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 SUMMARY 

SUMMARY 
 

The static strength of bolted, spliced connections for rectangular hollow sections under tensile 

loading is the topic of the presented study.  A very common spliced connection type, the bolted 

flange-plate connection as well as a more recent connection type, the hidden joint connection 

have been studied.  For clarity of presentation, the presented thesis has therefore been divided 

into two parts: 

• Part I: Bolted flange-plate connections; 

• Part II: Hidden joint connections. 

Prying forces are the main concern with bolted flange-plate connections.  Prying forces 

occur if the flange-plates lever against each other due to deformations of the plates under tensile 

loading.  Depending on the bolt layout and flange-plate thickness, these prying forces can differ 

very significantly.  Additionally, the formation of a complete yield line mechanism can also 

result in the collapse of connections with flexible flange-plates and strong bolts.  Within the 

framework of the presented work, an experimental investigation with square and rectangular 

hollow sections has been carried out.  State-of-the-art equipment has been used to record the 

load in the bolts.  The subsequent non-linear Finite Element analyses (using 3D solids as well as 

contact elements), verified by the results of the experimental investigations, extended the 

database.  A parallel analytical study, inter alia using yield line analysis, served as the basis for 

the derivation of specific design rules.   

Part II of the presented thesis deals with so-called hidden joint connections, which are a 

modification of the more typical gusset plate connection with slotted hollow sections.  In 

contrast to the more common gusset plate connections where the gusset plate protrudes beyond 

the width of the slotted member, the gusset plate of the hidden joint connection is fitted into the 

inside width of the unslotted hollow section.  The aim of this research has been the derivation of 

a design model for shear lag failure, in particular the rupture of the hollow section due to shear 

lag.  A limited number of tensile tests on hidden joint connections for square hollow sections 

has been carried out.  Technical feasibility of welding inside the hollow section has been of 

special interest.  The tests have been used to verify the numerical investigation, which again has 

been used as a basis for a new calculation method for shear lag failure of the hollow section. 
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 KURZFASSUNG 

KURZFASSUNG 
 

Die vorliegende Arbeit beschäftigt sich mit der statischen Tragfähigkeit von geschraubten 

Stoßverbindungen für rechteckige Hohlprofile unter Zugbelastung.  Eine weit verbreitete 

Stoßverbindung, die geschraubte Kopfplattenverbindung, sowie auch eine eher neuere 

Verbindung, der verdeckte Knoten, sind untersucht worden.  Die vorliegende Arbeit wurde zur 

besseren Übersicht deshalb in zwei Abschnitte geteilt: 

• Teil I: Geschraubte Kopfplattenverbindungen; 

• Teil II: Verdeckte Knotenverbindungen. 

Das Hauptproblem bei der Verwendung von Kopfplattenverbindungen besteht in den 

Abstützkräften.  Diese Zusatzkräfte entstehen, wenn sich die Kopfplatten aufgrund der Verfor-

mungen unter Zugbelastung gegenseitig abstützen.  Die Abstützkräfte können in Abhängigkeit 

von der Schraubenverteilung und Kopfplattendicke stark variieren.  Andererseits kann die Bil-

dung eines kompletten Fließlinienmechanismus für Verbindungen mit flexiblen Kopfplatten und 

sehr festen Schrauben auch zu einem Versagen führen.  Im Rahmen der vorliegenden Arbeit ist 

eine experimentelle Untersuchung mit quadratischen und rechteckigen Hohlprofilen durchge-

führt worden.  Modernste Ausrüstung wurde zur Messung der Kräfte in den Schrauben ver-

wandt.  Die nachfolgenden nichtlinearen finiten Elementuntersuchungen (mit 3D Volumen- 

sowie Kontaktelementen) wurden mit den Ergebnissen der experimentellen Studie verifiziert 

und dienten der Erweiterung der Datenmenge.  Eine parallel durchgeführte analytische Studie, 

die unter anderem Fließlinientheorie verwendet, diente als Basis zur Herleitung spezieller 

Bemessungsregeln. 

Teil II der vorliegenden Arbeit behandelt sogenannte verdeckte Knoten, welche eine 

Abwandlung der gängigeren Knotenblechverbindungen mit geschlitzten Hohlprofilen darstellen.  

Im Gegensatz zu der verbreiteteren Knotenblechverbindung, bei der das Knotenblech über die 

Breite des Hohlprofils hinausragt, wird das Knotenblech bei verdeckten Knoten in die 

Innenseite des ungeschlitzten Hohlprofils eingepaßt.  Ziel der Forschung war die Herleitung 

eines Bemessungsmodells gegen ein Versagen durch die örtlich begrenzte Lasteinleitung, 

insbesondere eines plötzlichen Risses des Hohlprofils durch die lokalen Spannungsspitzen.  

Eine begrenzte Anzahl von Zugversuchen an verdeckten Knoten für Quadrathohlprofile ist 

durchgeführt worden.  Die technische Umsetzung der Schweißarbeiten im Innern des Hohl-

profils war von speziellem Interesse.  Die Versuche wurden zur Verifizierung einer 

numerischen Untersuchung verwendet, welche wiederum als Basis für neue Bemessungs-

formeln gegen ein Versagen des Hohlprofils durch örtlich begrenzte Lasteinleitung diente. 
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INTRODUCTION 

INTRODUCTION 

General Introduction 

As Louis Henry Sullivan stated, “Form ever follows function”.  Yet sometimes form and 

function can be combined.  In addition to offering outstanding properties for resisting com-

pression, tension, bending and torsional forces, hollow structural sections provide architects 

with attractive design options (see Figure 1).   

