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Abstract

In this paper we present anisotropic families of cosmological so-

lutions in the 5-dimensional Space-Time-Mass Theory of Gravity. In

particular, the 5D analogue of the Kasner solution of General Rela-

tivity is obtained. Some comments are given to the solutions.

1 Introduction

It has been a long standing desire that all physical theories have both prop-
erties: coordinate-invariance and scale-invariance. The theory of General
Relativity has the former but not the latter one. Many attempts have so

far been made to accomplish these properties in an unique theory of grav-

ity. In this direction many authors have suggested alternative theories to the
General Relativity of Einstein. The main ones were proposed by Dirac in
his Large Number Hypothesis Theory [1], followed by Hoyle and Narlikar [2],

Canuto et al. [3] and others.
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These alternative theories share the property of varying the gravitational

constant G and/or the rest mass of objects with time in a scale of the order

of the age of the universe (1010 yr). Although they have shed some light

on the problem of scale-invariance, they all have been discarded based on

observational grounds. In addition, these theories always appeal to a two

metric approach, one describes the gravitational physics and the other refers

to atomic physics, which is neither mathematically nor physically very clear.

In a set of recent papers [4, 5] an alternative theory of gravity has been

proposed, where the Newtonian gravitational constant G is not chosen to be

time-varying, but rather the mass is varying. The physical arguments for

this choice are well established in the papers [5, 6]. Although the theory

proposed is not a pure scale-invariant theory of gravity, as has been pointed

out by Gr�n and Soleng [7] (see the comments in [8]), it is a scale-free gravity

theory, as the rest mass is variable and so does not de�ne a scale as in GR.
In this new theory the space-time is no longer described by a 4D manifold

but by a 5D space-time-mass (STM) Riemannian manifold where the mass
plays the role of a �fth coordinate given by x4 = Gm

c2
. The Einstein theory

is recovered when the velocity G
c2

dm
dt

= 0. In other words, when the mass is

constant. In this regard, the 4D space-time theory of Einstein can be thought
of as embedded in the 5D STM theory.

This paper is concerned with possible exact anisotropic solutions for an
extension of the GR spatially homogeneous and anisotropic Bianchi type I
cosmological model to the 5D STM theory. In section 2 we give the mathe-

matical description of the space-time-mass theory; section 3 is concerned with
the �eld equations for a Bianchi type I metric and separation of variables.
Section 4 treats the power-law ansatz and families of solutions are given. In
section 5 some comments and conclusions are addressed to the paper.

2 The STM �eld equations

The theory developed in [4, 5] assumes that the space-time-mass can be

described by a 5-dimensional manifold with the line element

ds2 = gijdx
idxj; i; j = 0; : : : ; 4:; (1)

where x0 = c t; x1;2;3 = space coordinates and x4 = Gm=c2 (mass coordinate).
Here the mass coordinate x4, which has dimension of length, is measured with
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respect to an arbitrary origin, in much the same way as the time and space

coordinates t; x1;2;3. For later purpose, we shall label the mass coordinate as

x4 � w.

As the metric signature of the STM theory is not well established, it can

be either +1 (�1) or +3 (�3) according to the sign of the �fth coordinate

([7], [8]), for the time being, we shall take it unspeci�ed by chosing it to be

(�1;+1;+1;+1; �), where the parameter can be � = �1.
The �eld equations of the STM theory is just the 5D analogue of the

General Relativity �eld equations, namely:

Gij = Rij �
1

2
Rgij =

8� G

c4
Tij: (2)

In the �eld equations above, Tij is the energy-momentum tensor1.

Exact solutions of the STM �eld equations have been found for the one-

body problem (see [5]), leading to the Schwarzschild solution in the limit of
constant mass, and for vacuum homogeneous and isotropic metrics by Chat-
terjee [9], Fukui [10], and later extensively studied by Ponce de Leon [11].
More recently, a new homogeneous and isotropic solution appeared in [12]2,
which represents a singularity free expanding universe with the compacti�-

cation of the �fth dimension as the universe evolves. Cosmological solutions
for radiation and dust were found by Gr�n [13] considering a 5D extension
of FRW metric.

