 3i)?
%:¢ZH% n (3.4)

o5 is used as an estimator for the standard error of the mean.* Here we assume
that the error in the z; has a Gaussian distribution [5].

To see, why formula (3.4) is equal to the definition (3.2), appendix A presents
a short derivation.

Additionally to the standard error limit, the user can enter a time limit
time meas in measurement_t struct. This time limit guarantees that no new
measurement is started, when the time limit is exceeded (even when the stan-
dard error is higher than the standard error limit). Note that no running single
measurement is aborted, so possibly a measurement may take a little bit more
time than the given time limit.

As a third factor to control the number of single measurements a range can
be given through max rep and min rep. max_rep is used to allocate buffer for
the single measurement’s results (in am_init). So never more than max._rep
single measurements are performed. So max_rep overrides all other variables.
Opposed to that min rep does not. There can be less than min_rep single
measurements, in case the time limit is exceeded. This is done, because, when
the user gives a time limit, probably the time limit for SKaMPI when started
on a parallel machine relies on the time meas. (In the case no time limit given,

there are min_rep single measurements, even when the standard error is below

4As explained in the next section, we use the mean Z to form a measurement’s result out
of the z;.

10 CHAPTER 3. MECHANISMS OF SKALIB

o o] ee o

Figure 3.1: Cut upper and lower quantile

\ 4

time

the standard error limit at less than min_rep single measurements.)

3.2.2 Forming a measurement

Assume we have an array® with at most max_rep results of single measurements.
cut_quartile in the measurement_t-struct struct defines which results are used
to form the result of the measurement. cut_quartile gives the size of the
upper resp. lower quartile of single measurements which are disregarded. E.g.,
cut_quartile==0.25than the upper quarter and the lower quarter of the results
are ignored. (So we only have the middle 50 % of values left. In the example
illustrated in figure 3.1 the shaded values are disregarded.)

3.2.3 Interface of the ASEC module

ASEC is implemented in the module automeasure. The interface of the ASEC
mechanism consists of the functions:

am_init initializes all data structures of the ASEC module and allocates memory
to store results of size many single measurements. It returns TRUE in case
of success, FALSE in case of no memory.

am_control_end controls whether the measurement ms at argument arg should be re-
peated (returning TRUE) or not (returning FALSE). The parameters are:
the current measurement ms, the actual argument arg, the measured time
(tbm_time), the node time® node time, the partner (-process) also in-
volved into this measurement. If there is no other process involved, part-
ner is set to NO_COMMUNICATION. If it is set to USE_COMMUNICATOR, the
argument local _communicator will be used for communication to more
than one other process. The root is process 0. It assumes that am_init
has been called before.

In the sequential case the parameters partner, node_time, and local_communicator
are omitted.

Stbm_buffer in the source code.
6The node time is the time measured on a node ad is measured on every node, whereas
the thm_time (to be measured time) is the time measured on the root process (process 0).

3.3. AUTOMATIC PARAMETER REFINEMENT 11

am fill data fills the dummy _time, the standard error of the dummy time (du_ti_se)
into the data record data, therefore it uses some information about the
actual suite of measurements ms. It assumes that am_init has been called
before.

am_free frees all allocated resources, assumes that am_init has been called before.

All functions require skalib_init called before.

3.3 Automatic parameter refinement

The automatic parameter refinement (APR) feature is motivated by the obser-
vation, that graphs of suites of measurements (time versus varied arguments; its
performance graph) are often non continuous; when the underlying implemen-
tation of the routine to be measured switches the algorithm, the performance
graph has a saltus. Of course we are interested to determine these points exactly.
On the other hand, the performance graph is not smooth at many arguments
due to several reasons: limited accuracy, disturbed results, etc. . Since we can-
not avoid these facts, we are not interested in investing a lot time to measure
this noise more exactly than necessary.

So to build a suite of measurements we have to know at which arguments
we should call a measurement. The arguments should be chosen to determine
salti with an high accuracy, but since computing time is expensive we do not

want to invest a lot of time in not “interesting” areas of the performance graph.

3.3.1 Algorithm

Here we present an algorithm fulfilling the above requirement. The description
mainly is cited from [2]. Lets assume that we measure function ¢ : P — R, i.e.,
taking a parameter m € P and mapping it to a result in the real numbers R.
Furtheron, we assume that P are the integers from m,p, - - - Mypqes- Furtheron,
o > 1 is the stepwidth of the measurements_t struct.

When using a logarithmic scale, we measure at 17,4, and at m;,o" for all k
such that m,ino® < Mpmaz. On a logarithmic scale these values are equidistant.
(What also is the case on a linear scale.)

Now the idea is to adaptively subdivide those segments where a linear inter-
polation would be most inaccurate. Since nonlinear behavior of ¢(m) between
two measurements can be overlooked, the initial stepwidth o should not be too
large (¢ = v/2 or 0 = 2 are typical values). Fig. 3.2 shows a line segment between
measured points (my, ¢5) and (m., t.) and its two surrounding segments. Either
of the surrounding segments can be extrapolated to “predict” the opposite point
of the middle segment.

12 CHAPTER 3. MECHANISMS OF SKALIB

timet

p
(m a’t a) (mb it b) (mc it c) (m d't d)

parameter m

Figure 3.2: Deciding about refining a segment (myp,t5) — (me, tc).

Let A; and Ay denote the prediction errors. We use
Ky, m, == min(|Aq1] /ty, |Az] [te, (Me — myp) /mp) (3.5)

as an estimate for the error incurred by not subdividing the middle segment.”
We keep all segments in a priority queue. If m; and m, are the abscissae of
the segment with largest error, we subdivide it at \/mym.. We stop when the
maximum error drops below € or a bound on the number of measurements is
exceeded. In the latter case, the priority queue will ensure that the maximum
error is minimized given the available computational resources.

To see, why this scheme works, lets assume two cases: The algorithm decides
to start a measurement between the points (my,t,) and (me,t.). Now, in the
first case, assume that the result lies on the line between (my,ty) and (me,t.)
as shown in figure 3.3. That is, the point lies exactly where we would have
assumed it without refinement. When calculating the A; and A, for the new
segments, the min(A;, Ay) = 0 (figure 3.3). Hence, no further refinement would
be done at this area.

In the other case, the algorithm also decides to start a measurement between
the points (my, ¢5) and (m.,t.). But now, opposed to the first case, assume that
the result lies somewhere on the line a or somewhere on line 3. Then the situa-
tion is, in principle, again the same as shown in figure 3.2. So, further refinement
takes place, the point of the saltus is determined with higher accuracy. This
happens until the precision, given in x_min_dist, is reached.

The APR can be switched of (x_scale == FIXED_LIN or FIXED_LOG).

Note that the APR works with fixed (DYN_LIN) and logarithmic (DYN_LOG)

"We also considered using the maximum of |A1] /¢, and |A2| /t. but this leads to many
superfluous measurements near jumps or sharp bends which occur due to changes of commu-
nication mechanisms for different message lengths.

3.3. AUTOMATIC PARAMETER REFINEMENT 13

timet

(m a,t a) (m b,t b) (m C,tc) (m o’t OI)

parameter m

Figure 3.3: Stopping refinement at segment (my, tp) — (Mme, tc).

scale, all calculations (such as segment partitioning) are implemented for both
scales.

The analysis of this algorithm shows, that the cost of determining one of the

(ol

salti z; is log, (in the worst case). Altogether with the #+=%° measurements

Tmin
o

of phase one we need m(o) = “=%2 + log, - s measurements. In case we

Tmin

know the number of salti s (through theoretical analysis of the function ¢ to

measure or through a prior run of measurements), we can adjust o to yield a
(zs—z0):In2
.

minimum of m. Therefore we set ‘;—Z’ =0, and get 0 =

3.3.2 Estimation of the maximal error

The error (i.e., the difference between t and the reconstruction through mea-
surements) can be bounded through ., - m;, where m; is the slope of the
considered linear “piece”of t. This is because we chose the stepwidth o larger
than M, the minimum length of a linear “piece” of ¢.

A different approach to parameter refinement calculates as a key K(; ;;.1) the
second derivative of t at the points x;. Here the normalized discrete numerical

approximation
1 to—ta _ _te—tp
. . Mp—Ma MMy
Kmam. = t, metme metmy (36)

is used. Note that

_ 2 (me —myp)(ty — ta) — (my — ma)(tc — ts)
Komo me = t (mp — ma)(me — mp) (Mme — myg) (3.7)

Let I; := max((m. — mp), (mp — my), (M. — m,)) during refinement step i.
During refinement [; approaches z.,;, and K, m, increases like a function
from O(1/1?). That means that the key increases despite further refinements

14 CHAPTER 3. MECHANISMS OF SKALIB

(and so lower errors). So the key does not correspond to the errors of a segment.
As a consequence, a particular area is refined albeit other areas of ¢ may contain
higher errors. This does not happen with the key function defined in equation
(3.5), because this key is independent from the segment’s length. So, as a

advantage, our algorithms lowers the errors at all parts of ¢ equally.

3.3.3 Implementation and Interface

The automatic parameter refinement is implemented in function measure_suite
in module autodist.c. It computes for the suite of measurements ms all argu-
ments where to measure, and performs the measurements. The measurements
are called through the routine tbm (to be measured), which is passed as a func-
tion pointer. Since the APR mechanism is independent of the patter used, tbm
decides which pattern to use, not measure_suite. For each possible param-
eter to vary over (message length, nodes and chunks in the parallel case) we
have one extra routine, which can be used for the tbm parameter: call_length,
call nodes, call_chunks in the parallel case, and call_length also for the
sequential case. All these “call routines” are in module skampi_call.

3.4 Automatic merging of results

The exist situations, where a single run’s results are not reliable (mainly because
of disturbance of the network or processors by other processes). Of course, it is
best to repeat the run, when the source of disturbance disappeared. But that is
not always possible. In this case the results of several disturbed runs can form
a more reliable result file. The questions is: How to merge several result files
into one?

Since merging result files heavily depends on the format of the output file,
here the automatic merging of results (AMR) mechanism used by SKaMPI is
described. For other output file formats the mechanism is still applicable, but

the format specific parsing of output files has to be adapted to the other format.

3.4.1 Merging results

SKaMPI merges a measurement’s result depending on the kind of result: For
the result of the times it is the weighted median. For example we merge three
output files: the measurement of a suite of measurements at a fixed argument
has in the first result file the result 899 measured with 10 single measurements,
the second file has 901 (4 single measurements), and the last file has 910 with
4 single measurements. Then the result is 899. The standard error of this
measurement is used for the standard error of the merged result. The same holds
for the node times. This operation is performed by the routine post_process

3.4. AUTOMATIC MERGING OF RESULTS 15

in the module skampi_post.c, which takes an array of result data (given in
parameter data_t *result_data) and gives back the filled structure new_data.
Note that the global variable nif (set in init_post_proc) contains the number

of input files.

3.4.2 Finding results

As described in section 3.3 the APR mechanism determines the arguments of
some measurements of a suite of measurements. So when merging suites of
measurements from several files, the problem can arise, that not every mea-
surement of one file has its pendants in other files with the same argument.
(E.g., the measurement at argument 1020 bytes of suite MPI_Send-MPI Recv of
the first file cannot find a measurement at this argument 1020 bytes of suite
MPI_Send-MPI Recv in the second file.

This problem is solved through interpolating the missing measurement through
its neighboring measurements. In the above example, the measurement at ar-
gument 1020 bytes will be “created” through linear interpolation between the
neighboring measurements at argument 1008 bytes and 1024 bytes.® This inter-

polation is done in function interpolate_data called by function combine lists.

3.4.3 Putting it all together

The post processing is performed in function post_processing, which gets the
name of the first input file as argument.® (It assumes, that the following input
files are named as input_file.1, input_file.2,

In pseudocode the way post_processing works looks like

while not END-OF-FILE first_file

read a suite of measurements

for all other file
search this suite of measurements; read it

for all measurements in the first suite
if measurement at this argument is not available in another file

interpolate this value;

find median;
store it in skampi.out

Functions depending on the input files’ format are: find meas (finding
a certain measurement), skip_to next meas (skipping to the next measure-

ment), and read one meas assumes text files as input. Generally the interface

8For this example we will assumes these are the neighboring values. Of course, in general
there may be others.

9Note that the output files of a benchmark are the input files for the function
post_processing.

16 CHAPTER 3. MECHANISMS OF SKALIB

to input files is provided through routines as read from file, write_to_file,
read header, and write head_of outfile (which are all found in skampi_tools).

Chapter 4

Example: How SKaLib is
used in SKaMPI

This chapter shows how to apply SKaLib it two example applications. One
example application is the SKaMPI benchmarks, so this chapter can also be
used as design document for SKaMPI. The other example is skalib-ex which
shows the application of SKaLib for a sequential benchmark.

SKaMPI and skalib-ex use the AMR, APR, and ASEC mechanisms on
different levels (or layers). The most internal layer is a pattern where ASEC is
used; the APR is used at the autodist-layer. Finally, AMR is used at the post
processing level. These layers are described below.