 

    
 
Figure 1 The London Eye 

 

In the past, the use of hollow sections was restricted to the transportation of fluids (e.g. 

lead and clay pipes in ancient Rome).  The use of hollow sections as structural members is a 

more recent development in civil engineering.  In many aspects, structures using structural 
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hollow sections can be superior to those designed with open sections.  The higher strength to 

weight ratio of hollow sections compared to open sections such as I-beams allows lighter 

structures, thus saving steel and simplifying erection.  The small surface area of hollow sections 

lowers the costs for protection against corrosion and general maintenance of the structure.  

Within the hollow section family, the rectangular sections in general are particularly easy for 

site handling.  Straight cuts and straight welds make connection fabrication easy and less 

expensive.  

 

   
 
Figure 2 Toronto SkyDome roof structure and the Baregg bridge in Switzerland 
 

Structural hollow sections are often found in truss girders of roof or bridge structures 

(see Figure 2) because of their inherent qualities.  Since hollow sections are particularly used for 

long girder spans, it is often necessary to splice the top and bottom chords (see Figure 3) 

because of the limited stock lengths or transportation problems.  Two, very typical designs for 

splicing members are: 

• Bolted flange-plate connections. 

• Hidden joint connections - connecting plate welded inside the RHS. 

For both connection types the welding can be done in the shop ensuring high quality.  

The on site handling is limited to bolting operations only.   
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Figure 3 Bolted flange-plate and hidden joint connections 
 

Scope of Work 

The final aim of this research work is to provide readily applicable, efficient and safe design 

methods for typical splice connections for rectangular hollow sections.  The study concentrates 

on tensile loading as most applications of hollow section splice connections are found in truss 

structures and tension loading is the governing design condition for such splice connections.  

Bending moment loading, or combined bending plus axial load, as required for frame structures, 

has not been studied.  The spliced connections were bolted flange-plate connections of square 

and rectangular hollow sections with bolts on all four sides as well as hidden joint connections.  

The following steps were taken for each connection type: 

• Literature study to review existing design rules. 

• Experimental investigation. 

• Parametric (FE) study. 

• Derivation of analytical models and strength formulae using the results of the finite 

element parametric study.  
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PART I BOLTED FLANGE-PLATE CONNECTIONS 
 

1 LITERATURE REVIEW 
 
While bolted flange-plate connections for hollow sections represent a more recent connection 

type, end-plate connections for open sections have been introduced for a long time.  Beginning 

with the early analytical T-Stub models by Struik and de Back [1969], extensive studies on the 

subject of prying action have been carried out.  The results of these studies are reflected in all 

current design guides and Codes [e.g. Kulak et al. 1987, Eurocode 3 1992, AISC 2001, 

CISC 2000].   

The subject of prying action in connection with hollow structural sections has mainly 

focused on connections for circular hollow sections.  Bolted flange-plate connections for square 

or rectangular hollow sections (RHS) with bolts on all four sides have not yet been studied 

enough to allow the derivation of specific design methods.  Table 1.1 gives an overview of 

existing pertinent codes and design recommendations.  Figure 1.1 shows the typical dimensions 

of a bolted flange-plate connection which are required for the understanding of the design 

methods in the following chapters.   

 
 
Table 1.1  Overview of existing codes and design guides for bolted flange-plate 

connections 
 

Code or design guide Flange-plates for circular hollow 
sections  

Flange-plates for rectangular hollow 
sections with bolts on all four sides 

Wardenier et al. [CIDECT 1991] Yes No 

Packer et al. [CIDECT 1992]    No No 

Eurocode 3 [1992] Yes No 

DIN 18808 [1984] and 
Anpassungsrichtlinie [1994] Yes No 

Syam and Chapman 
[AISC 1996] No No 

American Institute of 
Steel Construction [1997] Yes Yes 1) 

Packer and Henderson  
[CISC 1997] Yes No 

1)    Derived from model for rectangular RHS with bolts on two sides of the hollow section 
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Figure 1.1 Dimensions of bolted flange-plate connections 
 

1.1 Experimental Research on Bolted Flange-Plate Connections 
 
Based on the test results for a large number of tests on circular flange-plate connections 

empirical rules were proposed by Rockey and Griffiths [1970].  Mang [1980] and Igarashi et al. 

[1985] continued the experimental study on bolted flange-plate connections for circular hollow 

sections.  Experimental research on flange-plate connections for rectangular hollow sections 

with bolts along two opposite sides of the hollow section only was initially done by Kato and 

Mukai [1985], but followed by an extensive study by Packer et al. [1989].   

Research on connections bolted on four sides started with Mang [1980] summing up 

practical testing and giving qualitative recommendations for the bolt positioning.  It was 
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observed that bolt placements beyond the hollow section height or width (at the corners of the 

flange-plates) are less favourable as these bolts tend to get loaded far less relative to the bolts 

placed within the hollow section height or width.  The experimental research was continued by 

Kato and Mukai [1982] with a large test series consisting of 36 specimens under tension 

loading.  The study comprised of square hollow section connections using four or eight bolts, 

different hollow section sizes and different flange-plate thicknesses.  Bolt failure governed for 

most connections.  A failure of the flange-plates could only be reported for extremely thin plates 

and this was accompanied by failure of the bolts.  The prying ratios (ratio of prying forces to 

connection capacity) varied between 0% and 233%.  The prying forces equal the sum of the 

ultimate tensile strength of the bolts minus the connection capacity.  Based on the results of the 

experimental investigation, a complicated design model derived from a two-dimensional yield 

line model was proposed.   