3 Bianchi type I

In a recent paper, Ponce de Leon [11] has presented a serie of solutions for a
homogeneous and spatially isotropic metric in the 5D STM theory.

We shall consider now the 5D extension of the spatially homogeneous and
anisotropic Bianchi type I space-time metric, given by

ds2 = �dt2 +R2
1 dx

2 +R2
2 dy

2 +R2
3 dz

2 + �R2
4 dw

2; (3)

where Ri, i = 1; : : : ; 4 are functions of t and w, only.

1There are some claims that the STM �eld equations might well be Gij = 0, but no
de�nite results.

2We thank the referee for pointing out this reference.
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The sign of the mass coordinate has been left free as it is a controversial

matter [5, 7, 8]. However, it can be easily chosen by �xing the value of

the parameter �. In fact, the sign can be, at least in principle, determined

experimentally by means of the conservation equations [5].

The vacuum �eld equations for the metric given by 3 are easily obtained

with the aid of the computer algebra system REDUCE [14]:
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where the dot means derivative with respect to t and the primemeans deriva-

tive with respect to w. The �eld equation 6 is cyclic in the space coordinates
(1; 2; 3).

3.1 Separation of variables

The �eld equations 4 to 7 are not trivial to be fully solved. Therefore, to
proceed further let us assume that the metric coe�cients can be written as
a product of functions with separate variables. In other words, that

Ri(t; w) = Si(t)Qi(w); i = 1; : : : ; 4: (8)

Substituting now the functions 8 into the vacuum �eld equations, we get,

after some manipulations

�S1

S1
+

�S2

S2
+

�S3

S3
+

�S4

S4
= 0; (9)
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The equation 10 is cyclic in the space coordinates (1; 2; 3). Notice that only

the equation 12 cannot be decoupled.
General solution of these equations seems not trivial to be found, too.

However, further simpli�cations can be achieved, if we consider an assump-
tion that solves equation 12. This can be obtained, when we consider either

(i) Q0
1=Q1 = Q0

2=Q2 = Q0
3=Q3 = 0, and Q4 6= 0 , or

(ii) an isotropic expansion rate.

3.1.1 Case (i)

Case (i), after some manipulations of the equations, shows that the expansion
rates _Si=Si di�er by a constant factor from each other. In other words,

_Si=Si

_Sj=Sj

= const:; i 6= j = 1; : : : ; 4; (13)

and, in addition,

S4 � S1 S2 S3 S4 = c t+ d; _c = _d = 0: (14)

Taking into account these two relations and equation 9, one can show
that for an appropriate choice of initial time we get

Si = ci t
ai; _ci = 0; (15)

4X
i=1

ai =
4X

i=1

a2i = 1; (16)
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which represents a 5D extension of the Kasner solutions of General Relativity.

The average rate of expansion becomes

_S
S /

1

t
; (17)

which shows a time singularity as t! 0.

This result is a generalization of the solution 2 (W = const:, N = const:)

found in Ponce de Leon's paper.

3.1.2 Case(ii)

On the other hand, if we consider now that the expansion rates are the same

in every direction (isotropy), we get, using equation 9, that

Si = p t + q; _p = _q = 0; i = 1; : : : ; 4: (18)

For an appropriate choise of initial time, we get also that

_S
S /

1

t
; (19)

which is singular at t! 0.
If we consider the particular case of p = 03 in equation 18, which leads

to vanishing separation constants, and de�ne 
i = Q0
i=Qi; i = 1; : : : ; 4, we

obtain from equations 9 to 12 that


1 = �

2 
3


2 + 
3
: (20)

The particular solution of 20 for 
i = const: ; i = 2; 3; 4 is given by

Q1 = q1 e
�


2
3

2+
3

w
; Q2 = q2 e


2w; (21)

Q3 = q3 e

3w; Q4 = q4 e


4w; qi = const:;

which for w ! 0 becomes 5D Minkowski space-time-mass and for w ! 1,

Q1 ! 0 while Q2;3;4!1.
These solutions extend the solution 1 found in Ponce de Leon's paper (his

case for S = const: and K = const:).