In principle SKaMPIand skalib-ex differ most in their patterns and their
measurement of time. Their functions main are similar. Look at skalib-ex.c
to see a typical function main and the declared variables and the included files.
In the file skalib_const.h are some constants, which may be adapted by the
user. (Note that in general recompilation of the library is required that these
constants have affect.) Some constants are described in this document, refer to

the index entry constants.

4.1 The Patterns-layer

In the mean of SKaMPI a patternis a procedures which has two responsibilities:
First, it has to execute the routine to be measured . This may be a simple
function call or, in the parallel case, a SPMD! fragment, which coordinates
several processes to perform the routine to be measured. Second, a pattern has

1Single Program Multiple Data: A program, run in several instances simultaneously on a
parallel computer, which can perform different branches of its control flow in dependence of
its process umber.

17

18 CHAPTER 4. EXAMPLE: HOW SKALIB IS USED IN SKAMPI

to measure to routine to be measured. The advantage to separate the routine
to be measured from the measuring routine is an eased enhance-ability. A new
routine to be measured is just a new simple callback; we do not have to worry
about the measurement mechanism again. Furtheron, also the separation of
the coordination of the routine to be measured from the routine to be measured
itself makes sense. Since many routine are coordinated in the same way (e.g., all
master worker routines, or collective operations), we can reuse the coordination
mechanism several times. This also guarantees the comparability of the routines
measured with a specific pattern.

In terms of SKaLib, the result of a pattern’s call is a measurement. To
achieve this, all patterns in SKaMPI use the ASEC mechanism. For examples
of pattern, we have a look to the four patterns used in SKaMPI.

The Point to point pattern coordinates and measures all MPI routines per-

forming point to point communication (e.g., MPI_Send-MPI Recv).

The Master worker pattern consist of a master process (dispatching “work”
to several worker processes. The process of dispatching is measured. Here
MPI functions like MPI _Waitsome are measured.

The Collective pattern handles collective MPI operations like MPI Bcast.
Here we apply a certain scheme to measure collective operations without
assuming synchronous clocks on each process. See [4] for details.

The Simple pattern measures the sequential operations without varying pa-
rameters (e.g., MPI_Commsplit).

In principle, each pattern has the following structure:

if (CACHE_WARMUP > 0)
{
/* cache warmups, not measured */
am_init (CACHE_WARMUP) ;
do
{
org_time = (start_time = MPI_Wtime()) - end_time;
/* measure */
ms->data.p2p_data.server_op (ms->data.p2p_data.len,
ms->data.p2p_data.max_node,
ms->data.p2p_data.communicator) ;

end_time = MPI_Wtime();
tbm_time = end_time - start_time;
}while (am_control_end(ms, (-1) * CACHE_WARMUP, tbm_time, org_time,
ms->data.p2p_data.max_node, tbm_time,
MPI_COMM_NULL));
am_free();

}

4.2. AUTODIST-LAYER 19

The above part warms up the cache. But also here you can see the usual
pattern: Fist a call of am_init initializes all internal data structures of ASEC.
(am_init gets the argument CACHE WARMUP, i.e., the number of repetitions.)
Then in a while-loop the routine to be measured is called as a callback. (In this
example we use the p2p-callback ms->data.p2p_data.server_op.) Note that
in this loop the time is measured. The loop is controlled by am_control_end
(with the argument -1 * CACHE WARMUP noting, that no results are stored.)
am_free frees all internal data structures of ASEC.

Now we measure for real: like above, we perform several single measurements
(the number is controlled by am_control_end and not fixed here) and form a
measurement with am fill data. Everything else is as described above.

am_init (ms->max_rep);
do
{
org_time = (start_time = MPI_Wtime()) - end_time;
/* measure */
ms->data.p2p_data.server_op (ms->data.p2p_data.len,
ms->data.p2p_data.max_node,
ms->data.p2p_data.communicator) ;

end_time = MPI_Wtime();
tbm_time = end_time - start_time;
}while (am_control_end(ms, ms->data.p2p_data.len, tbm_time, org_time,
ms->data.p2p_data.max_node, tbm_time, MPI_COMM_NULL));

am_fill_data (ms, ms->data.p2p_data.len, ms->data.p2p_data.dummy_time,
ms->data.p2p_data.dummy_time_se, ms->data.p2p_data.result);
am_free();

In this example we used the point-to-point pattern, but all other patterns

have the same scheme of am_init, am_control_end, am_fill data, and am_free.

4.2 Autodist-layer

This layer uses the APR mechanism. Remember from section 3.3 that the
routine measure_suite calls a callback tbm with the calculated argument.? In
principle, tbm could be a pattern. In fact, tbm is a routine, which depends
on the parameter varied over. In SKaMPI this routine can be one of the
following: call_length, call nodes, or call_chunks. These functions form an
“intermediate” layer and call the appropriate pattern. This intermediate layer
does some work for initialization depending on the pattern and parameter varied
over. For sake of flexibility this work has been factored out of measure _suite ad

2Note that this callback is not the callback, called by a pattern.

20 CHAPTER 4. EXAMPLE: HOW SKALIB IS USED IN SKAMPI

the patterns. This intermediate layer also initializes the dummy values. In this
variables the dummy time is stored, i.e., the time of a measurement, induced

by the overhead.

4.3 Post processing-layer

The idea of the post processing is to minimize the influences of the operating
environment to one run of SKaMPI. So the post processing deals with the results
of several runs of SKaMPI. This is the main reason why the post processing is
separated into the extra program pposf.c. This seems reasonable also for other
benchmarks basing on SKaLib.

The other solution is to put the post processing in the benchmarks itself.
We also realized this for sake of user’s convenience.

The post processing is called via the routine post_processing, its parameter
input_file name stores the filename of the base output name. (This is the name
of the first output file; in SKaMPI its skampi.out. post processing expects

output files of older runs to e renamed to <basename>.1, <basename>.2,

Chapter 5

SKaMPI’s Main data

structures

The main data structures are declared in skampi.h. Here you can find the
measurement_t-struct, which is the central of the whole benchmark. The val-
ues, which have to be initialized when calling a measurement (via its pattern),
are marked with “IN”, values reached out with “OUT”. The data stored in
measurement_t is necessary for every suite of measurements, except measure-
ments with the simple-pattern. Since this pattern has no variation, the variables

x_start, x_end and x_stepwidth have no sense.

First lets have a look at the variables of the measurement_t-structure, which
describe this suite of measurement.

typedef struct
{

char *name; /* name of this measurement IN */

int pattern; /* which pattern should be applied IN */
#ifndef SEQ

MPI_Comm communicator;
#endif /*SEQ*/

Each suite of measurements has a unique name (in SKaMPI this name is de-
fined in the parameter file [4]). This name is stored in name. In our context a pat-
tern is a unique form, how several processes work together. (SKaMPI is devel-
oped to benchmark parallel programs, which means several processes may have
to cooperate to perform a measured operation.) Technically spoken, pattern

determines which function is called to measure an operation. If you measure
MPI operations, you need a communicator, which defines the participating pro-
cesses of a measurement.

The following variables describe parameters of the suite of measurements,

21

22 CHAPTER 5. SKAMPI’S MAIN DATA STRUCTURES

i.e, which parameter to vary over (variation), parameter range (x_start and

x_end), and some more, described more detailed below.

int variation; /% NODES, LENGTH, CHUNK */
int x_scale; /* FIXED_LIN, FIXED_LOG, DYN_LIN, DYN_LOG */
int x_start; /#* lowest argument, start of the variation */
int x_end; /* max. argument, never succeeded by variation */
double x_stepwidth; /* semantic:

FIXED_LIN: x stepwidth between to measurements

all other x_scales: first stepwidth

*/
int x_max_steps;
int x_min_dist; /* semantic:

FIXED__: no meaning

DYN_LIN: smallest stepwidth
DYN_LOG: smallest stepwidth of the first two steps
*/
int x_max_dist; /* semantic:
FIXED__: no meaning
DYN__: highest stepwidth */

double
time_suite, /* max. allowed time for a suite of measurements in minutes IN */
act_time_suite; /* actual used time for one suite in minutes 0UT */

int multiple_of; /* every argument is a mutliple of this value (or 0) IN */

The x_scale determines, whether the arguments are chosen with constant
distance (x_stepwidth) in the parameter range (. ..LIN), or logarithmic, which
means, that measurements are performed a arguments (stepwidthl, stepwidth?,
stepwidth® ... until x_end has been reached (...L0G). The parameter x_scale
is also used to switch on the automatic parameter refinement (refer to sec. 3.3).
DYN_... as a value’s prefix turn automatic parameter refinement of; FIXED_
off. When automatic parameter refinement is used, x min dist is the smallest
distance between two arguments.! x_max_steps gives the maximum number of
measurements in this suite of measurements. Note that when not using the
automatic parameter refinement, the number of measurements is determined
through the range of the argument and the stepwidth. (So the variable is only
in use, when automatic parameter refinement is switched on, and the time limit
time_suite is set appropriate.) act_time_suite gives the time actually used
by this suite in seconds. mutliple_of defines the integer ever argument has to
be a multiple of.

The following variables describe the measurements of this suite of measure-

ments.

1x max_dist is not used until now.

23

int max_rep; /* max. number of calls of measurements in a pattern IN */

int min_rep; /* min. number of calls of measurements in a pattern IN */

int node_times; /* true iff execution times per node should be stored
IN */

double
standard_error, /* the max. allowed standard error: used to determine
the end of measurements at one arg */
/* time_meas can overides standard_error, in case that time_meas
exceeded but the standarderror of the measurement has not been
fallen below "standard_error"

time_suite can override x_max_steps and x_end, in case of time
time_suite exceeded, and not all measurements have been done.

*/

time_meas, /* max. allowed time for a measurement in minutes IN */
cut_quantile; /* quantile to cut of the results of a
single measurements IN */

max_rep and min_rep define the range, how often the single measurements
of a measurement are repeated. (Note that the actual number of repetition
is defined through the given standard error and time limit time meas, refer to
section 3.2.) node_times is a boolean, in case of FALSE the time is only measured
by a master process. But possibly a parallel routine may have finished on other
processes while still running on the master process. To measure this effect, this
variable can be set on true. cut_quantile specifies the single measurement’s
results, which a used to compute the measurement’s result (refer to section 3.2).

The variable result_list

data_list_t *result_list; /* list of results
OUT */

/* default values */
int nodes;

/* routines for allocating and freeing ressources:

memsize = the size in bytes (!) of the memory declared in params.memory

nor = number of repetitions (usually max_rep)
nom = number of measurements (usually x_max_steps)
now = number of processes ind this communicator */

long (*server_init) (int nor, int nom, int nop);
void (*server_free) (void);

#ifndef SEQ
long (*client_init) (int nor, int nom, int nop);

24 CHAPTER 5. SKAMPI’S MAIN DATA STRUCTURES

void (*client_free) (void);
#endif /*SEQ*/

The pattern specific data structures (data) store the information, need for
one measurement by an specific pattern.

All four pattern-specific data structures contain callback functions (here im-
plemented with function pointers). These callbacks hold the functions to be
measured. The meaning of the different callbacks is explained in the user man-
ual, section “But what is measured?”.

union /* patternspecific data_structures IN */
{
#ifndef SEQ
p2p_pattern_data_t p2p_data;
mw_pattern_data_t mw_data;
col_pattern_data_t col_data;
simple_pattern_data_t simple_data;
#else
simple_pattern_data_t simple_data;
seqmeas_pattern_data_t segmeas_data;
#endif /*SEQ*/
}data;

}measurement_t;

The specific data for the p2p-pattern is stored in the p2p_pattern data_t-
struct.

/* bundle of data reached in the p2p_pattern */
typedef struct
{
/* Pointer to function measured by server */
MPI_Status (* server_op) (int, int, MPI_Comm) ;

/* Pointer to client function */

MPI_Status (* client_op) (int, int, MPI_Comm);

/* second int is just dummy, so that client_op has the same type as
server_op */

int which_to_measure; /* which node should be used for measurement ?
the one with the max. latencie or the one
with the min. */

/* both _node variables are filled in the routine p2p_find_max_min
of module p2p.c */

int max_node; /* number of the node with max. latencie */

int min_node; /* ... with min. latentcie */

int len; /* the actual message length IN */

25

int def_nodes; /* the number of nodes used for this measurement IN */
MPI_Comm communicator; /* Communicator used for measurement IN */

data_t *result; /* Measured results OUT */

double dummy_time; /* dummy time for that communicator an pattern */
double dummy_time_se; /* and its standard error */
}p2p_pattern_data_t;

The last three items are common to each pattern-data-structs. They are not
stored in the measurements_t-struct, because they are specific for one measure-
ment and not for the suite of measurements.?