In conjunction with the erection of the Toronto SkyDome, numerous tests on the steel 

roof connections were carried out, including three tension tests on bolted flange-plate 

connections [Caravaggio 1988].  These tests showed that the earlier model by Kato and Mukai 

[1982] overestimated the actual connection strength.   

 

1.2 Numerical Research on Bolted Flange-Plate Connections 
 
Cao and Bell [1994] carried out finite element analyses for circular hollow sections with bolted 

flange-plate connections.  Using the FE package ABAQUS, the study comprised of 

axisymmetric and 3-D models.  For the application with circular flange-plate connections it was 

found that the equally spaced discrete bolt arrangement can be represented by a uniformly 

distributed annular arrangement without significant error.  In a more recent study by Schaumann 

and Kleineidam [2002] using ANSYS as the FE solver, the influence of the modelling of the 

bolts on the structural behaviour of ring connections was shown.  An extremely fine bolt mesh 

including a full representation of the thread was found to give only marginally different results 

to a simpler 3-D bolt model assembled from cylindrical sections without a specific thread 

discretisation.  The representation of the bolts by simple spring elements was not recommended 

in this study.  Also recently, Cao et al. [2000] provided a general overview on finite element 

modelling of bolted flange connections. 

Bolted moment end-plate connections for rectangular hollow sections which are 

subjected to pure bending were investigated by Wheeler et al. [2000].  The bolting pattern in 

this study consisted of four bolts, each placed in a corner of the flange-plate.  The model 

included the individual modelling of the bolts, modelling of the welds and contact surfaces as 
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well as the introduction of initial deformations to model the heat distortions due to the welding 

process.   

 

1.3 Analytical Research and Design Models for Bolted Flange-Plate 
Connections 

 

1.3.1 General Model (Timoshenko and Woinowsky-Krieger [1959]) 
 

A very early empirical model derived from experiments with circular hollow structures in which 

the flange-plate was intended to remain elastic was given by Timoshenko and 

Woinowsky-Krieger [1959].  It is supposed to be applicable for any type of flange-plate 

connection; circular as well as rectangular.  Prying action does not take place and the 

flange-plate thickness must be kept large enough to serve this premise.  The connection capacity 

is calculated by two independent formulae which can be found in the Stelco Manual [1981]: 

treq = 
yp

i

f
kN

 with k given in Figure 1.2  (Equation 1.1) 

Fbr n
Ni≥   (Equation 1.2) 

0

0.1

0.2

0.3

0.4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

(hi+2b)/hi

k

 
Figure 1.2 Eccentricity ratio factor k  
 

The first formula calculates the flange-plate thickness, ensuring that no prying action 

takes place.  The second equation checks the bolt strength against the applied tensile loading per 

bolt (without any additional prying forces).  The equations represent a very conservative 
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approach to the ultimate load capacity of bolted flange-plate connections, resulting in very large 

flange-plate thicknesses if used for routine structural design.  If any prying action has to be 

excluded, for example to avoid fluid losses in pipes, this design approach can be very quick and 

safe. 

 

1.3.2 Two-Dimensional Yield Line Model (Kato and Mukai [1982]) 
 

Based on an extensive experimental study on square flange-plate connections with four and 

eight bolts, Kato and Mukai [1982] developed new models with two-dimensional yield line 

patterns (see Figure 1.3).  In these models six failure modes covering flange-plate and bolt 

failure were established (see Table 1.2).  The models assume the full development of the 

ultimate bending moment in the flange-plates: 

mu = up
2
pft

4
1  (Equation 1.3) 

The equations of Kato and Mukai [1982] are restricted to use in square connections having bolt 

layouts that are covered by the yield line patterns provided (see Figure 1.3).  Rectangular 

flange-plate connections cannot be designed with this method.  The exact formulae for the 

 

 
Figure 1.3 Assumed yield line patterns of Kato and Mukai [1982] 
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calculation of the flange-plate capacity are numerous and unwieldy and therefore less 

appropriate for general use.  It was found, in comparisons with experimental data derived from 

later studies, that the predictions of this model tend to overestimate the connection capacities 

[Willibald et al. 2001, Willibald et al. 2002].  This overestimation is attributed to the assumption 

that the flange-plate material can form an ultimate stress state throughout the plate material 

thickness. 

 

Table 1.2 Proposed failure modes of the flange plates and the bolts 
 

  Flange-plate failure Bolt failure  

Before separation 
of the flange-plates 

(Failure mode 1)  
Flange-plates reach ultimate strength  

At separation 
of the flange-plates 

(Failure mode 2) 
Due to the separation, the rigid zones 
around the bolts suddenly disappear, 
changing the ultimate flange-plate 

strength 

  

(Failure mode 4) 
Rupture of the bolts before the 
flange-plates reach yield level 

(no prying)   
(Failure mode 5) 

Rupture of the bolts being suddenly 
subjected to prying forces as the 

flange-plates reach yield load 

After separation  
of the flange-plates 

(Failure mode 3) 
Flange-plates reach ultimate strength 

before the rupture of the bolts 

(Failure mode 6) 
Rupture of the bolts between the yield 
load and the ultimate strength of the 

flange-plates 
 

1.3.3 One-Dimensional Yield Line Models  
 

1.3.3.1 General T-Stub Model (Struik and de Back [1969]) 
 
One of the first theoretical models dealing with the analysis of prying forces was established by 

Struik and de Back [1969].  It uses yield line theory for a T-stub connection (see Figure 1.4). 