3Notice that p = 0 leads to static space-time-mass solutions.
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4 Power-law solutions

To be able to carry on the search for new exact anisotropic solutions, let us

n ow assume the power-law ansatz for the functions Si(t) and Qi(w) :

Si(t) = tai ; Qi(w) = wbi; (22)

where ai and bi; i = 1; : : : ; 4 are constants.

Substituting into the �eld equations (9 to 12), after some manipulations,

we get

a21 + a22 + a23 + a24 � a1 � a2 � a3 � a4 = 0; (23)

b1(a1 � a4) + b2(a2 � a4) + b3(a3 � a4) = 0; (24)

ai (a1 + a2 + a3 + a4 � 1) t2(a4�1) +

1

�
bi (1 + b4 � b1 � b2 � b3)w

�2(1+b4) = 0; (25)

a4 (a1 + a2 + a3 + a4 � 1) t2(a4�1) +

1

�
[(b1 + b2 + b3)(b4 + 1)� (b21 + b22 + b23)]w

�2(1+b4) = 0; (26)

where in equation 25 i = 1; 2; 3.

The complete solution4 of the above set of equations is found when we
consider the two cases:

(a) a4 = �b4 = 1 ,

(b) the coe�cients of t and w vanish simultaneously.

4.1 Case (a)

Here we have two distinct solutions depending upon the sign of the parameter

�.

4The solution ai = bi = 0 has been discarded as it is mathematically and physically
trivial.
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4.1.1 Solution for � = �1

This leads to the simple solution ai = bi = 0; i = 1; 2; 3. The line element

for this solution is given by

ds2 = �dt2 + dx2 + dy2 + dz2 � t2

w2
dw2; (27)

which represents a 
at space-time-mass.

4.1.2 Solution for � = +1

For � = +1, we obtain a 2-parameter family of solutions given by:

Family 1: a4 = �b4 = 1

b1� = a1� =
1

2

�
1�

q
1 � 4�(� � 1)� 4�(� � 1)

�
; (28)

b2 = a2 = �; (29)

b3 = a3 = �; (30)

where the solutions must have the values of the parameters � and � lying on
or inside the circumference (�� 1=2)2 + (� � 1=2)2 = 3=4.

The solutions with � = � = 0, � = 0 and � = 1, � = 1 and � = 0, or
� = � = 1 are all 
at space-time-mass solutions.

The Kretschmann scalar RijklRijkl for this family vanishes.

A non-
at solution is found for � = 0; � = 1=2. Its line element is given
by

ds2 = �dt2 + (t w)1�
p
2 dx2 + dy2 + t w dz2 +

t2

w2
dw2; (31)

which has the determinant given by

g = � t4 (t w)�
p
2: (32)

For the minus sign solution it is singular at w = 0 and becomes indetermined
when t!1.
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4.2 Case (b)

The case (b) establishes the set of equations

a21 + a22 + a23 + a24 � a1 � a2 � a3 � a4 = 0; (33)

b1(a1 � a4) + b2(a2 � a4) + b3(a3 � a4) = 0; (34)

ai(a1 + a2 + a3 + a4 � 1) = 0; (35)

bj(b1 + b2 + b3 � b4 � 1) = 0; (36)

(b1 + b2 + b3)(b4 + 1) � (b21 + b22 + b23) = 0; (37)

where in equation 35 i = 1; :::; 4 and in equation 36 j = 1; 2; 3.

All solutions of these equations are found, when the following conditions
are independently satis�ed

(b1) ai = 0; i = 1; :::4, or

(b2) not all the ai vanish.

The condition (b1) above implies that all solutions under it represent
static space-time-mass solutions. Notice that the sign of � plays no role in

the system.

4.2.1 Solution for (b1)

Under condition (b1), the system of equations 33 to 37 reduces to

bj (b1 + b2 + b3 � b4 � 1) = 0; (38)

(b1 + b2 + b3)(b4 + 1)� (b21 + b22 + b23) = 0: (39)

The general solution of the above system is found when we consider the

following sub-conditions:

i. bj = 0; j = 1; 2; 3 ,

ii. not all bj vanishes.
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Case (b1i)

If all bj = 0, we have a 1-parameter family of solutions given by

Family 2: ai = 0; i = 1; :::; 4; bj = 0; j = 1; 2; 3

b4 = �: (40)

However, this is not an interesting family, as it corresponds to 
at space-

time-mass.