The master-worker data looks like:

/* bundle of data reached in the mw_pattern */

typedef struct

{
void (* master_receive_ready) (int, int len, MPI_Comm);
int (* master_dispatch) (int now, int work, int chunks,
int len, MPI_Comm) ;
void (* master_worker_stop) (int worker, int len, MPI_Comm) ;
int (% worker_receive) (int len, MPI_Comm);
void (* worker_send) (int len, MPI_Comm);

MPI_Comm communicator; /* Communicator used for measurement IN */

int len; /* message length IN */

int def_nodes; /* the number of nodes used for this measurement IN */
int chunks; /* Number of work pieces IN */

data_t *result; /* Measured results O0OUT */

double dummy_time; /* dummy time for that communicator and pattern IN */

double dummy_time_se; /* and its standard error IN */
}mw_pattern_data_t;

The meaning of the callbacks is explained in the user manual, section “But
what is measured?”.

The data for the collective-pattern:

typedef struct
{
/* preparations for the routine_to_measure, only at the server site.
this function is not measured */
void (* init_routine_to_measure) (int len,MPI_Comm);

/% this function is measured */
void (* routine_to_measure) (int len,MPI_Comm) ;

2 According to the definitions given at the beginning of this report, a suite of measurements
is a number of similar measurements varied over a parameter.

26 CHAPTER 5. SKAMPI’S MAIN DATA STRUCTURES

/* preparations for the routine_to_measure on the client site.
this function is not measured */
void (* init_client_routine) (int len,MPI_Comm);

void (* client_routine) (int len,MPI_Comm);

int len; /* message length */

int def_nodes; /* the number of nodes used for this measurement IN */
MPI_Comm communicator; /* Communicator used for measurement */

data_t *result; /* Measured results */

double dummy_time; /* dummy time for that communicator an pattern */

double dummy_time_se; /* and its standard error */
}col_pattern_data_t;

In praxis the routine to_measure and the client_routine point to the
same function. But to increase flexibility, we left two different function-pointers.
The “simple” data:

typedef struct

{
void (* routine_to_measure) (void);
data_t *result; /* Measured results OUT */
double dummy_time; /* dummy time for that communicator an pattern IN */

double dummy_time_se; /* and its standard error IN */
}simple_pattern_data_t;

Chapter 6

Enhancements of SKaMPI

The following sections give hints for some enhancements. All these extensions
require a new compilation of SKaMPI. This can be done in two ways. First
you can use the makefile given with the mpich implementation [1] of MPI for
application programming . (This is the way I used.) So you can use the different
modules, which may ease understandability.

The more portable (but also more time consuming) way is to create one
source file from all modules and compile this one. This is just one compiler call,
and you do not have to worry about some dependencies, because in every call
the whole code of SKaMPIis compiled. This is the “SKaMPI in one sourcefile”
-mechanism (skosfile).

Figure 6.1 shows the steps to yield SKaMPI in one source file, which can
be compiled to SKaMPI. After calling rsplit.pl #*.[ch], several source files
will be created in the subdirectory onesourcefile. Then change in this directory
and call the shell-script sk21f!, which creates skosfile.c. This file can be
compiled with your local MPI-C-Compiler. (Note that you have to link with
the math library (-1m)).

6.1 New sections of the parameter file

For demonstration how to add a new section, will look to all steps including the
@NEWSECTION-section. It should be a section containing text.

1. Add anew mode name in file skampi_params.h. We will name it NEWSECTION_MODE.
The new steps-enum may look like this:

enum{NO_MODE, USER_MODE, MEM_MODE, STEPS_MODE, NETWORK_MODE, NODE_MODE,
MACHINE_MODE, COMMENT_MODE, OUTFILE_MODE, LOGFILE_MODE, MAX_REP_MODE,

1sk21f means “SKaMPI to one file”.

27

28

CHAPTER 6. ENHANCEMENTS OF SKAMPI

J_u
[

rsplit.pl

Y
] onesourcefilel....c \

sk21f

Y
onesourcefile/skosfile.c \

your c-compiler

Y

skampi

Figure 6.1: Creating SKaMPI via one source file

MIN_REP_MODE, STANDARD_ERROR_MODE,POST_MODE, MEASUREMENTS_MODE,
ABSOLUTE_MODE, TIME_MEAS_MODE, TIME_SUITE_MODE, CUT_QUANTILE_MODE,
MULTIPLE_OF _MODE

MY_NEW_SECTION};

2. Add the new parameter in the params_t-struct in skampi_params.h. Here

we use that it will be a text-section.

typedef struct

{

text_t user;

text_t out_file;

text_t log_file;

text_t machine;

text_t network;

text_t node;

unsigned memory;

unsigned max_steps_default;
unsigned max_rep_default;
unsigned min_rep_default;
unsigned multiple_of_default;

6.1. NEW SECTIONS OF THE PARAMETER FILE 29

double standard_error_default;
double time_meas_default;
double time_suite_default;
double cut_quantile_default;
int absolute;

int post_proc;

text_t comment;

text_t measurements;

text_t my_new_section;

}params_t;

3. Add in function init_params in module skampi_params.c a line assigning

a default value the new parameter.

params_t *
init_params (params_t *params)

{

}

params->user [0] = NULL;

params->out_file[0] = OUTFILE;
params->out_file[1] = NULL;
params->log_file[0] = LOGFILE;
params->log_file[1] = NULL;

params->machine[0] = NULL;

params->network[0] = NULL;

params->node[0] = NULL;

params->memory = MEM_DEFAULT;
params->max_steps_default = MAX_STEPS_DEFAULT;
params->max_rep_default = MAX_REP_DEFAULT;
params->min_rep_default = MIN_REP_DEFAULT;
params->standard_error_default = STANDARD_ERROR_DEFAULT;
params->time_meas_default = TIME_MEAS_DEFAULT;
params->time_suite_default = TIME_SUITE_DEFAULT;
params->cut_quantile_default = CUT_QUANTILE_DEFAULT;
params->multiple_of_default = MULTIPLE_OF_DEFAULT;
params->absolute = FALSE; /* as default */
params->post_proc = TRUE; /* as default */
params->comment [0] = NULL;

params->measurements[0] = NULL; /* or all ? */
params->new_section[0] = "Hello World";
params->new_section[1] = NULL;

return (params);

Look at the last two assignments: Since we have defined new_section as

a text_t (definition in file skampi_tools.h) it is an array of strings. Note
that this array is NULL-terminated. The constant TEXT_LINES describing
its size is defined in skampi_tools.h.

CHAPTER 6. ENHANCEMENTS OF SKAMPI

4. In function parse_parameter file you have to add code converting a
line of the parameter file (which is provided in corrected line) into the
format of the parameter. We will use the function insert_in text , to

add this line at its correct position in the text new_section.

case NEWSECTION_MODE:
insert_in_text (corrected_line, &(params->new_section),
line_counter);
break;

At this position you may also do some syntax checking. SKaMPI usually
aborts, if an syntax error occurs.

5. The function line mode is responsible for recognising the sections in the
parameter file. (A line of this file is provided in line. Here you have to
add code, which shouts, when hitting our new section. Then you have to
set the mode and to correct the line. This means cutting of the keyword.
Our keyword in the parameter file will be @NEWSECTION.

if ((new_line = strstr(line,"@NEWSECTION")) '= NULL)
{

*mode = NEWSECTION_MODE;

return (new_line + strlen ("@NEWSECTION"));
}else ...

6. Function read parameters is the chief-parameter-parser. It coordinates
all other functions. Here we must ensure, that the successfully parsed
section is send to all other processes. We do this with MPI-Functions
(Ok, not really surprisingly). For sending a text, we have special functions:
send_text and receive_text. Note that the order sending all parameters
is important. It has to be the same as receiving the parameters.

send_text (&(params->node));

MPI_Bcast (&(params->absolute), 1, MPI_INT, O,
default_communicator);

send_text (&(params->comment));

send_text (&(params->measurements));

send_text (&(params->new_section));
}
else /* so not proc. 0 */
{ /* receive params-struct */

6.2. NEW MEASUREMENTS 31

recv_text (&(params->node));

MPI_Bcast (&(params->absolute), 1, MPI_INT, O,
default_communicator);

recv_text (&(params->comment));

recv_text (&(params->measurements));

recv_text (&(params->new_section));

If you want to access to the new parameter, you can simply use params.new_section,
since the params-struct is global. If you want to print it in the output file, you

can manipulate the function write head of outfile in skampi tools.c.

6.2 New measurements

When creating a new measurement the first decision is which pattern is to use.
(There is no measurement possible, without using a pattern.) The patterns are
introduced in the user manual [4]. If you cannot find a suitable pattern, you
have to build a new one. Please see section 6.3 for further information.

In this example we want to add new ping-measurement, which uses MPI_Send

for sending a message to another node. No reply is expected.

1. For this measurement the point-to-point pattern can be used, since only
two nodes are involved (sender and receiver). First we have to find out
which callback functions we have to provide.? In this case we have to
code the two callbacks server_op and client_op. Since the first one is

measured, it will contain the call of MPI_Send.

MPI_Status server_Send (int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
max_node, O, communicator);
return (status);

}

You may claim, that status is never used. That is right, but the p2p-
pattern expects this prototype: MPI_Status server _Send (int msglen,

2Which callbacks you need depends on the pattern you use. All patterns are described in
the user manual, section “But what is measured?”.

32

CHAPTER 6. ENHANCEMENTS OF SKAMPI

int max node, MPI_Comm communicator). (Seesection “Data structures”
for getting the right prototypes the patterns use.) The parameters sup-
ply: the message length, the number of the communication partner and
the communicator.

Usually the callbacks are grouped together in files ... testl.c. So we
will add them to the file p2p_testli.c . The other callback client_op

contains the corresponding receive.

MPI_Status client_Recv (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR, 0, O, communicator,
&status);
return (status);

}

Perhaps you asked, what is up with the address _skampi buffer . This
buffer is provided, after the call of with mem_init_one buffer .3 SKaMPI(more
exactly: the function measure_suite) takes care, that msglen will never
exceed the size of this buffer.

2. Now we write the initialization function. Here we determine p2p data of

the measurement_t-struct.

void p2p_init_Send (measurement_t *ms, data_t *data)
{
ms->pattern = P2P;
ms->server_init = mem_init_one_buffer;
ms->client_init = mem_init_one_buffer;
ms->server_free = mem_release;
ms->client_free = mem_release;
ms->data.p2p_data.server_op = server_Send;
ms->data.p2p_data.client_op = client_Recv;
ms->data.p2p_data.which_to_measure = MEASURE_MAX;
ms->data.p2p_data.len = DEF_MESSAGE_LEN;
ms->data.p2p_data.result = data;
ms->data.p2p_data.communicator = MPI_COMM_WORLD;

Note that ms->data.p2p_data.len = DEF _MESSAGE LEN? only will con-
cern the message length, if you do not vary over message length. If you

want to communicate with the node of minimum latency, set which_to_measure

3This happens through the callback server_init, see below and section 6.2.
4Constant found in skalib_const.h.

6.2. NEW MEASUREMENTS 33

= MEASURE_MIN;

To work with two buffers _skampi buffer and _skampi buffer 2 use
mem_init_two_buffers. The memory is released in all cases with mem_release.
All memory management functions belong to the module skampi mem. The

next section comes up with further information.

To avoid compiler warnings use function prototypes. (The one of the
init-function are placed in p2p_test1.h.)

3. Now we provide a facility for controlling our new measurement throughout
the parameter file. So we have to change the function initialize type

in module skampi_params.c.

case 50: /* or another unused number */
p2p_init_Send (ms, NULL);
break;

The number you use in the first line here is the type in the parameter file,
to identify your measurement. (Note that for sequential measurements
(i.e., SEQ defined) we reuse the numbers of parallel case, since parallel ad
sequential measurements never can occur during the same run.) For exam-

ple this control block in the parameter file can initialize our measurement.

MPI_Send

{
Type = 50;
Variation = Length;
Scale = Dynamic_log;
Max_Repetition = Default_Value;
Min_Repetition = Default_Value;
Multiple_of = Default_Value;
Time_Measurement = Default_Value;
Time_Suite = Default_Value;
Node_Times = yes;
Cut_Quantile = Default_Value;
Default_Chunks = O;
Default_Message_length = 256;
Start_Argument = O;
End_Argument = Max_Value;
Stepwidth = 1.414213562;
Max_Steps = Default_Value;
Min_Distance = 2;
Max_Distance = 512;
Standard_error = Default_Value;

34 CHAPTER 6. ENHANCEMENTS OF SKAMPI

Message buffer handling

As we saw in the last section, when writing a callback function, we assume that
_skampi buffer (or also _skampi_buffer_2 is set to an valid memory address.
To do this we just have to initialize the client/server initialization function
pointer of the measurement_t-struct to the routines mem_init_one buffer (or
mem_init_one buffer respectively). But what is to do, if we need other buffers.
(Like perhaps for callback of the master-worker pattern) ? In this case we
define in this pointers (for example in the suitable ... testl.c-file). Then we
declare the in skampi mem.c as extern. Then we can write our own memory
initialization routine. Note the following facts:

e Our function must have this type: int mem_init_our name (int nor,
int nom, int nop), where nor is the number of repetitions®, nom the
number of measurements®, is the number of processes involved in this mea-
surements. For the existing memory-initializers it proved useful knowing
this numbers.

e We can assume, that _skib (SKaMPI internal buffer) is already set to
allocated memory (done by routine allocate memory). At this location

we have _skib_size bytes memory.

e We have to return the memory size in bytes, which we dispatched for
_skampi buffer. If you do not want to use _skampi buffer at all, you
should return the size, which should be the maximum message length.