The yield lines in this model always form parallel to the T-stub web resulting in a one-

dimensional prying model.  In the first version of their model the outer yield line follows the 

bolt line.  According to this assumption a term "α" has been introduced representing the ratio of 

bending moment per unit plate width at the bolt line to the bending moment per unit plate width 

at the inner (hogging) plastic hinge.  Due to test results it was later on inferred that the flexural 

deformations of the flange cause the resultant bolt force to act somewhere between the bolt axis 

and the edge of the bolt head.  Thus, a modified version was introduced in which the outer 
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plastic hinge was shifted half of the bolt diameter towards the inner yield line.  Therefore, "a" 

and "b" are replaced by "a' " and "b' ", with "a' " and "b' " given by: 

a' = a + d/2, with a ≤ 1.25 b in calculation but not necessarily in practise  (Equation 1.4) 

b' = b − d/2   (Equation 1.5) 

 

tp 

b '

d' 

Figure 1
 

hardenin

my = t
4
1

flexible 

loaded to

tc = pf
F4

T

flange-p

 

a     
.4  Example of a T-stub with a flexible flange-

In both models, the plate strength is restricted 

g is not taken into account.  The plastic moment of th

yp
2
pf  

Two limit states are established, α = 0 and α = 

plate in double curvature respectively.  For α = 0 

 their tensile strength, the required flange-plate thick

yp

bu 'b
 

he appropriate value of "α" for a connection can

late thickness "tp" of a connection with "tc": 

10
 
 Yield line 
 locations 
  a'    b
 

p 
 
p 

plate 

to the yield strength, and strain 

e flange-plate per unit length is: 

 (Equation 1.6) 

1 representing a rigid plate and a 

(no prying action), with the bolts 

ness is: 

 (Equation 1.7) 

 be calculated by comparing the 
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α =













−











ρ+δ
1

t
t

)1(
1

2

p

c   (Equation 1.8) 

where  δ = 1 −
p
'd   (Equation 1.9) 

and  ρ = 
'a
'b   (Equation 1.10) 

The theoretical connection strength is then: 
 
If α ≤ 0 (no prying action): 

Nu  = n Fbu  (Equation 1.11) 
 
Or if 0 < α ≤ 1 (prying action): 

Nu = n Fbu +⋅







1(

t
t 2

c

p δ α)  (Equation 1.12) 

Later research, done on flange-plate connections bolted along two sides of a hollow 

section, performed by Birkemoe and Packer [1986] and Packer et al. [1989] is based on this 

traditional model.  The location of the inner plastic hinge and the maximum bending moment 

per unit plate width are varied.  Due to the location change of the inner yield line, values of α 

greater than one are now possible.  For α > 1 Equation (1.13) is added: 

Nu = n Fbu ⋅







2

c

p

t
t

(1 + δ)  (Equation 1.13) 

 

1.3.3.2 One-Dimensional Yield Line Model for Rectangular Flange-Plate Connections 
with Bolts on Two Sides of the RHS (Packer et al. [1989]) 

 
Based on the results of an experimental study, Packer et al. [1989] developed a design model for 

rectangular flange-plate connections bolted on two sides of the connection.  Packer et al. [1989] 

postulated six failure modes (see Figure 1.5 and Table 1.3).   

As a further development of the earlier models of Struik and de Back [1969], formulae 

are given to calculate the exact location of the inner plastic hinge depending on the relation 

between flange-plate and hollow section rigidity.  A stress distribution in the flange-plate is 

assumed, whereby the stress at the neutral axis is at yield level and then increases linearly to the 

ultimate stress (strain hardening) at the extreme fibres.  This stress distribution results in a 

maximum usable bending moment capacity per unit plate width of 

mup = 3
f2f

t
4
1 upyp2

p

+
  (Equation 1.14) 
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Table 1.3 Postulated failure modes  
 
Failure 
Mode 

Prying Parameter 
α Bolts Flange-Plate RHS 

1 α = 0 failure no yielding no yielding 
2 -- no failure no yielding failure 
3 0 < α < 1 failure yield line forming along weld line no yielding 

4 0 < α < 1 failure yield line forming within hollow section 
dimension yielding 

5 α = 1 no failure yield lines forming along weld line and 
bolt line no yielding 

6 α = 1 no failure yield lines forming within hollow 
section dimension and bolt line yielding 

 

 

Failure mode 6 Failure mode 5 
 

Failure mode 4 

Failure mode 3 Failure mode 2 Failure mode 1 

Figure 1.5  Limit states postulated by Packer et al. [1989] 

 

To consider the rounded corners of the RHS with respect to the thickness of the RHS an 

effective thickness of the RHS "te" was introduced: 

te = 



 −− i

2
ii A4h4h2

4
1   (Equation 1.15) 
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Thus the ultimate connection strengths for the six Mechanisms are: 

 

Failure mode 1 (rupture of the bolts, no prying): 

Nu(1) = n Fbu  (Equation 1.16) 

 

Failure mode 2 (yielding of the hollow section): 

Nu(2) = fyiAi (Equation 1.17) 

 

Failure mode 3 (bolt failure, plastic hinge in the flange-plates at the weld line): 

Nu(3) =
ba

anFhm2 bupup

+
+

  (Equation 1.18) 

 

Failure mode 4 (bolt failure and plastic hinge in the flange-plates within the hollow section 

dimension, with x designating the location of the plastic hinge): 