Case (b1ii)

To cover all solutions in (b1ii), we should consider the sub-cases5 b2+b3 6=
0 and b2 + b3 = 0, which lead to a 2-parameter and 1-parameter families,
respectively.

The Kretschmann scalar for for (b1ii) is given by

RijklRijkl =
16�2 �2 (�2 + �� + �2)

(� + �)2w
4(�2+� �+�2)

�+�

; (41)

which shows a singularity at w = 0, unless when � = � = 0 as the space-
time-mass is 
at (see family 4 below).

Family 3: b2 + b3 6= 0

b1 = � ��

� + �
; b2 = �; b3 = �; (42)

b4 =
�2 + (�+ �)(� � 1)

�+ �
: (43)

The determinant of the metric for this case is given by

g = � �w2(1+2b4); (44)

5The choice of b2 and b3 in what follows is completely arbitrary, any other two in
(b1; b2; b3) would well suit for the choice.
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which is singular for w! 0 when b4 < �1=2.
The solutions with either � = 0 or � = 0 are all 
at space-time-mass

solutions. A particular non-
at space-time-mass solution is found for � =

� = 1. The line element becomes

ds2 = �dt2 + 1

w
dx2 + w2 dy2 + w2 dz2 + �w dw2: (45)

Family 4: b2 + b3 = 0

The solution of the system 38 to 39 gives a 1-parameter family,

b1 = �; � 6= 0;

b2 = b3 = 0;

b4 = �� 1:

These solutions are all 
at space-time-mass.

4.2.2 Solution for (b2)

Under condition (b2) the system of equations 33 to 37 becomes

a1 + a2 + a3 + a4 = a21 + a22 + a23 + a24 = 1; (46)

b1 (a1 � a4) + b2(a2 � a4) + b3(a3 � a4) = 0; (47)

bj (b1 + b2 + b3 � b4 � 1) = 0; (48)

(b1 + b2 + b3)(b4 + 1) � (b21 + b22 + b23) = 0: (49)

To solve this system we should consider the same conditions (i) and (ii)
as for case (b1).

The equations 46 show that we cannot have exactly two of the ai; i =

1; :::; 4 vanishing.

Case (b2i)

The case (b2i) leads to a 3-parameter family of solutions given by

Family 5: bj = 0; j = 1; 2; 3
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b4 = �;
4X

i=1

ai =
4X

i=1

a2i = 1:

If we choose a3 and a4 as parameters, we can write the equations above

as follows:

b4 = �;

a1 =
1

2

�
1� � � � +

p
1 + 2�� 2�� + 2� � 3�2 � 3�2

�
;

a2 =
1

2

�
1� � � � �

p
1 + 2� � 2�� + 2� � 3�2 � 3�2

�
;

a3 = �; a4 = �:

These solutions must have the values of the parameters � and � lying on or

inside the shifted and rotated ellipse given by 4

3
(�+��1=2)2+ 2

3
(���)2 = 1.

All the solutions with � = � = 0 correspond to a 
at space-time-mass,
otherwise they are 5D Kasner-like solutions.

As the values of ai's are parameter-wise independent of �, the 5D analogue
of Kasner solutions of General Relativity are obtained when we set the value
of � = 0. In particular, Kasner solutions of GR are obtained at every slice

of constant mass (dw = 0) as long as the GR conditions
P3

i ai =
P3

i a
2
i = 1

are satis�ed. The easiest ones are those with � = 0.

The Kretschmann scalar for family 5 is given by

RijklRijkl = � 8

t4

n
2�2 (�� 1) + 2 �2 (� � 1)

+ �� [� (� + 1) + � (� + 1) + � � � 2]
o
; (50)

which exhibits a singularity for t! 0.

From equations 46 and 48 the determinant of the metric for this family

becomes

g = �� t2w2b4: (51)

Thus, for b4 < 0, g has a (mass) singularity as w ! 0 unless when t ! 1,

where it becomes indetermined.