6.3 New patterns
If you want to add a new pattern, you should ask yourself some questions.
e Over which variables should be varied ?7

e Does the new pattern has any callback functions and what is the type of
them?

e Do I want to use the automatic repetition mechanism of SKaMPI?

e Can I use the existing memory-initializers ? (See section 6.2 for further

information.)

The following list shows the steps for adding a new pattern.

5That is the size which is declared by Max_Repetition in the parameter file.
6That is the size which is declared by Max_Steps in the parameter file.
"New variables to vary over will called “variation” in the following.

6.3. NEW PATTERNS 35

1. First you have to declare a new constant. This constant is used in variable
measurement_t->pattern to indicate, that your pattern should be used.
The declaration should made in skampi.h.

enum{P2P, MASTER_WORKER, COLLECTIVE, SIMPLE, MY_NEW_PATTERN};

If your new pattern has an extra variable to vary over, you can enter this
also in this file.

enum{NODES, LENGTH, CHUNK, NO_VARIATION, MY_NEW_VARIATION};

2. Before implementing the pattern, we should group together the data,
which is specific for this pattern (so not included in the measurement t-
struct). We can code this new struct also in skampi.h.

typedef struct

{
int specific_data; /* whatever is useful */
void (* a_callback) (int);
data_t *result; /* Measured results OUT */
double dummy_time; /* dummy time for measurements

in that communicator
and pattern IN */
double dummy_time_se; /* and its standard error IN */
}my_new_pattern_data_t;

This is just an example with one callback (implemented as a pointer to a
function) returning void and getting an int. The integer specific_data
stands for any data declaration you can do here.

The last three declarations must be included in every pattern data struct.

(They are used in the calling mechanism of SKaMPI.)

3. Patch the measurement_t-struct (also found in skampi.h): add your new
data struct in the data union.

union /* patternspecific data_structures IN */
{
p2p_pattern_data_t p2p_data;
mw_pattern_data_t mw_data;
col_pattern_data_t col_data;
simple_pattern_data_t simple_data;
my_new_pattern_data_t my_new_data;

}data;

36

CHAPTER 6. ENHANCEMENTS OF SKAMPI

4. Now you can implement your new pattern. Usually every pattern is coded
in an extra file (say my new_pattern.c), which has to be linked or you
have to adapt the script sk21f. (See next point.)
However your pattern must have the type like int my new_pattern (measurement_t
*ms). A prototype of your pattern should be placed in a header-file (e.g.

my_new_pattern.h).

5. If you use the skosfile-mechanism, you have to adapt the sk21f script.

cat ../any.h >>skosfile.c

cat ../pqtypes.h >>skosfile.c

cat pg_glob.h >>skosfile.c

cat ../col.h >>skosfile.c

cat ../mw.h >>skosfile.c

cat ../p2p.h >>skosfile.c

cat ../simple.h >>skosfile.c

new header of pattern

cat ../my_new_pattern.h >>skosfile.c

cat ../mw_testl.h >>skosfile.c

cat ../col_testl.h >>skosfile.c

cat ../p2p_testl.h >>skosfile.c

cat ../simple_testl.h >>skosfile.c

new header of callbacks

cat ../my_new_pattern_testl.h >>skosfile.c

cat mw_testl_source.c >>skosfile.c

cat col_testl_source.c >>skosfile.c

cat p2p_testl_source.c >>skosfile.c

cat simple_testl_source.c >>skosfile.c

new source of callbacks

cat my_new_pattern_testl_source.c >>skosfile.c

cat skampi_source.c >>skosfile.c

cat datalist_source.c >>skosfile.c

cat skampi_error_source.c >>skosfile.c
cat skampi_params_source.c >>skosfile.c

6. If you have an extra variation for your new pattern, you will have to do

some extra work. It is explained in the next section.

7. Now look for all functions, which depend on the patterns. Mainly these are
measure in skampi.c. In skampi_call you have to look at: call_length,

call nodes, fill_dummy_values and in skampi_tools.cmeasurement data to_string

6.3. NEW PATTERNS 37

. (If you have a new variation, you have a look to adapt any switches of

variation here.)

Implementing a new variation

This section gives some additional tips when implementing a new variation.

In the file skampi_call.c we have to create a new call_...-function. The
goal of this function is calling the pattern with the correct value of the variable
parameter. (So call length calls the p2p-, mw- or col-pattern with a specific
message length.) Another point not forget: Usually we have to control our new
variation through the parameter file. So we have to implement a new keyword

for the variation-entry. We consider something like this:

Type = 30;
Variation = My_new_variation;
Scale = Dynamic_log;

First we have an new keyword, which can easily added to the keywords-

struct in skampi_params.c.

{"Dynamic_linear", DYN_LIN_SCALE},
{"Dynamic_log", DYN_LOG_SCALE},

{"Max_Value", MAX_VALUE},

{"Default_Value", DEFAULT_VALUE},
{"My_new_variation", MY_NEW_VARIATION_TOKEN},
{NULL, 0}

Here MY_NEW_VARIATION_TOKEN is a new token, which we declare at the be-

ginning of this file. As a lest step, we have to change variation style.

case CHUNKS_VAR:

ms->variation = CHUNK;
break;
case NO_VAR:
ms->variation = NO_VARIATION;
break;

case MY_NEW_VARIATION_TOKEN:
1 ms->variation = MY_NEW_VARIATION;
break;
default:
sprintf (_skampi_msg,"syntax error in line: %d: unknown variatiomn.\n)s\n",
lineno, (*text)[lineno]l);
ERROR (USER, _skampi_msg) ;
output_error (TRUE);

Chapter 7

Index of all functions

7.1 Module skampi

Document created automatically by documeas.pl at Wed Mar 17 13:17:47 1999.
This is the main module. It contains main() and the most global variables.
(Other specific globals can be found in mw.c.) The debug-switches here are
valid for all other modules if you use skosfile.

7.1.1 Function main
Prototype: int main(int argc, char **argv);

Purpose: reads parameters, creates log_file, output_file, calls all selected mea-

surements, logs measurements, calls postprocessing (if wanted).
Parameters: standard command line (arc, argv)
Returnes: 0 if success
Position: lines 106 - 134.

Sideeffects: sets all global variables

7.2 Module autodist

Document created automatically by documeas.pl at Thu Jun 10 09:19:04 1999.
This module is responsible for the automatic determination of the arguments
where to measure. Its interface can be found in autodist.h.

measure_suite calls the function tbm with the arguments computed and collects
the results in a list (stored in ms.result.list).

38

7.3. MODULE AUTOMEASURE 39

7.2.1 Function measure_suite

Prototype: void measure_suite (measurement_t *ms, thm_t thm);

Purpose: computes all arguments, where to measure the measurement ms and

calls it via the routine tbm (to_be_measured).
Parameters: above.
Returnes: nothing
Position: lines 55 - 475.

Sideeffects: sets ms->x_end to effective value, if it is initialized to
MAX_ARGUMENT, exits in case of error.

Assumes: _skampi_myid set.

7.2.2 Function calculate_key

Prototype: double calculate key (measurementt *ms, PqData pqdata, int
log flag);

Purpose: computes the key for the x_axis - segment for inserting it into the

Priority-queue. We use the result_cleaned (which is a desgin decision).
Parameters: the actual measurement, the x_axis segment pqdata.
Returnes: the key
Position: lines 491 - 562.

Assumes: MACRO FUN defined.

7.3 Module automeasure

Document created automatically by documeas.pl at Thu Jun 10 09:26:16 1999.
This modules offers the routines controling the repetitions of measurements.
Its interface is found in automeasure.h. Before using any other routine am_init
should be called (and am_free as last). Called after a measurement am_control_end
determines if a repetition is necessary. If finished, call am_fill_data to store the
accumulated data.

40 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.3.1 Function am_init

Prototype: int am_init (int size);

Purpose: initializes all private (static) variables allocates memory.
Parameters: the size (in bytes) of memeory to be allocated.
Returnes: TRUE iff allocation ok, FALSE otherwise.

Position: lines 83 - 106.

Sideeffects: changing the mentioned variables.

7.4 Module ”standard_error...” given at the be-

ginning of function

Document created automatically by documeas.pl at Thu Jun 10 09:26:16 1999.

7.4.1 Function am_free

Prototype: void am free (void);

Purpose: frees the allocated buffers

Parameters: none.

Returnes: nothing.

Position: lines 118 - 127.

Sideeffects: memory freed, variables set back to zero.

Assumes: tbm_buffer has been allocated before.

7.4.2 am_control_end

Prototype: depending whether sequential or MPI version of SKaLib used.

Please refer to the code.

Purpose: controles whether the ms at arg arg should be repeated (returnes
TRUE) or not (returnes FALSE).

Parameters: the current measurement ms, the actual argument arg, the mea-
sured time (tbm_time), the node_time, the partner (-process) also involved
into this measurement. If there is no other process involved, partner is
set to NO_COMMUNICATION. If it is set to USE_.COMMUNICATOR,

7.5. MODULE COL 41

the the argument local_communicator will be used. (for communication

to more than one other processes. The root is process 0).
Returnes: see above.
Position: lines 160 - 343.
Sideeffects: on the static variables.

Assumes: _skampi_myid set. am_init has been called before.

7.4.3 Function am_fill data

Prototype: void am_fill_data (measurement_t *ms, int arg, double dummy_time,
double du_ti_se, data_t *data);

Purpose: fills the data (dummy_time, standard_error of the dummy time into
the actual measured data.

Parameters: above
Returnes: nothing.
Position: lines 358 - 476.

Assumes: am_init has been called before. _critical . min_time set.

7.4.4 Function double_cmp

Prototype: int double_cmp (const void *d1,const void *d2);
Purpose: compares to doubles, used for gsort-calls
Parameters: two pointers to doubles d1, d2

Returnes: 0 iff equal, -1 iff d1 < d2, 1 else

Position: lines 488 - 493.

7.5 Module col

Document created automatically by documeas.pl at Wed Mar 17 13:17:42 1999.
This module contains the collective-pattern. This pattern is used to measure
collective MPI operations. The interface is described in col.h.

42 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.5.1 Function col_pattern

Prototype: void col_pattern (measurement_t *ms);
Purpose: the collective pattern.

Parameters: the actual measurement (which sould be one of the collective
pattern).

Returnes: nothing.

Position: lines 46 - 162.

7.6 Module col_testl

Document created automatically by documeas.pl at Thu Mar 18 08:53:58 1999.
This module containes all routines to be measured with the col-pattern. These
are routines to initialize (col.init....) and routines containing the MPI-Functions

to be measured.

7.6.1 Functions col_init_...

Purpose: the following col_init_... functions initialize the ms with the correct

data to measure the specific collective MPI function.

Parameters: measurement ms and the place to hold the measured results
(data).

Returnes: nothing.

Position of first: lines 93 - 107.

7.6.2 Functions measure....

Purpose: call the MPI-Function to be measured. The reason not to call this
MPI-Function directly is to achieve a function-header comman to all mea-

sured functions.
Parameters: message length len, Communicator comminicator.
Returnes: nothing.
Position of first: lines 516 - 519.

Assumes: _skampi_buffer (_skampi_buffer_2 set correctly, done with mem_init_one_buffers

or mem_init_two_buffers.

7.7. MODULE MW 43

7.7 Module mw

Document created automatically by documeas.pl at Thu Mar 18 09:08:22 1999.
This module is simply the master-worker-pattern. This pattern is used to mea-
sure all the measurements of the master-worker-pattern. The interface is de-

scribed in mw.h.

7.7.1 Function mw_pattern

Prototype: int mw_pattern (measurement_t *ms);
Purpose: executes the master-worker pattern
Parameters: the actual measurement

Returnes: TRUE in case if success

Position: lines 43 - 141.

7.8 Module mw_testl

Document created automatically by documeas.pl at Wed Mar 17 13:17:44 1999.
This module containes all routines to be measured with the master-worker-
pattern. These are routines to initialize (mw_init_...) and routines containing
the MPI-Functions to be measured.

7.8.1 Functions mw_init_...

Purpose: initialize the measurement *ms (address for measrued results is data.)
Parameters: above
Returnes: nothing.

Position of first: lines 113 - 131.

7.8.2 Functions master_receive_ready_test

Purpose: call the MPI-Function to be measured. The reason not to call this
MPI-Function directly is to achieve a function-header comman to all mea-

sured functions.
Parameters: message length len, Communicator comminicator.
Returnes: nothing.