If x ≤ te with  x = )ba(
fh

hm2anF
)ba(

yii

pupbu2 +−
+

++   (Equation 1.19) 

Then Nu(4) = (2 +n Fpuphm bu a)
xba

xfh
xba

1 2

yii ++
+

++
 (Equation 1.20) 

Or, if te < x ≤
2
h i , with  

x = )ba(
tf

2
anF

hm

2
t

ba)t2h()ba(
eyi

bu
pup

e
ei

2 +−
+

+






 ++−−+  (Equation 1.21) 

Nu(4) = 2
xba

1
2
h

ttf
2

anF
hm i

e
2
eyi

bu
pup ++















 −++ + 

xba
xtf2

xba
x)t2h(tf2

2

eyieieyi ++
+

++
−   (Equation 1.22) 

 

Failure mode 5 (flange-plate failure, flange-plate bent in double curvature, no bolt failure): 

Nu(5) = 2 pup hm
b

1 δ+   (Equation 1.23) 

with  
p
d1

′
−=δ   (Equation 1.24) 
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Failure mode 6 (flange-plate failure, flange-plate bent in double curvature, inner plastic hinge 

within the hollow section dimension, with x designating the location of the plastic hinge, no bolt 

failure): 

If x ≤ te with  x = b
hf

1hm2b
iyi

pup
2 −δ++   (Equation 1.25) 

Nu(6) = 2 pup hm
xb

xfh
xb

1 2

yii +
+

+
δ+   (Equation 1.26) 

Or, if te < x ≤
2
h i , with  

x = b
2
t

b)t2h(
tf

)1(hm
b e

ei
eyi

pup2 −






 +−−
δ+

+   (Equation 1.27) 

Nu(6) = 2 pup hm
xb
)tx(

tf2
xb
2
t

x
fth2

xb
1 2

e
eyi

e

yiei +
−

+
+

−
+

+
δ+  (Equation 1.28) 

During experimental testing to verify this theoretical model, only failure modes 1, 2 

and 4 could be reported.  Thus, Packer et al. [1989] recommended using only the equations 

established for these failure modes for future design methods.   

 

1.3.3.3 Current Design Models (Packer et al. [1992] and AISC [1997]) 
 
The latest design guides of CIDECT [Packer et al. 1992] and the Canadian Institute of Steel 

Construction [Packer and Henderson 1997] only considers formulae for connections having 

bolts along two sides of the hollow section.  The equations are based on the model of Struik and 

de Back [1969].  Modifications were made concerning the location of the inner plastic hinge, 

replacing equation (1.5) with: 

b' = b -
2
d + ti  (Equation 1.29) 

A resistance factor "φp" was also introduced (φp = 0.9 for limit states design).  Thus, equation 

(1.7) was changed to: 

tc =
ypp

bu

pf
'bF4

φ
  (Equation 1.30) 
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The AISC HSS Connections Manual [1997] provides design procedures for RHS 

connections bolted along all four sides.  The formulae also revert back to the models based on 

one dimensional prying [Struik and de Back 1969].  It appears that the design method is not 

based upon established research results but on intuitive extrapolation of existing data.  As in this 

early model, the inner yield line is positioned along the outside of the hollow section.  Equation 

(1.5) is also used.  The resistance factor "φp" (with φp = 0.9) is not stated explicitly but is merged 

into equation (1.7) to give:  

tc =
yp

bu

pf
'bF44.4

=
yp

bu

pf9.0
'bF4

 (Equation 1.31) 

 

Differences exist in the interpretation of the value for the bolt pitch "p" (see Equations 

1.7, 1.30, 1.31).  The calculation method provided by CIDECT [Packer et al. 1992] regards "p" 

as the related flange-plate width of each bolt, hence: 

p =
S

p

n
h

 (Equation 1.32) 

In the AISC HSS Connections Manual [1997] the length "p' " is specified as the "length of 

end-plate, parallel to the RHS wall, tributary to each bolt".  The example given in the Manual, 

however, interprets "p' " as the length of the RHS wall divided by the number of bolts on this 

side; i.e., 

p' =
S

i

n
h

  (Equation 1.33) 

The comparisons with experimental data of square and rectangular flange-plate 

connections with bolts on all four sides [Willibald et al. 2001, Willibald et al. 2002, Willibald et 

al. 2003] currently support the use of the design procedure that can be found in the AISC HSS 

Connections Manual [1997].  This is provided that the flange-plate width/height is used to 

calculate the bolt pitch.  Unfortunately, the AISC HSS Connections Manual illustrates the (more 

conservative) use of the RHS width/height instead of the flange-plate width/height for 

determining the bolt pitch.  For rectangular hollow section connections the connection strength 

should be calculated for both the short and long side individually, using the minimum of both 

values as the actual connection resistance.  Provided that the edge distance, "a", and the distance 

from bolt line to hollow section face, "b", are the same for the short and long side of the 

connection the side having the smaller bolt pitch "p" will govern.   
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2 EXPERIMENTAL INVESTIGATION 

2.1 Introduction 
 
The experimental study has been carried out with the financial support of CIDECT (Programme 

8D "Bolted Flange-Plate Connections for RHS Tension Members").  The experimental work 

studies the interaction between hollow section, flange-plates, connecting welds and bolts.  In 

addition, the results of the experimental work have been used to develop and validate numerical 

models for a parameter study, so that costly additional tests could be avoided. 