A 1-parameter family of solutions which for every hypersurface of constant

mass represents a non-
at space-like singularity free family and which is not
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a Kasner6 solution of General Relativity is given by � = 0 and � = �1=3.
This leads to the line element

ds2 = �dt2 + t4=3 dx2 + t4=3 dy2 + dz2 + �
1

t2=3
1

w2�
dw2: (52)

Wesson's solutions in [6], eq. 6, and in [15], eq. 12, correspond to the

particular solutions of Family 5 with � = �1; � = 0 and a1 = a2 = a3 =

1=2; a4 = �1=2 and a1 = a2 = a3 = 0; a4 = 1, respectively.

In order to take account of the variation of the rest mass of a test particles,

let us consider the geodesic equations,

d2 xi

d s2
+ �i

jk

dxj

ds

dxk

ds
= 0; (53)

for the 5D Kasner-like family of solutions (b4 = 0).
After some manipulations with the geodesic equations, we get

dw

d s
=

tw

t2a4
; (54)

d t

d s
=

s�
tx

ta1

�2
+

�
ty

ta2

�2
+

�
tz

ta3

�2
+ �

�
tw

ta4

�2
+ t2k ; (55)

dw

d t
=

tw

t2a4
�
d t
d s

� ; (56)

where tx; ty; tz; tw; tk are constants.
A naive interpretation of eq. 54 is that for tw > 0 the rest mass increases

along s and decreases for tw < 0. However, for a4 < 0 the variation becomes
very small for earlier times, while for a4 > 0 it approaches a constant value
for later times. Therefore, the universe models in the former case may not

need to have an initial singularity, while in the latter case they have an initial

singularity and approaches the GR behaviour at later times.
Notice that the eq. 55, and consequently 56, do depend explicitly on the

metric signature through the value of the parameter �.

Case (b2ii)

In the case (b2ii), the solutions of the equations 46 to 49 are split into

6Kasner solutions in GR cannot have just one of the power coe�cients vanishing.
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two classes7 as follows.

Case (b2ii): solutions for b2 + b3 6= 0

Solving equation 49 taking into account equation 48 we obtain that

b1 = � ��

�+ �
; b2 = �; b3 = �; (57)

b4 =
�2 + (�+ �)(� � 1)

�+ �
; (58)

a1 =
(1� 2�)(� + �)2 � 2��� + (�2 � �2)

p
1 + 4� � 8�2

2(�2 + �� + �2)
; (59)

a2 =
2��(� + �)� (2� � 1)�2 + �(2� + �)

p
1 + 4� � 8�2

2(�2 + �� + �2)
; (60)

a3 =
2��(� + �)� (2� � 1)�2 � �(� + 2�)

p
1 + 4� � 8�2

2(�2 + �� + �2)
; (61)

a4 = �: (62)

where �; � and � are free parameters. Therefore, we have a 3-parameter
family of solutions.

All these solutions can be covered by taking three 2-parameters families
of solutions, which are given below by Family 6, 7 and 8, except when a4 6=
0; b2 6= �b3 6= 0, where they are speci�cally determined by the eqs. 57 to 62.

Family 6: b2 = � = 0; (� 6= 0)

b1 = 0; b3 = �; b4 = �� 1; (63)

a1 =
1

2
(1� 2� �

p
1 + 4� � 8�2); (64)

a2 =
1

2
(1� 2� +

p
1 + 4� � 8�2); (65)

a3 = a4 = �: (66)

Notice that the solutions are parameter-wise completely decoupled. The
physical solutions must have the values of � constrained to the range � 2

7Here too, the choice of b2 and b3 in what follows is completely arbitrary, any other
two in (b1; b2; b3) would well suit for the choice.
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[1�
p
3

4
; 1+

p
3

4
]. In particular, solutions with � = 0 are all 
at space-time-mass

solutions.

The Kretschmann scalar for this family is given by

RijklRijkl = �
24

t4
�2 (�2 + � � 2); (67)

which shows that we have only a singularity at t = 0, unless for � = 0, which

is 
at (the values � = �1�
p
3 are out of the physical range).