Position of first: lines 311 - 315.

44 CHAPTER 7. INDEX OF ALL FUNCTIONS

Assumes: the buffers set correctly, done with the routines called through ms-

>server_init /ms->client_init

7.9 Module p2p

Document created automatically by documeas.pl at Wed Mar 17 13:17:44 1999.
This module is simply the p2p-pattern. This pattern is used to measure all the

measurements of the p2p-pattern. The interface is described in p2p.h.

7.9.1 Function p2p_find max_min

Prototype: int p2p_find_max min (measurement_t *ms);

Purpose: finds nodes with minimum/maximum latency

Parameters: am measurement with the p2p pattern.

Returnes: TRUE in case of success

Position: lines 63 - 218.

Sideeffects: modifies ms->data.p2p_data.max node and ms->data.p2p_data.min_node

Assumes: _skampi_myid set

7.9.2 Function p2p_pattern

Prototype: int p2p_pattern (measurement_t *ms);

Purpose: the p2p pattern.

Parameters: th actual measurement (which sould be one of the p2p pattern).
Returnes: TRUE in case of success.

Position: lines 230 - 411.

7.10 Module p2p_testl

Document created automatically by documeas.pl at Wed Mar 17 13:17:44 1999.
This module containes all routines to be measured with the p2p-pattern. These
are routines to initialize (p2p_init_...) and routines containing the MPI-Functions
to be measured.

7.11. MODULE SIMPLE 45

7.10.1 Functions p2p_init_...

Purpose: the following p2p_init_... functions initialize the ms with the correct

data, to measure the specific point-to-point MPI function.

Parameters: measurement ms and the place to hold the measured results
(data).

Returnes: nothing.

Position of first: lines 82 - 94.

7.10.2 Functions server....

Purpose: call the MPI-Function to be measured by the process 0 (sometimes
named server). The reason not to call this MPI-Function directly is to

achieve a function-header comman to all measured functions.

Parameters: message length len, number of the node to communicate with,

Communicator comminicator.
Returnes: nothing.
Position of first: lines 316 - 326.

Assumes: _skampi_buffer (_skampi_buffer_2 set correctly, done with mem_init_one_buffers

or mem_init_two_buffers.

7.10.3 Functions client._...

Purpose: call the MPI-Function to be measured by the processes not 0 (some-
times named clients). The reason not to call this MPI-Function directly

is to achieve a function-header comman to all measured functions.

Parameters: message length len, number of the node to communicate with,

Communicator comminicator.
Returnes: nothing.
Position of first: lines 446 - 456.

Assumes: _skampi_buffer (_skampi_buffer_2 set correctly, done with mem_init_one_buffers

or mem_init_two_buffers.

7.11 Module simple

Document created automatically by documeas.pl at Wed Mar 17 13:17:45 1999.
This module is simply the simple-pattern. This pattern is used to measure all
the measurements of the simple-pattern. The interface is described in simple.h.

46 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.11.1 Function simple_pattern

Prototype: void simple_pattern (measurement_t *ms);
Purpose: the simple pattern.

Parameters: th actual measurement (which sould be one of the simple pat-
tern).

Returnes: nothing.
Position: lines 39 - 104.

Assumes: none.

7.12 Module simple_testl

Document created automatically by documeas.pl at Wed Mar 17 13:17:45 1999.
This module containes all routines to be measured with the simple-pattern.
These are routines to initialize (simple_init_...) and routines containing the
MPI-Functions to be measured.

7.12.1 Functions simple_init _...

Purpose: the following simple_init_... functions initialize the ms with the cor-

rect data, to measure the specific simple MPI function.

Parameters: measurement ms and the place to hold the measured results
(data).

Returnes: nothing.

Position of first: lines 52 - 61.

7.12.2 Functions measure._...

Purpose: call the MPI-Function to be measured. The reason not to call this
MPI-Function directly is to achieve a function-header comman to all mea-

sured functions.
Parameters: message length len, Communicator comminicator.
Returnes: nothing.
Position of first: lines 154 - 156.

Assumes: the routines pointed by ms->server_init ms->client_init are called.

7.13. MODULE DATALIST 47

7.13 Module datalist

Document created automatically by documeas.pl at Wed Mar 17 13:17:43 1999.
This module provides all the basic routines for maintaining double-linked-lists.
It is not only appliable for skampi, but some minor changes have been made, to
improve usability. So the functions item_addr and item_addr_at_item have been
added for interaction with the priority-queue in module autodist. The complete
interface can be found (as usual) in the header datalist.h. Note that for use in
skampi, the routine init_data needs the number of PEs skampi is running on,

which is provided in the variable numprocs, which is set in skampi.c
7.13.1 Function init_list

Prototype: datalist_t *init_list(datalist_t *1);

Purpose: initializes the data list 1 to the empty list.

Parameters: pointer to the list 1.

Returnes: the adress of the list, or NULL iff no memory available.

Position: lines 54 - 68.

7.13.2 Function add

Prototype: data list_t *add (data_listt *1, int mode, signed int pos, data_t
*data, int *error);

Purpose: adds data data element (*data) to the list *1 at the position pos
relative to start or list (mode == START), or end (mode == END), or

to last accessed alement (mode == LAST).
Parameters: (add. to above) *error, in which the error code is retuned.
Returnes: pointer to list, or NULL in case of error.

Position: lines 87 - 197.

7.13.3 Function read_ele

Prototype: data_t *read_ele (data list_t *1, int mode, signed int pos,data_t
*data, int *error);

Purpose: reads data data element (*data) of the list *1 at the position pos
relative to start or list (mode == START), or end (mode == END), or
to last accessed alement (mode == LAST).

Parameters: (add. to above) *error, in which the error code is retuned.

48 CHAPTER 7. INDEX OF ALL FUNCTIONS

Returnes: pointer to list, or NULL in case of error.

Position: lines 214 - 267.

7.13.4 Function read_item_ele

Prototype: data_t *read_item_ele (data_list_t *1, list_item_t *local ptr, signed
int pos,data_t *data, int *error);

Purpose: reads data data element (*data) of the list *1 at the position pos

relative to the element pointed to with local_ptr.
Parameters: (add. to above) *error, in which the error code is retuned.
Returnes: pointer to list, or NULL in case of error.

Position: lines 283 - 321.

7.13.5 Function item_addr

Prototype: list_.item_t *item_addr (data_list_t *1, int mode, signed int pos, int

*error);

Purpose: returnes the adress of the data element of the list *1 at the position
pos relative to start or list (mode == START), or end (mode == END),

or to last accessed alement (mode == LAST).
Parameters: (add. to above) *error, in which the error code is retuned.
Returnes: pointer to list, or NULL in case of error.

Position: lines 338 - 389.

7.13.6 Function item_addr_at_item

Prototype: listitem_t *item_addr_at_item (data_list_t *1, list_item_t *local ptr,

signed int pos, int *error);

Purpose: returnes the adress of the data element of the list *1 at the position
pos relative to the element pointed to with local_ptr.

Parameters: (add. to above) *error, in which the error code is retuned.
Returnes: pointer to list, or NULL in case of error.

Position: lines 406 - 441.

7.13. MODULE DATALIST 49

7.13.7 Function is_end

Prototype: intis_end (listiitem_t *item);
Purpose: tests if *item is the last elemnt of its list
Parameters: item of a list *item

Returnes: TRUE iff last element

Position: lines 453 - 455.

Assumes: item != NULL.

7.13.8 Function is_start

Prototype: intis_start (list_item_t *item);
Purpose: tests if *item is the first elemnt of its list
Parameters: item of a list *item

Returnes: TRUE iff first element

Position: lines 467 - 469.

Assumes: item != NULL.

7.13.9 Function number_of_elements
Prototype: int number_of _elements (data_list_t *1);
Purpose: returnes number of elements of the list *I.
Parameters: above

Returnes: above

Position: lines 481 - 486.

Sideeffects: none

7.13.10 Function remove_ele

Prototype: datalist_t *remove_ele (data_list_t *1, int mode, signed int pos);

Purpose: removes data data element of the list *1 at the position pos relative
to start or list (mode == START), or end (mode == END), or to last

accessed alement (mode == LAST).

Parameters: above.

50 CHAPTER 7. INDEX OF ALL FUNCTIONS

Returnes: pointer to list, or NULL in case of error.

Position: lines 502 - 568.

7.13.11 Function free_data_list

Prototype: void free_data_list (data_list_t *1, int mode);

Purpose: free-es all elements of the datalist *] and (only if mode == DY-
NAMIC) also the memory pointed by 1. If ths in not wanted (e.g. because
1 is adress of statically allocated variable) call with mode == STATIC.

Parameters: above

Returnes: nothing.

Position: lines 582 - 603.

7.13.12 Function minimum

Prototype: double minimum (data_list_t *1, int *arg);

Purpose: find the minimum of the list *1, returnes the argument, of the min-
imal element (refers to cleaned). (needs the structure of the data stored
in a list element)

Parameters: above.
Returnes: above.

Position: lines 622 - 642.

7.13.13 Function maximum

Prototype: double maximum (data_list_t *L,int *arg);

Purpose: find the maximum of the list *1, returnes the argument, of the max-
imal element (refers to cleaned). (needs the structure of the data stored

in a list element)
Parameters: above.
Returnes: above.

Position: lines 656 - 676.

7.13. MODULE DATALIST 51

7.13.14 Function variance
Prototype: double variance (data_list_t *1);

Purpose: returnes the variance of the list *1 (needs the structure of the data

stored in a list element)
Parameters: above.
Returnes: above.

Position: lines 689 - 707.

7.13.15 Function average_of lists
Prototype: data_list_t *average_of lists (data_list_t **1);

Purpose: creates a new list, where the i-th data element it the average of all
i-th elements of the datalists given in the (NULL-terminated!) array of

lists 1. (needs the structure of the data stored in a list element)
Parameters: above.
Returnes: new list, NULL in case if error.

Position: lines 723 - 782.

7.13.16 Function average
Prototype: double average (data_list_t *1);

Purpose: returnes the average of the list *1. (refers to cleaned results) (needs

the structure of the data stored in a list element)
Parameters: above.
Returnes: above.

Position: lines 802 - 818.

7.13.17 Function write_to_file

Prototype: int write_to_file (datalist_t *1, FILE *file);
Purpose: writes data list *I to the file *file.
Parameters: above

Returnes: TRUE iff successful, FALSE otherwise

Position: lines 832 - 871.

52 CHAPTER 7. INDEX OF ALL FUNCTIONS

Sideeffects: none

Assumes: *file is valid handle of an open file.

7.13.18 Function read_from _file

Prototype: data_list_t * read_from file (data list_t *1, FILE **file, int *error);

Purpose: reads data list *1 from the file **file. note: file is ** so that reading
in file changes the filepointer, useful for reading consecutive lists in one
file.

Parameters: above

Returnes: adress of the list read, NULL in case of error.
Position: lines 885 - 1029.

Sideeffects: none

Assumes: **file is valid handle of an open file.

7.14 Module skampi_error

Document created automatically by documeas.pl at Wed Mar 17 13:17:47 1999.
This module provides the error handling, including the standard error classes

and messages.

7.14.1 Function output_error

Prototype: void output_error (int really_end);

Purpose: prints error message (in skampi_error) to stderr and (only if re-

ally_end == TRUE) aborts the running programm.
Parameters:
Returnes:

Position: lines 58 - 71.

7.15 Module skampi_mem

Document created automatically by documeas.pl at Wed Mar 17 13:17:47 1999.
Here you can find the management of the message-buffers (the memory for
storing the results is allocated in automeasure.c and datalist.c resp.).

7.15. MODULE SKAMPI_MEM 53

7.15.1 Function allocate_mem

Prototype: int allocate_mem (int memsize);
Purpose: allocates the memory for the internal buffer
Parameters: the size of memory to allocate (in bytes).
Returnes: TRUE iff successful, FALSE otherwise.
Position: lines 97 - 128.

Sideeffects: manipulation of the static variables.

Assumes: first call or free_mem called before.

7.15.2 Function free_mem

Prototype: void free_mem (void);

Purpose: free-es all allocated memory.

Parameters: none.

Returnes: nothing.

Position: lines 141 - 148.

Sideeffects: manipulation of the static variables.

Assumes: allocate_mem called before and no call of free_mem after that call

of allocate_mem.

7.15.3 Function mem_init_one_buffer

Prototype: long int mem_init_one_buffer (int nor, int nom, int nop);
Purpose: sets _skampi_buffer to _skib (i.e. a location of allocated memory.)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer.
Position: lines 163 - 182.
Sideeffects: manipulation of _skampi_buffer.

Assumes: assumes allocate_mem called once before with no other mem_init_...

between.

54 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.15.4 Function mem_init_two_buffers
Prototype: long int mem_init_two_buffers (int nor, int nom, int nop);

Purpose: sets _skampi_buffer and _skampi_buffer_2 a location of allocated mem-

ory.