 

2.2 Scope of Experimental Program 
 
The scope of the experimental work comprises of flange-plate connections for square as well as 

rectangular hollow sections.  The flange-plate connections for square hollow sections had either 

four or eight bolts, while the rectangular specimens had ten bolts throughout.  The bolt layout as 

well as the flange-plate thickness have been varied for each connection type.  Table 2.1 gives an 

overview of the different bolt layouts that are covered in the research program.  A total of 16 

square flange-plate connections and four rectangular flange-plate connections has been tested. 

 

Table 2.1 Bolt layout of tested specimens 
 

Square Flange-Plate Connections 
4-Bolt Specimens 8-Bolt Specimens 

Rectangular Flange-Plate 
Connections with 10 Bolts 

 
 Bolt layout S4 

 
Bolt layout S8 

 
Bolt layout S'8 

 
Bolt layout R10 
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2.2.1 Geometrical Properties 

The hollow sections for the square flange-plate connection tests are cold-formed square 

structural hollow sections 152 x 152 x 9.5.  For the rectangular flange-plate connections cold-

formed rectangular hollow sections 254 x 152 x 7.4 were used.  At the ends of the hollow 

sections, away from the flange-plate connection, very strong plates (tongues) have been slotted 

into the hollow sections which were later gripped by the testing machine.  The length of the 

hollow section between the end of the tongue and the flange-plate is about four times its height, 

ensuring an even stress distribution around the hollow section during the tests, before the 

flange-plate area was reached.  The even stress distribution has been checked by additional 

strain gauges on the hollow section. 

 
 

 

tp

h p

h i 

b 

 
 

a 

c 

Figure 2.1 Bolt layout definitions 
 

The flange-plate thickness varied between 12 and 20 mm for the square and 12 and 

16 mm for the rectangular flange-plate connections.  The relevant bolt layout parameters are 
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shown in Figure 2.1.  Table 2.2 and Table 2.3 present the geometric properties of the tested 

square and rectangular flange-plate connections respectively. 
 
Table 2.2 Measured dimensions of square test specimens 
 
Specimen Hollow section Flange-plate Bolts Weld Bolt layout 

    tp  hp  d  w1) a b c 
    (mm) (mm) (mm) (mm) 

n 
(mm) (mm) (mm) 

S4-1   12.6 311.7 15.3 40.3 38.7 
S4-2   15.8 312.1 14.8 39.9 38.9 
S4-3   12.6 312.5 15.6 35.1 43.8 
S4-4   15.8 312.4

18.9 

15.6 

4 

35.0 43.9 

-- 

S8-1   16.2 293.2 16.6 35.7 34.6 139.6 
S8-2  20.1 293.4 17.0 35.8 34.4 139.7 
S8-3 152.8 x 152.8 x 9.4 mm 16.3 292.8 16.1 35.6 34.5 69.7 
S8-4 Ai

2)
 = 5187 mm2 20.1 294.5 17.1 36.4 34.5 69.6 

S8-5  12.6 311.8 15.4 39.9 39.8 139.8 
S8-6  12.6 311.0 12.8 40.1 39.6 69.7 
S8-7   12.8 310.8 14.0 34.6 44.5 139.9 
S8-8   15.9 311.4 14.8 34.9 44.6 139.9 
S8-8   12.5 311.0 13.5 33.6 44.7 69.7 
S8-10   15.9 311.2 15.7 34.4 44.7 69.9 
S'8-1   16.3 293.3 16.3 35.9 34.5 
S'8-2  20.0 293.4

15.7 

16.8 

8 

35.9 34.5 
-- 

1) Throat thickness = w / 2  
2)  Measured area obtained by weighing a specific length of hollow section and using a 

density of 7850 kg/m3 [Eurocode 3 Part 1-2 1995] 
 
Table 2.3 Measured dimensions of rectangular test specimens 
  
Specimen Hollow section Flange-plate Bolts Weld Bolt layout 

    tp  hp  wp  d  w1) a b c 
    (mm) (mm) (mm) (mm) (mm)

n
(mm) (mm) (mm) 

R10-1   12.5 415.5 313.2 15.5 35.8 45.0 109.5
R10-2 253.5 x 151.9 x 7.3 mm 15.9 416.9 312.3 15.3 35.9 45.0 109.6
R10-3 Ai

2)
 = 5455 mm2 12.5 417.4 312.1 17.3 40.9 39.7 109.5

R10-4   15.8 414.8 313.9 

15.8

15.4

10 

40.6 39.9 109.7
1)  Throat thickness = w / 2  
2)  Measured area obtaining by weighing a specific length of hollow section and using a 

density of 7850 kg/m3 [Eurocode 3 Part 1-2 1995] 
 
 

All welds between flange-plates and hollow sections were fillet welds with the leg 

length varying between 12.8 and 17.3 mm.  The documented weld leg lengths (Table 2.2 and 

Table 2.3) are the average values for each specimen.  For the square flange-plate connections 
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with eight bolts as well as the rectangular flange-plate connections, 16 mm (5/8") diameter 

(M16) bolts were used.  The bolt diameter for the square flange-plate connections with four 

bolts was 20 mm (3/4") (M20).  The bolt hole diameter was either 17.5 mm (11/16") for the M16 

bolts or 21.5 mm (13/16") for the M20 bolts.   
 