A 5D Kasner-like solution is found for � = 1; � = 2=3, where the line

element becomes:

ds2 = �dt2 + t�2=3 dx2 + dy2 + t4=3w2 dz2 + � t4=3 dw2: (68)

Family 7: b3 = � = 0; (� 6= 0)

This family can be written out from Family 6 just by relabeling �(b3)!
�(b2).

Family 8: a4 = � = 0; (� 6= �� 6= 0)

The values of b1; b2; b3 and b4 are as in 57 to 58 and

a1 =
� (� + �)

�2 + � (� + �)
; (69)

a2 =
� (� + �)

�2 + � (� + �)
; (70)

a3 = � ��

�2 + �� + �2
: (71)

For m = const: hypersurfaces, all solutions correspond to a Kasner solu-
tion of G R.

A particular 5D Kasner-like solution is found when � = � = 1, which
gives the line element

ds2 = �dt2 + t4=3

w
dx2 + t4=3w2 dy2 +

w2

t2=3
dz2 + �w dw2: (72)

The Kretschmann scalar for this metric is given by

RijklRijkl =
12

w6
� 8

3 � t2w3
+

64

27 t4
; (73)
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which is singular for both t! 0 and w! 0.

Case (b2ii): solutions for b2 + b3 = 0

In this case, from 46 to 49, we have only one independent 2-parameter

family of solutions given by:

Family 9: b1 6= 0

b1 = �; b2 = b3 = 0;

b4 = �� 1;

a1 = a4 = �;

a2 =
1

2

�
1 � 2� +

p
1 + 4� � 8�2

�
;

a3 =
1

2

�
1 � 2� �

p
1 + 4� � 8�2

�
:

Notice that this family, although independent, can be obtained from Fam-
ily 6 just by relabeling a3 $ a1 and b3 $ b1. Therefore, we get here similar
physical conditions and the same Kretschmann scalar as in Family 6.

If we take � = 1 and � = 1=2, we get a particular solution with line
element given by

ds2 = �dt2 + t w2 dx2 + t dy2 +
1

t
dz2 + � t dw2; (74)

which shows a time singularity for t! 0 and a mass singularity for w! 0.

5 Conclusion

In this paper we have considered an extension to the spatially homogeneous

and anisotropic Bianchi type I cosmological model in the scale-free 5D Space-

Time-Mass Theory of Gravity developed in [4, 5]. Exact 5D Kasner-like
families of solutions have been found and the Kasner solutions of GR were
obtained as a particular case.

The extended Bianchi type I space-time metric was considered to be only

function of the time t and mass w coordinates. As the signature of the space-
time-mass line element is not yet well de�ned, we left in all computations the
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sign of the �fth coordinate free through the parameter � = �1. The vacuum
�eld equations for the STM theory are given in 4 to 7.

To simplify the �eld equations, the metric coe�cients were assumed to

be the product of two functions in separate variables. The �eld equations

shown to be not fully decoupled. Two particular cases were investigated:

Firstly, when Q0
i=Qi = 0; i = 1; 2; 3 and Q4 is left free (case (i), section 3).

As a consequence of that, the time-dependent functions are just power-law

functions obeying a 5D analogue of the Kasner solution in General Relativity

(see equation 16) and the expansion rates in each direction are proportional

to each other (anisotropy). Secondly, the isotropic case ( _Si=Si = _Sj=Sj ; i =

1; :::; 4, case (ii), section 3) was considered which shows that the metric time

dependent functions must be linear in t. In both cases the average rate of

expansion _S=S is proportional to 1=t. In particular, case (ii) also allows for

static solutions as a by-product (see eqs. 22).
To be able to further simplify, we have chosen the power-law ansatz (see

22) for the metric functions. The vacuum �eld equations have been com-
pletely solved leading to 9 di�erent families of solutions.

Family 1, with � = 1, is a 2-parameter solution with ai = bi; i = 1; 2; 3

and a4 = �b4 = 1. The line element of a non-
at solution of this family is
given in 31, which has the Kretschmann scalar vanishing.

The Families 2, 3 and 4 are all families of static solutions, as all the
ai; i = 1; :::; 4 vanish. Families 2 and 4 have no physical interest, as they
are 
at space-time-mass. Family 3 is a 2-parameters family. A particular

non-
at solution of Family 3 is given by the line elements 45.
Family 5 is a 3-parameter family of solutions with bj = 0; j = 1; 2; 3.