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).

Returnes: the size of memory available at _skampi_buffer and _skampi_buffer_2.

Position: lines 199 - 224.

Sideeffects: manipulation of _skampi_buffer.

Assumes: assumes allocate_mem called once before with no other mem_init_...
between.

7.15.5 Function mem_init_two_buffers_gather

Prototype: long int mem_init_two_buffers_gather (int nor, int nom, int nop);

Purpose: sets _skampi_buffer and _skampi_buffer_2 a location of allocated mem-
ory suiatble for the MPI_Gather operation. (_skampi_buffer for sending,
_skampi_buffer_2 for receiving.)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).

Returnes: the size of memory available at _skampi_buffer and _skampi_buffer_2.

Position: lines 243 - 270.

Sideeffects: manipulation of _skampi_buffer.

Assumes: assumes allocate_mem called once before with no other mem_init_...
between.

7.15.6 Function mem_init_two_buffers_alltoall

Prototype: long int mem_init_two_buffers_alltoall (int nor, int nom, int nop);

Purpose: sets _skampi_buffer and _skampi_buffer_2 a location of allocated mem-
ory. The difference to mem_init_two_buffers is, that its result is divided
by nop, because MPI_Alltoall need a buffer of the size message length *

nop.

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).

7.15. MODULE SKAMPI_MEM 55

Returnes: the size of memory available at _skampi_buffer and _skampi_buffer_2.
Position: lines 290 - 294.
Sideeffects: manipulation of _skampi_buffer.

Assumes: assumes allocate_mem called once before with no other mem_init_...

between.

7.15.7 Function mem_init_two_buffers_attach

Prototype: long int mem_init_two_buffers_attach (int nor, int nom, int nop);

Purpose: sets skampi_buffer and _skampi_buffer_2 a location of allocated mem-
ory. The difference to mem_init_two_buffers is, that its result is divided by
nop, because Bsend of the mw-pattern need a buffer of the size message
length * nop.

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer and _skampi_buffer_2.
Position: lines 314 - 355.
Sideeffects: manipulation of _skampi_buffer.

Assumes: assumes allocate_mem called once before with no other mem_init_...

between, default_communicator set

7.15.8 Function find_mml

Prototype: long int find_mml (int nor, int nom, int nop);
Purpose: computes the max message length when using MPI_Bsend

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: above
Position: lines 369 - 397.

Assumes: _skib_size, default_communicator set

56 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.15.9 Function mem init_two_buffers_attach_p2p

Prototype: long int mem_init_two_buffers_attach_p2p (int nor, int nom, int
nop);

Purpose: sets _skampi_buffer and _skampi_buffer_2 a location of allocated mem-
ory. The difference to mem_init_two_buffers is, that its result is NOT
divided by anything (special for p2p pattern)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer and _skampi_buffer_2.
Position: lines 416 - 418.
Sideeffects: manipulation of _skampi_buffer.
Assumes: assumes allocate_mem called once before with no other mem_init_...

between, default_communicator set

7.15.10 Function mem_init_two_buffers_attach_mw

Prototype: long int mem_init_two_buffers_attach.mw (int nor, int nom, int

nop);

Purpose: sets _skampi_buffer and _skampi_buffer_2 a location of allocated mem-
ory. The difference to mem_init_two_buffers is, that its result is NOT
divided by nop and nom (special for mw pattern)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer and _skampi_buffer_2.
Position: lines 437 - 439.
Sideeffects: manipulation of _skampi_buffer.
Assumes: assumes allocate_mem called once before with no other mem_init_...

between, default_communicator set

7.15.11 Function mem _release_detach

Prototype: voidmem release_detach (void);

Purpose: ’releases’ the _skampi_buffers. It must be called after allocate_mem.
It does NOT free the allocated memory of _skib. It is the counterpart of
the mem_init_two_buffers_attach functions.

7.15. MODULE SKAMPI_MEM 57

Parameters: none.
Returnes: nothing.

Position: lines 453 - 467.

7.15.12 Function mem _init_mw_Waitsome

Prototype: long int mem_init_-mw_Waitsome (int nor, int nom, int nop);

Purpose: sets _skampi_buffer and the _mw_... variable to locations of allocated
memory.(Special for master_dispatch_Waitsome in mw_test1.c.)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer.
Position: lines 484 - 527.
Sideeffects: manipulation of the mentioned variables.

Assumes: assumes allocate_mem called once before with no other mem_init_...
between.

7.15.13 Function mem_init_mw_Waitany

Prototype: long int mem_init_-mw_Waitany (int nor, int nom, int nop);

Purpose: sets _skampi_buffer and the _mw_... variable to locations of allocated

memory. (Special for master_dispatch_Waitany in mw_test1.c.)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer.
Position: lines 544 - 582.
Sideeffects: manipulation of the mentioned variables.

Assumes: assumes allocate_mem called once before with no other mem_init_...
between.

58 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.15.14 Function mem_init_col_Waitall

Prototype: long int mem_init_col_ Waitall (int nor, int nom, int nop);

Purpose: sets _skampi_buffer and the _col_... variable to locations of allocated

memory.(Special for col.init_Gather_Waitall server in col_test1.c.)

Parameters: number of repetitions (nor), number of measurements (nom),

number of processes involved in the measurement (nop).
Returnes: the size of memory available at _skampi_buffer.
Position: lines 601 - 646.
Sideeffects: manipulation of the mentioned variables.
Assumes: assumes allocate_mem called once before with no other mem_init_...

between.

7.15.15 Function mem_release

Prototype: voidmem release (void);

Purpose: ’releases’ the _skampi_buffers. It must be called after allocate_mem.
It does NOT free the allocated memory of _skib. It is the counterpart of

the mem_init_one_buffer and the mem_init_two_buffers functions.
Parameters: none.
Returnes: nothing.

Position: lines 663 - 672.

7.16 Module skampi_params

Document created automatically by documeas.pl at Wed Mar 17 13:17:48 1999.
This modules provides the complete parameter file parser. This means the
routines for dividing this files into its several sections (each begining with an
@). To parse the MEASUREMENTS-Section, the ’'real’ parser will be used.
The structure of the used ”compiler” is from Aho, Sethi, Ullman, Compilerbau
I, Kap. 2 (i.e. german edition of the dragon-book) Add.Wes., 1988

7.16.1 Function read_parameters

Prototype: measurement_t *read_parameters (char *parameter_file name, params_t

*params, int *no_meas);

7.16. MODULE SKAMPI_PARAMS 59

Purpose: reads the parameter file, fills params and returns a filled measure-
ments array, in *no_meas the number of measurements is given back re-

turnes NULL in case of error

Parameters: name of parameter file, the params-struct which will be filled the

number of measurements (*no_meas) (also filled here)

Returnes: returnes to an array of *no_meas filled measurements in case of

success.
Position: lines 237 - 389.
Sideeffects: in case of error it aborts the program.

Assumes: _skampi_myid set.

7.16.2 Function init_params
Prototype: params_t *init_params (params_t *params);

Purpose: initializes the parameter struct with its default values, the definition

of the constants can be found in skampi_error.h called by read_parameters.
Parameters: the parameter array to be filled.
Returnes:

Position: lines 404 - 428.

7.16.3 Function parse_parameter_file

Prototype: params_t *parse_parameter file (FILE *parameter_file, params_t

*params);
Purpose: parses the paremeter_file into the struct *params.
Parameters: above
Returnes: the filled params-struct or in case of error NULL.

Position: lines 440 - 683.

7.16.4 Function line_mode

Prototype: char *line_mode (char *line, int *mode);

Purpose: analyzes *line and evtl. sets *mode to a new found mode.
Parameters: above.

Returnes: a pointer to the line (without the keyword).

Position: lines 695 - 778.

60 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.16.5 Function send_text

Prototype: voidsend_text (text_t *text);

Purpose: sends a text to all other processes in default_communicator, process

zero is root.
Parameters: the text to send.
Returnes: nothing.
Position: lines 819 - 834.

Assumes: brackets default_communicator set.

7.16.6 Function recv_text

Prototype: text_t *recv_text (text_t *text);

Purpose: receives the text which has been send via send_text. (process zero in
default communicator is root.) Note: the text_t-struct has to be allocated,

not the memory for all the strings, this is done here.
Parameters: above.
Returnes: a pointer to the filled text structure.
Position: lines 849 - 877.

Assumes: default_communicator set.

7.16.7 Function read_next_char

Prototype: int read_next_char (text_t *text);

Purpose: reads next character (not whitspace) from the text *text and returns
it. Note: a char is treated as an (signed!) int (which is necessary, because

EOT an other constants are negative.)
Parameters: above.

Returnes: returnes character, or EOT (ond of text, if there is no further char-

acter)
Position: lines 895 - 912.
Sideeffects: manipulates pos and lineno.

Assumes: pos and lineno are initialized.

7.16. MODULE SKAMPI_PARAMS 61

7.16.8 Function unread_next_char

Prototype: char *unread next_char (int t, text_t *text);
Purpose: unreads the last character, like ungetc of the standard library.

Parameters: the character to unread (t, not used actually, only for similarity
to ungetc). Note: a char is treated as an (signed!) int (which is necessary,

because EOT an other constants are negative.)
Returnes: a pointer to the actual character to read in the text *text.
Position: lines 927 - 934.
Sideeffects: manipulates pos.

Assumes: pos and lineno are initialized.

7.16.9 Function init_symboltable

Prototype: voidinit_symboltable (void);

Purpose: initializes the symboltable with the reserved words. So to add a new

reserved word, just add it to the array keywords.
Parameters: none
Returnes: nothing.
Position: lines 948 - 953.
Sideeffects: manipulates symboltable.

Assumes: keywords initialized

7.16.10 Function lookup

Prototype: int lookup (char *s);

Purpose: looks up the string *s in the symboltable.
Parameters: above.

Returnes: the index of *s if found, 0 otherwise.
Position: lines 967 - 975.

Assumes: symboltable and lastentry initialized.

62 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.16.11 Function insert

Prototype: int insert (char *s, int tok);

Purpose: inserts the string *s (known as token tok) into the symboltable.
Parameters: above.

Returnes: the index of *s in the symboltable.

Position: lines 988 - 1011.

Sideeffects: increases lastentry.

Assumes: symboltable and lastentry initialized.

7.16.12 Function lexan

Prototype: int lexan(text_t *text);
Purpose: scans next token in the text.
Parameters:

Returnes: returns next token if found (the ((int)tokenval) the index of its
actual value in the symboltable unless: token is INT (then ((int) tokenval)
has its value. token is FLOAT (then (tokenval) has its value. token is
DONE if EOT reached.

Position: lines 1028 - 1101.
Sideeffects: through calling read _next_char.

Assumes: symboltable initialized.

7.16.13 Function match

Prototype: void match(int t, text_t *text);

Purpose: compares the lookahead character with the expected (t) and calls

the scanner.
Parameters: additional: *text for calling the scanner.
Returnes: nothing
Position: lines 1115 - 1127.

Sideeffects: aborts with error message if comparison fails.

7.16. MODULE SKAMPI_PARAMS 63

7.16.14 Function parse

Prototype: void parse (measurement_t *ms, text_t *text);

Purpose: analyses entries of the @VUEASUREMENTS-Section of the parameter-
file.

Parameters: a pointer to an array of measurements. This array has to be big
enough. (The size necessaray can be obtained with count_measurements.)

*text is a pointer to params.measurements usually.
Returnes: nothing.
Position: lines 1144 - 1151.
Sideeffects: measurement called aborts in case of error.

Assumes: see above.

7.16.15 Function measurement

Prototype: void measurement (measurement_t *ms, text_t *text);

Purpose: fills one measurement_t-struct with the data parsed.

Parameters: the measurement *ms to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1164 - 1307.

Sideeffects: aborts in case of error.

7.16.16 Function variation_style

Prototype: voidvariation style (measurement_t *ms, text_t *text);

Purpose: decides which variation style lookahead is.

Parameters: the measurement *ms to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1320 - 1344.

Sideeffects: aborts in case of error.

64 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.16.17 Function scale_style

Prototype: voidscale style (measurement_t *ms, text_t *text);

Purpose: decides which scale style lookahead is.

Parameters: the measurement *ms to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1357 - 1379.

Sideeffects: aborts in case of error.

7.16.18 Function int_or_max

Prototype: void int_or_max (measurement_t *ms, text_t *text);

Purpose: decides whether lookahead is an int or the keyword MAX_VALUE.
Parameters: the measurement *ms to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1392 - 1409.

Sideeffects: aborts in case of error.

7.16.19 Function int_or_default

Prototype: void int_or_default (int *val, text_t *text);

Purpose: decides whether lookahead is an int or the keyword DEFAULT_VALUE.
Parameters: the value val to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1422 - 1439.

Sideeffects: aborts in case of error.

7.16.20 Function int_or_float

Prototype: void int_or_float (double *val, text_t *text);

Purpose: decides whether lookahead is an int or a float.
Parameters: the value val to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1451 - 1466.