2.2.2 Material Properties 

Standard cold-formed Class C hollow sections with a minimum specified yield stress of 350 

MPa, Grade 350W CSA [1992], comparable with S355 JOH [EN 10219-1 1997], were used 

throughout.  The flange-plate material was Grade 300W steel (roughly comparable to S355 JO 

[EN 10027-1 1992]) with a minimum specified yield stress of 300 MPa.  Some of the flange-

plate material was cold-rolled thus explaining the missing yield plateau in the stress strain 

diagram in Appendix I. 

Table 2.4 shows the material properties, as measured from the average of at least two 

tensile coupon tests of each material.  The stress-strain curves of the tensile coupon tests can be 

found in Appendix Part I. 

 

Table 2.4 Measured material properties of the hollow section and flange-plate 
material 

 
 fy (MPa) fySt (MPa) fu (MPa) εu1 (%)3) E (MPa) 

Square hollow sections 479.21) 465.05 564.7 26.6 207500 
Rectangular hollow sections 385.91) 369.1 486.8 33.6 199400 

Flange-plate 12 mm 394.82) 379.1 515.6 35.7 201800 
Flange-plate 16 mm (S8-1 to S8-6 and  

S'8-1, S'8-2) 324.1 304.9 498.9 40.1 260500 

Flange-plate 16 mm (S4-1 to S4-4,  
S8-5 to S8-10 and R10-1 to R10-4) 410.72) 397.2 512.7 35.5 198600 

Flange-plate 20 mm 355.9 337.1 521.3 40.5 205000 
1)  Using the 0.2% offset method, with tensile coupons taken from the flats of the hollow section 
2)  Using the 0.2% offset method, as the plates were cold-formed 
3) Measured over a gauge length of 2" or 50 mm 
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Table 2.5 Measured material properties of the bolts 
 

Grade d (mm) Specimens tp (mm) Yield load Fby (kN) Ultimate load Fbu (kN) 

S8-1, S8-3, S'8-1 16 130.8 160.2 15.7 
S8-2, S8-4, S'8-2 20 129.3 151.8 

S8-5 to S8-7, S8-9 12 115.0 137.9 15.7 
S8-8, S8-10 16 112.5 134.2 

R10-1, R10-3 12 124.0 145.9 

ASTM A325 
(comparable to  

Grade 8.8) 
15.8 

R10-2, R10-4 16 117.7 140.9 
S4-1, S4-3 12 193.0 256.0 ASTM A490 

(comparable to  
Grade 10.9) 

18.9 
S4-2, S4-4 16 192.0 247.5 

 

American Standard high strength steel bolts were used throughout. For the square 

flange-plate connections with eight-bolts (Specimens S8-1 to S8-10 and S'8-1, S'8-2) as well as 

the rectangular flange-plate connections, bolts of Grade ASTM A325 [ASTM 1997a], roughly 

comparable to Grade 8.8 [ISO 898-1 1999], were used.  The M20 (3/4") bolts for the square 

flange-plate connections with four bolts were of Grade ASTM A490 [ASTM 1997b] which 

roughly compares to Grade 10.9 [ISO 898-1 1999].  Bolts of different batches were used as the 

tests were carried out in separate test series.  Therefore, independent measurements of the 

dimensional and material properties for each batch of bolts were carried out.  Table 2.5 presents 

the measured material properties of the bolts.   

 

2.3 Testing and Measuring Equipment 
 
All the flange-plate connections were tested by quasi-static tensile loading under displacement 

control in a 2750 kN capacity MTS Universal testing machine.  Figure 2.2 shows a typical 

specimen in the testing machine.  The tensile load was applied to the hollow sections through 

tongue plates.  The coupon tests of the flange-plate and hollow section material, as well as the 

bolt tests and the calibration of the bolt gauge, were carried out with a smaller 1000 kN testing 

machine.  Whereas the coupon tests were done under displacement control, the bolt tests were 

done with the testing machine being driven under load control until yield load, after which 

displacement control was introduced.   
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Figure 2.2 Typical specimen in testing machine (R10-3) 

2.3.1 Bolt Measuring Equipment 

Two independent measuring methods have been used to study the variation of forces in the bolts 

during tests on the connections.  An ultrasonic bolt gauge (Bolt Gage 3, Power-Dyne, Bidwell 

Industrial Group, Inc.) monitored the bolt loads during all tests.  In the connection tests of 

specimens S4-1 to S4-4 and S8-5 to S8-10, special strain gauges (TML, Tokyo Sokki Kenkyujo 

Co., Ltd., Japan, BTM-Series) were used.  The strain gauges were inserted into a hole drilled 

along the bolt axis (see Figure 2.3).  The fabrication of the strain gauged bolts requires 

considerable effort.  The insertion hole for the strain gauge has to be cleaned with acetone 

before filling it with the adhesive (epoxy A-2).  A syringe guarantees the exclusion of air 

bubbles.  After insertion of the strain gauge, the adhesive has to cure at room temperature for 12 

hours before finalising the curing in an oven at 140°C for another three hours.  As the strain 

gauges could not record the strains accurately for the last load stages of the tests, further use was 

not considered in the remaining tests.  It is assumed that the bending flange-plates caused shear 

forces in the bolts, causing pressure normal to the wire gauge, thereby causing incorrect output.   
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Bolt
Strain
Gauge

Positioning

Gauge centre

Backing

A:A
1.7 mm

5 mm
7 mm

3 mm/
4 mm

A:A

Strain
Gauge

28 mm/
32 mm15.7 mm/

18.9 mm

o 2 mm

approx.
80 mm

 
Figure 2.3 Strain gauge placement in the bolts 

 

 

Bolt Gauge 

Transducer Temperature Probe

 
Figure 2.4 Ultrasonic bolt gauge 

 

A very reliable bolt force measuring method was found in the ultrasonic bolt-measuring 

device (or "bolt gauge").  This instrument (see Figure 2.4) has proven to be very exact in many 

tests which were carried out for earlier bolt pretension studies [Kulak and Birkemoe 1993].  