The 5D analogue of Kasner solutions of GR are obtained when one of the
parameters, � for this case, is set equal zero. In particular, the Kasner
solutions of GR are regained at dw = 0 hypersurfaces as long as the GR

conditions
P3

i ai =
P3

i a
2
i = 1 are satis�ed. A 1-parameter sub-family of

Family 5 where the hypersurfaces of constant mass (dw = 0) are not Kasner

solutions of GR is shown by the line element 52.

The solutions found by Wesson in [6] (his eq. 6) and in [15] (his eq. 12),
are just two particular cases (� = �1; b4 = 0, a1 = a2 = a3 = �a4 = 1=2 and
a1 = a2 = a3 = 0; a4 = 1, respectively) of Family 5.

According to the geodesic equations, the rest mass of a test particle in

a 5D Kasner-like expanding universe (see eq. 54) may either approaches
a �nite constant value at very early times and increases afterwards, when
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a4 < 0, or have an in�nite initial value and becomes constant at later times,

when a4 > 0.

Thus, the universe models with a4 > 0 seem to be more realistic universe

models as presently observations indicate an initial Big Bang singularity and

no variation in the rest mass of particles (it might had been stronger at the

very early universe and very small at the present time) in contrast to the

universe models with a4 < 0, which may not have the initial singularity but

on the other hand they would provide a stronger variation in the rest mass

of particles which could perhaps be easier detected. These universe models

exhibit a natural compacti�cation of the mass coordinate as they expand

(this seems to be the case presented in [12]).

A deeper investigation on the variation of rest mass of particles based in

the universe models presented in this paper is in progress and will appear
elsewhere.

Families 6, 7 and 8 are all 2-parameter families of solutions satisfying the
conditions (b2ii) and b2 + b3 6= 0, while Family 9 is a 2-paramter family of

solutions satisfying the conditions (b2ii) and b2 + b3 = 0. The solutions of
(b2ii) with a4 6= 0 and b2 6= �b3 6= 0 are given directly by the eqs. 57 to 62.

To have an idea of the kinematical [16] behaviour of these solutions, let
us consider a congruence of small test particles with 5-velocity ui such that

uiui = �1 and ui = ��0i , then the 4-volume expansion � and the shear

magnitude �2 (anisotropy) of this congruence are given, respectively, by

� =

P
ai
t

; (75)

�2 =

P4
i<j (ai � aj)

2

8t2
: (76)

From equations 75 and 76 we see that the space-time-mass for all families
but Families 2, 3 and 4 (they are static) are slowing down their expansion

and isotropizing in a similar way as the Bianchi I universe model of General

Relativity. An expanding shear free solution (isotropic expansion) is found

in Family 1 when ai = 1.

Notice that the sign of � plays no role for the expansion or anisotropy and
that both are independent of the mass coordinate8.

8This is somehow expected due to the choice of comoving test particles.
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Although we have started o� the paper taking the �fth coordinate as be-

ing mass, mathematically speaking the solutions found here are independent

of the physical nature of the �fth coordinate. Therefore, they are new (as

far as the authors are concerned) exact power-law solutions in a 5D pseudo-

Riemannian manifold. However, as the role of the mass in the STM theory is

not yet fully understood, neither in its geometrical contents nor in its phys-

ical realm, we think that new exact solutions together with astrophysical

and cosmological considerations should bring some additional informations,

and as such, they need to be further investigated. It is our hope that the

anisotropic solutions presented here can be used as the starting point to in-

vestigate the behaviour of the rest mass of particles in more realistic universe

models.

The STM theory of gravity has many points that need a better under-

standing, particularly in the cosmological level where real departures from
General Relativity may be expected. Nevertheless, at the present stage of
development, the astrophysical data available do not discard the possibility
of a slow variation of the rest mass of particles on a cosmological scale. In
fact, an experiment to investigate very small departures on the rest mass of

bodies (order of 1 part in 1010 per year) is under consideration [17] for some
time and it is expected to give a de�nite result in the near future. This would
certainly establish or not the STM as a viable theory of gravity.
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