Sideeffects: aborts in case of error.

7.16. MODULE SKAMPI_PARAMS 65

7.16.21 Function yes_or_no

Prototype: void yes_or_no (int *val, text_t *text);
Purpose: decides whether lookahead is a ”yes” or a "no”.

Parameters: the value val be filled (1 == yes, 0 == no), and the *text which

to parse.
Returnes: nothing
Position: lines 1479 - 1496.

Sideeffects: aborts in case of error.

7.16.22 Function float_or_default

Prototype: void float_or_default (double *val, text_t *text);

Purpose: decides whether lookahead is a float or the keyword DEFAULT_VALUE.
Parameters: the value val to be filled, and the *text which to parse.
Returnes: nothing

Position: lines 1509 - 1526.

Sideeffects: aborts in case of error.

7.16.23 Function float_or_default_or_invalid

Prototype: void float_or_default_or_invalid (double *val, text_t *text);

Purpose: decides whether lookahead is a float or the keyword DEFAULT_VALUE
or the keyword INVALID_VALUE.

Parameters: the value val to be filled, and the *text which to parse.
Returnes: nothing
Position: lines 1539 - 1559.

Sideeffects: aborts in case of error.

66 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.16.24 Function initialize_type

Prototype: voidinitialize type (measurement_t *ms, int index, text_t *text);

Purpose: initializes the pattern specific data of *ms. There for the type of an

measurement (index) is used.
Parameters: additional: *text, for scanner.
Returnes: nothing.
Position: lines 1575 - 1858.

Sideeffects: manipulates *ms, aborts in case of error.

7.16.25 Function token_to_str

Prototype: char * token_to_str (int token);

Purpose: converts a token into a string, which is returend . Used for debugging

only.
Parameters: above.
Returnes: above.

Position: lines 1872 - 1970.

7.17 Module skampi_post

Document created automatically by documeas.pl at Wed Mar 17 13:17:49 1999.
This module contains all routines need for the postprocessing (i.e. merging the
output-files of several skampi-runs together to one file. This will mainly used
by skampi.c and post.c.

7.17.1 Function post_processing
Prototype: intpost_processing (char *input_file_name);

Purpose: complete postprocessing.

Parameters: name of input_file (which is the outputfile in skampi usually) a
pointer to the array of measurements (not needed now, because measure-
ment_data_to_gpl_command_file and measurement_data_to_tex_module are
now implemented in the perl-script dorep.pl. nom: number of measure-

ments. (some as with ms).

Returnes: TRUE. (return-type is int for further errormamagement)

7.17. MODULE SKAMPI_POST 67

Position: lines 88 - 157.
Sideeffects: aborts in case of error.

Assumes: params-struct is filled when called.

7.17.2 Function init_post_proc
Prototype: int init_post_proc (char *input_file_name);

Purpose: initializes all static variables of this module and opens all input_files
(== output_files of skampi).

Parameters: name of input_file.
Returnes: TRUE. (return-type is int for further errormamagement)
Position: lines 170 - 250.

Sideeffects: aborts in case of error.

7.17.3 Function free_post_proc
Prototype: voidfree_post_proc (void);

Purpose: free-es all allocated memory for internal use and closes all here
opened files

Parameters: none.

Returnes: nothing.

Position: lines 264 - 279.
Sideeffects: on the internal variables.

Assumes: init_post_proc run before.

7.17.4 Function free_all lists
Prototype: voidfree_all lists (void);

Purpose: free-es all data elements of every list. It does NOT free the array of
lists (this is done in free_post_proc.)

Parameters: none.
Returnes: nothing
Position: lines 292 - 298.

Sideeffects: on the data stored in the lists.

68 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.17.5 Function skip_to_next_meas

Prototype: char *skip_to_next_meas (int index);

Purpose: skips to next measurement of file input_files[index] returnes name of
that measurement

Parameters: above.

Returnes: name of the measurement found or NULL in case of EOF.
Position: lines 311 - 324.

Sideeffects: on file pointer input_files[index]

Assumes: input_file[index] open (i.e. init_post_proc called before).

7.17.6 Function find_meas

Prototype: intfind_meas (int index, char *search);

Purpose: finds measurement with the name *search in input_file[index]
Parameters: additional: name of measurement to look for.

Returnes: returns TRUE iff found FALSE otherwise

Position: lines 336 - 349.

Sideeffects: on file pointer input_files[index]

Assumes: input_file[index] open (i.e. init_post_proc called before).

7.17.7 Function read_one_list_of_meas

Prototype: intread_one_list_of_meas (int index, char *meas);

Purpose: reads measurement with the name *meas in input_file[index] into the
list addressed by lists[index].

Parameters: additional: name of measurement to look for.
Returnes: returns TRUE iff found FALSE otherwise
Position: lines 363 - 406.

Sideeffects: on file pointer input_files[index] and on lists[index]

Assumes: input_file[index] open (i.e. init_post_proc called before).

7.17. MODULE SKAMPI_POST 69

7.17.8 Function read_all lists_of next_meas

Prototype: char *read_all lists_of next_meas (void);

Purpose: reads all lists of next measurtement (the next means the next in
input_files[0]) and stores the read data in the lists **lists.

Parameters: additional: name of measurement to look for.
Returnes: returnes name of that meas iff success
Position: lines 421 - 451.

Sideeffects: on file pointers input_files and on lists.

Assumes: init_post_proc called before.

7.17.9 Function combine_lists

Prototype: int combine lists (data_list_t *result_list);

Purpose: combines all lists of the **lists-array to one new result_list.
Parameters: above.

Returnes: TRUE if result_list conaines really data elements.
Position: lines 464 - 574.

Sideeffects: if result_list == NULL it is allocated and initialized. Aborts in

case of error.

Assumes: result list is initialized unless it is NULL.

7.17.10 Function all_finished

Prototype: intall finished (int *vector);

Purpose: tests if all entries in vector are TRUE.

Parameters: above.

Returnes: TRUE iff all elements of vector are TRUE, FALSE otherwise.

Position: lines 587 - 596.

70 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.17.11 Function interpolate_data

Prototype: data_t *interpolate_data (int value, data_t *left, data_t *right,
data_t *data);

Purpose: interpolates a complete data_t-struct at value (relative to entry arg)
between left and right.

Parameters: bove.
Returnes: pointer to the interpolated data-struct.
Position: lines 609 - 638.

Sideeffects: allocates new data element if data == NULL.

7.17.12 Function post_process
Prototype: data_t *post_process (data_t *new_data, data_t *result_data);

Purpose: this is the founction which really decides how to merge several data-
struct (stored in the array new_data) to one (result_data). It refers to the

....all values (which is certainlay a design decision).
Parameters: above.
Returnes: a pointer to result_data.
Position: lines 652 - 673.

Assumes: nif set.

7.17.13 Function data_cmp
Prototype: intdata_cmp (const void *d1,const void *d2);

Purpose: compares the results of two data_t-structs, used for gsort-calls Since

used in function post_process, it refers to the result_all.
Parameters: two pointers to data_t-structs d1, d2
Returnes: 0 iff equal, -1 iff d1 < d2, 1 else

Position: lines 686 - 691.

7.18 Module skampi_tools

Document created automatically by documeas.pl at Thu Mar 18 09:12:25 1999.
This module contains several small and handy tools. Its routines are used by
nearly every other skampi-module. The interface is declared in skampi_tools.h.

7.18. MODULE SKAMPI_TOOLS 71

7.18.1 Function write_to_log_ file

Prototype: int write_to_log file (char *msg);

Purpose: writes the message msg to the logfile (which also can be stdout or

stderr. If it is really a file it will be opend and closed.
Parameters: above.
Returnes: TRUE iff successful, FALSE in case of error.
Position: lines 81 - 115.

Assumes: _skampi_myid and log_file_name set.

7.18.2 Function measurement_data_to_string

Prototype: char *measurement_data_to_string (measurement_t *ms, char *string);

Purpose: builds a printable string string containing most of the data stored in

*ms.

Parameters: above.
Returnes: pointer to this string.
Position: lines 129 - 255.

Sideeffects: uses _skampi_msg (as little buffer...)

7.18.3 Function read_header

Prototype: FILE * read_header (FILE *file, text_t *text);

Purpose: reads header (containing HEADER_LINES lines) of the measure-
ment at the current position of the file-pointer into text.

Parameters: above.
Returnes: the manipulated file_handle.
Position: lines 482 - 501.

Assumes: *file is a valid file handle of on open file, and its file-pointer really
points to a header.

72 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.18.4 Function write_header
Prototype: FILE * write_header (FILE *file, text_t *text, char *name);

Purpose: writes the header (containing HEADER_LINES lines) stored in *text

in the file, this header will be named name there.
Parameters: above.
Returnes: the manipulated file-handel.

Position: lines 515 - 533.

7.18.5 Function write_text_to_file
Prototype: void write_text_to_file (text_t *text, char *s, FILE **file);

Purpose: writes text to file *file in a section s. note: file is ** so that writing

in file changes the filepointer!
Parameters: above.
Returnes: nothing.

Position: lines 546 - 556.

7.18.6 Function insert_in_text
Prototype: text_t *insert_in_text (char *line, text_t *text, int pos);

Purpose: inserts line into array text at position pos. (Note: text is (should)
always (be) an NULL-Pointer terminated array.

Parameters: above.
Returnes: pointer to text, or NULL in case of error.
Position: lines 572 - 600.

Assumes: text points to array of TEXT_LINES char * or is NULL (than allo-
cates).

7.18.7 Function read_from_text

Prototype: char *read from_text (char *line, text_t *text, int pos);
Purpose: reads the textline at position pos from text and stores it at line.
Parameters: above.

Returnes: pointer to line.

Position: lines 613 - 628.

7.18. MODULE SKAMPI_TOOLS 73

7.18.8 Function free_text

Prototype: voidfree_text (text_t *text, int mode);

Purpose: free-es all memory occupied by the textlines. If mode == DYNAMIC
it free-es also the pointer-array text. (Call with mode == STATIC if not
wanted.)

Parameters: above.
Returnes: nothing.

Position: lines 642 - 651.

7.18.9 Function read_old_log file

Prototype: int *read_old log file (char *log_ file_str, int *work_array, measure-

ment_t *ms,int number_of_measurements);

Purpose: reads the old log file (which is the log file of the previous run), to
analyze which measurements run before, and which failed. The results are

send from process 0 to all others in default_communicator.

Parameters: name of the old log file (logfile_str), an integer array (work_array),
which will be filled with control-info. the initialized array of all measure-

ments.
Returnes: pointer to modified work_array.
Position: lines 670 - 757.

Assumes: _skampi_myid and default_communicator set.

7.18.10 Function new_name

Prototype: char *new_name (char *name);

Purpose: returnes a new output_file_name which is name.<number> with num-
ber high enough, the the returned name is new.

Parameters: the name which to append with the number.
Returnes: a pointer to the new name.

Position: lines 771 - 778.

74 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.18.11 Function number_of_output_files
Prototype: int number_of output_files (char *name);

Purpose: returnes max value for files existing in working directory with <name>.<return_value>
assumed that if <name>.n exists than also <name>.n - 1 exists, unless n
=1

Parameters: above.

Returnes: above. (or NULL in case of error.)

Position: lines 793 - 816.

7.18.12 Function output_file_complete
Prototype: int output_file_complete (FILE *file);
Purpose: tests if file is a complete skampi output file.
Parameters: above.

Returnes: TRUE iff complete, FALSE otherwise.

Position: lines 828 - 845.

7.18.13 Function output_file_postprocessed
Prototype: int output_file_postprocessed (FILE *file);

Purpose: tests if file is a skampi output file, which was created by postpro-
cessing.

Parameters: above.
Returnes: TRUE iff postprocessed, FALSE otherwise.
Position: lines 858 - 873.

7.18.14 Function create_log_file

Prototype: void create_log_ file (void);

Purpose: creates log file and renames evtl existing log file of previous run.
Parameters: none.

Returnes: nothing.

Position: lines 886 - 929.

Sideeffects: prints error messages in case of trouble.

Assumes: _skampi_myid set.

7.18. MODULE SKAMPI_TOOLS 75

7.18.15 Function create_output_file
Prototype: void create_output_file (int *new_run);

Purpose: creates new output file and determines if a complete previous run has
been performed. (then *new_run is set to TRUE.) The value of new_run

is sent to all other processes in default_communicator.
Parameters: above.
Returnes: nothing.
Position: lines 943 - 1000.
Sideeffects: prints error messages in case of trouble.

Assumes: _skampi_myid and default_communicator set.

7.18.16 Function ExtractVersionNumber

Prototype: char *ExtractVersionNumber (char * PtrTarget, char * PtrSource
)i

Purpose: extracts from the RCS id string the version number

Parameters: Pointer to the target string and pointer to rcsstring

Returnes: Pointer to target string

Position: lines 1013 - 1023.

Sideeffects: writes to targetpointer the version number

7.18.17 Function write_head_of_outfile

Prototype: voidwrite_head_of_outfile (FILE **file, char *no_runs);

Purpose: writes the head of the outfile (i.e. the machine, node, network, user

and absolute -section of the params file.

Parameters: a pointer to a filehandle, and a string (no_runs), which can con-
tain the number of skampi-runs used for postprecessing. (This option is
only used by postprocessing.)

Returnes: nothing.
Position: lines 1039 - 1110.
Sideeffects: manipulates file (sets the filepointer ahead).

Assumes: numprocs set

76 CHAPTER 7. INDEX OF ALL FUNCTIONS

7.18.18 Function linear_interpolate

Prototype: double linear_interpolate (double arg.inter, double argl, double
arg2, double resl, double res2);

Purpose: interpolates a double at value between (argl,resl) and (arg2,res2).
Parameters: above.

Returnes: pointer to the interpolated data-struct.

Position: lines 1123 - 1129.

Sideeffects: allocates new data element if data == NULL.

7.18.19 Function double clock_resolution

Prototype: double clock_resolution(void);

Purpose: determines the system’s clock accessible resolution
Parameters: none

Returnes: resolution

Position: lines 1140 - 1160.

Sideeffects: none

Assumes: nothing

7.18.20 Function init_skalib

Prototype: */void init_skalib (measurement_t **measurements_array, int **work_array,

int *number_of_measurements);

Purpose: in the parallel case: initializes global variables numprocs, _skampi_myid,
default_communicator, processor_name in all cases: Fills global variables
repetitions, out_file name, log_file name, old_log file name. Reads PA-
RAMETER_FILE, the old log file, creates the output file and the new
log file. Sets the pointers (!) measurements array and work_array (There
given as **). measurements_array is an array of all suites of measure-
ments described in the parameter file. Suite i is described in a measure-
ments_t struct (*measurements_array)[i]. If suite i has to be perfomed
(*work_array)[i] is set to TODO, else to SKIP. *number_of_measurements
is set to the size of these arrays. Also *new_run is set to TRUE iff this
run is not a continuation of an aborted run. Allocates memory (also calls

allocate_mem).

7.18. MODULE SKAMPI_TOOLS 7

Parameters: above.
Returnes: nothing.
Position: lines 1190 - 1322.

Sideeffects: aborts in case of errors (IO or memory) prints messages to stdout
(if define O(A) A).

Assumes: mentioned global variables defined, MPI_Init called

7.18.21 Function perform_measurements

Prototype:

Purpose: performs measurement stored in measurements_array (with its tag in
work_array set to TODO. Writes results in outfile and remarks in logfile.

number_of_measurements is the size of these arrays.
Parameters: above.
Returnes: nothing.
Position: lines 1338 - 1490.

Sideeffects: aborts in case of errors (IO or memory) prints messages to stdout
(if define O(A) A).

Assumes: init_skalib called or equivalent operations performed

Appendix A

Derivation of the formula
used to calculate the

standard error

To show:

n n_oxi)?
On = Zi:l .’17? B (El_r;) (A 1)
* n-(n—1) '

From the definition we know:

o
where o := W, put in (A.2), we yield

(A.3)

Comparing the right hand sides of (A.1) and (A.3) we see, that we have to show
the following equation (for sake of readability we omit the indices of the sums,

since they are not manipulated in the following).

Sa -t (N = Y E-wy (A1)
@fo—%-(zxif = Y. #@-21) m+y a (AD)
@—%-(Zm,ﬁ = Y -2 = (A.6)

78

To see this, we transform:

q.e.d.

(Y

79

Bibliography

[1]

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. High-
performance, portable implementation of the MPI Message Passing Interface
Standard. Parallel Computing, 22(6):789-828, September 1996.

R. Reussner, P. Sanders, L. Prechelt, and M. Mueller. SKaMPI: A detailed,
accurate MPI benchmark. Lecture Notes in Computer Science, 1497:52-59,
1998.

Ralf H. Reussner. Portable Leistungsmessung des Message Passing In-
terfaces. Master’s thesis, Department of Informatics, University of Karl-
sruhe, Am Fasanengarten 5, D-76128 Karlsruhe, Germany, April 1997.
http://liinwww.ira.uka.de/Treussner/da.ps.

Ralf H. Reussner. SKaMPI: The Special Karlsruher MPI-Benchmark—User
Manual. Technical Report 02/99, Department of Informatics, University of
Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe, Germany, 1999.

L. Sachs. Angewandte Statistik: Anwendung statistischer Methoden.
Siebente Auflage, Springer-Verlag, Berlin, 1992.

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-
garra. MPI — The Complete Reference, volume 1. MIT Press, Cambridge,
Massachusetts, 2nd edition, 1998.

80

Index

Internal variables combine lists, 15, 69
_skampi_buffer, 32-34 constant
_skampi_buffer_2, 33, 34 DEF_MESSAGE_LEN, 32
_skib, 34 DYN_LIN, 22
_skib_size, 34 DYN_LOG, 22

FIXED_LIN, 22
FIXED_LOG, 22
MEASURE_MIN, 33
TEXT_LINES, 29
corrected_line, 30

A
act_time_suite, 22
add, 47
all_finished, 69

allocate_mem, 53
counter, 9

create_log file, 74
create_output_file, 75

allocate_memory, 34
am_control_end, 8, 9, 40
am _fill_data, 8, 41

cut_quantile, 23
am_free, 40 4

cut_quartile, 10
am_init, 9, 40 4 ’

AMR, 14 D
jzg}?(,j 1513 data, 24
’ data structures, 21
autodist, 38 dat 0
ata_cm
autodist.c, 14 . P
datalist, 47
automeasure, 39
datastrcuture

automeasure.c, 8
measurement_t, 9

average, 51
average of lists, 51 text.t, 29
datastructure

C keywords, 37
calculate key, 39 measurement_struct, 8
call length, 36, 37 measurement_t, 10, 21, 32
call_nodes, 36 mem_init_one_buffer, 34
client_..., 45 params_t, 28
col, 41 DEF_MESSAGE_LEN, 32
col_init_..., 42 double clock_resolution, 76
col_pattern, 42 double_cmp, 41
col_test1, 42 DYN_LIN, 22

81

82

DYN_LOG, 22

E
enhancements, 27
ExtractVersionNumber, 75

F
file
automeasure.c, 8
p2p-_testl.c, 32
p2p-testl.h, 33
sk21f, 36
skalib_const.h, 32
skampi.c, 36
skampi.h, 21, 35
skampi_call.c, 37
skampi_mem, 33
skampi_params.c, 29, 33, 37
skampi_params.h, 28
skampi_tools.c, 31, 36
skampi_tools.h, 29
skosfile.c, 27
fill dummy values, 36
find_meas, 15, 68
find_mml, 55
FIXED_LIN, 22
FIXED_LOG, 22
float_or_default, 65
float_or_default_or_invalid, 65
free_all lists, 67
free_data_list, 50
free_mem, 53
free_post_proc, 67
free_text, 73
function
allocate_memory, 34
am_control_end, 8, 9
am fill data, 8
am.init, 9
call length, 36, 37
call_nodes, 36
combine_lists, 15

INDEX

fill dummy _values, 36
find_meas, 15
init_post_proc, 15

initialize type, 33
insert_in_text, 30
interpolate_data, 15
line_mode, 30

measure, 36

measure_suite, 14, 32
measurement_data_to_string, 36
mem_init_one_buffer, 32, 34
mem _release, 33
parse_parameter_file, 30
post_process, 14
post_processing, 15
read_from_file, 16
read_header, 16
read_one_meas, 15
read_parameters, 30
receive_text, 30

send_text, 30
skip_to_next_meas, 15
write_head_of_outfile, 16, 31
write_to_file, 16

I

index

of functions, 38

init_list, 47
init_params, 29, 59
init_post_proc, 15, 67
init_skalib, 76
init_symboltable, 61
initialize type, 33, 66
insert, 62
insert_in_text, 30, 72
int_or_default, 64
int_or_float, 64
int_or_max, 64
interpolate_data, 15, 70
is_end, 49

is_start, 49

INDEX

item_addr, 48
item_addr_at_item, 48

K
keywords, 37

L
lexan, 62
line, 30
line_mode, 30, 59
linear_interpolate, 76
lookup, 61

M

main, 38
master_receive_ready_test, 43
match, 62
max.rep, 9, 23
maximum, 50
mean_value_all, 9
measure, 36
measure...., 42, 46
MEASURE_MIN, 33
measure_suite, 14, 32, 39
measurement, 3, 63

single, 2
measurement_data_to_string, 37, 71
measurement_struct, 8
measurement_t, 9, 10, 21, 32
measurement_t->pattern, 35
measurements

suite of, 3
measurements_t, 11
mem_init_col_Waitall, 58
mem_init_mw_Waitany, 57
mem _init_mw_Waitsome, 57
mem_init_one_buffer, 32, 34, 53
mem_init_two_buffers, 54
mem _init_two_buffers_alltoall, 54
mem_init_two_buffers_attach, 55
mem_init_two_buffers_attach_mw, 56
mem _init_two_buffers_attach_p2p, 56
mem_init_two_buffers_gather, 54

83

mem _release, 33, 58
mem _release_detach, 56
merging results, 14
min_rep, 9, 23
minimum, 50
module
skampi_post.c, 15
skampi_tools, 16
ms->data.p2p_data.len, 32
msglen, 32
mutliple_of, 22
mw, 43
mw_init_..., 43
mw_pattern, 43
mw_test1l, 43

N
name, 21
new_name, 73
nif, 15
node_times, 23
nom, 34
nor, 34
number _of_elements, 49
number_of_output_files, 74

(0)
output_error, 52
output_file_complete, 74
output_file_postprocessed, 74

P
p2p, 44
p2p-find_max_min, 44
p2p-init_..., 45

p2p_pattern, 44
p2p_testl, 44
p2p_testl.c, 32
p2p-testl.h, 33
parameter
refinement of (APR), 11
params_t, 28
parse, 63

84

parse_parameter_file, 30, 59
pattern, 3, 21

definition, 17
perform_measurements, 77
post_process, 14, 70
post_processing, 15, 66

R

read_all_lists_of_next_meas, 69

read_ele, 47
read_from file, 16, 52
read_from_text, 72
read_header, 16, 71
read_item_ele, 48
read next_char, 60
read_old log file, 73
read_one_list_of_meas, 68
read_one_meas, 15
read_parameters, 30, 58
receive_text, 30
recv_text, 60
remove._ele, 49
result_list, 23
result_sum_all, 9
results

merging, 14
routine to be measured, 17

run, 3

S
scale_style, 64
send_text, 30, 60
server...., 45
simple, 45
simple_init_..., 46
simple_pattern, 46
simple_test1, 46
single measurement, 2
sk21f, 36
skalib, 1
skalib_const.h, 32
skampi, 38

INDEX

skampi.c, 36
skampi.h, 35
skampi_call.c, 37
skampi_error, 52
skampi_mem, 33, 52
skampi_params, 58
skampi_params.c, 29, 33, 37
skampi_params.h, 28
skampi_post, 66
skampi_post.c, 15
skampi_tools, 16, 70
skampi_tools.c, 31, 36
skampi_tools.h, 29
skip_to_next_meas, 15, 68
skosfile, 27
skosfile.c, 27
square_result_sum_all, 9
standard error, 8
standard_error, 8
standard_error... given at the begin-
ning of function, 40
stepwidth, 11
suite of measurements, 3

T
tbm_buffer, 10
TEXT_LINES, 29
text_t, 29
time_meas, 9, 23
time_suite, 22
token_to_str, 66

U

unread_next_char, 61

A%
variable

_skampi_buffer, 32-34
_skampi_buffer_2, 33, 34
_skib, 34
_skib_size, 34
act_time_suite, 22
autodist.c, 14

INDEX

corrected_line, 30 write_head_of_outfile, 16, 31, 75
counter, 9 write_header, 72
cut_quantile, 23 write_text_to_file, 72
cut_quartile, 10 write_to_file, 16, 51
data, 24 write_to_log file, 71
init_params, 29
. X
line, 30

x_end, 21

max.rep, 9, 23
x_min_dist, 12, 22

x_scale, 12, 22
x_start, 21
x_stepwidth, 21

mean_value_all, 9
measurement_t->pattern, 35
measurements_t, 11
min _rep, 9, 23
ms->data.p2p_data.len, 32 Y
msglen, 32 yes_or_no, 65

mutliple_of, 22

name, 21

nif, 15

node_times, 23

nom, 34

nor, 34

pattern, 21

result_list, 23

result_sum_all, 9

square_result_sum_all, 9

standard_error, 8

stepwidth, 11

tbm_buffer, 10

time_meas, 9, 23

time_suite, 22

variation, 22

which_to_measure, 33

x_end, 21

x_min_dist, 12, 22

x_scale, 12, 22

x_start, 21

x_stepwidth, 21
variance, 51
variation, 22
variation_style, 63

W
which_to_measure, 33