Other modern methods, such as measuring calipers used by the Institut für Baustatik und 

Konstruktion Zürich [IBK 1996], have not reported comparable precision. 

The ultrasound method measures the bolt length using a shock wave that travels along 

the length of the bolt.  At the end of the bolt most of the wave is reflected back due to the 

change of density.  The reflected wave travels back until it reaches a transducer.  At this point, a 
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small signal is produced by a piezoelectric element to stop a timing counter that had been started 

with the sending of the shockwave. 

As the bolt is stressed in tension, the amount of time required for the ultrasonic wave to 

make its round trip increases for two reasons: 

 
1.  The bolt elongates with axial tension, so the path length increases. 

2.  The density of the bolt material decreases due to the growing volume. This causes a 

decreasing velocity of sound within the bolt. 

 
The changes mentioned are linear functions (up to yield stress) of the load in the bolt, so 

that the total change in transit time is also a linear function of the load.  To compensate for the 

velocity change of the ultrasonic wave due to the change in stress, a stress factor was introduced 

[Bickford 1995].  Additionally, for correct length measurements a temperature factor to even 

out the influence of temperature changes on the wave velocity has to be applied.  The stress and 

temperature factors vary with the bolt material.   

Tests on the bolts were carried out to find the correlation between the applied load and 

the elongation.  Since the grip length affects the elongation, separate grip length (stressed 

length) calibrations were made.  Figures 2.5 and 2.6 show the load-elongation curves for the 

different bolts and grip lengths.  As not all ASTM A325 M16 (5/8") bolts came from a single 

batch, separate calibrations were necessary.   
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Figure 2.5 Bolt load versus "quasi-elongation" curves for ASTM A325 M16 (5/8") 
bolts 
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The elongation reported by the bolt gauge depends on the stress factor used.  The values 

of the stress and temperature factors as provided by the bolt gauge manual [POWER-DYNE 

1997] and Bickford [1995] are 0.281 and 103 (°C) for the ASTM A325 bolts and 0.285 and 101 

(°C) for the ASTM A490 bolts respectively.  As these stress factors are taken from literature 

they can only represent an average value for the particular bolt material.  Thus, the elongation 

values can be slightly imprecise.  The load vs. bolt-elongation curves should therefore not be 

used to calculate an Elastic modulus of the bolt material.  To differentiate between the actual 

elongation of the bolt and the elongation as reported by the bolt gauge the term "quasi-

elongation" is introduced.  Still, the reported displacement values in the load-elongation curves 

can be used to calibrate a load to "quasi-elongation" curve of the tested bolts.  Provided the bolt 

gauge has the information about the load to "quasi-elongation" behaviour of a specific bolt, the 

instrument is capable of reporting the applied load of the bolt at any time during testing.  

The internal software of the bolt gauge processes the bolt information by creating a 

"bolt type".  The diameter, the pitch, the stress and temperature factor, the load factors and the 

Y-intercept of the bolt define a bolt type.  The load factors and the Y-intercept depend on the 

load vs. "quasi-elongation" behaviour of the bolt.  They can be calculated by doing a regression 

analysis of the bolt vs. "quasi-elongation" curves obtained in calibration tests.  The load factors 

are represented by the letters A to E and the Y-intercept by the letter Y in a fifth order 

polynomial function describing the bolt vs. "quasi-elongation" curve as follows:  

f(x) = Ax + Bx2 + Cx3 + Dx4 + Ex5 + Y  (Equation 2.1) 
For a more detailed description of the operation mode and the theoretical background of 

ultrasonic measurement methods, the publications of Bickford [1995] and Krautkrämer and 

Krautkrämer [1990] can be consulted. 

To ensure that the ultrasonic wave travels along the axis of the bolt, from the bolt head 

to the end of the bolt and back, the head and end of the bolt must be flat and perpendicular to the 

bolt axis.  Instead of flattening (machining) the complete bolt head, as usually recommended, a 

hole, roughly the size of the transducer was machined into the bolt head.  Additionally, the other 

end of the bolt was machined flat.  The hole diameter has to be made slightly bigger than the 

transducer diameter to allow for possible deformations of the bolt head when the bolt is loaded.  

Figure 2.7 shows a fully machined bolt. 
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Figure 2.7 Fully machined bolt 
 
 

2.3.2 Bolt Calibration 

The bolts were tested using a special assembly as can be seen in Figure 2.8.  This assembly, 

with fingers protruding from one part of the assembly into the other part of the assembly, 

converted the compression force applied by the MTS machine into a tensile loading of the bolt.  

Two very rigid and thick circular plates were used, each having six holes equally spread radially 

over an outer diameter and one hole in the centre of the plate.  The hole in the centre of the plate 

bore the tested bolt, while the six outer holes were pierced by six fingers.  To ensure a good load 

transfer from the MTS machine into the fingers, a thick plate was attached to the fingers.  The 

location of the outer holes in each bearing plate in relation to the location of the holes in the 

other bearing plate was such that the fingers would only protrude through one plate while 

impinging on the other.  

The test procedure required the transducer and the temperature probe to be placed on 

the bolt before any load was applied to the bolt.  A measurement of the initial bolt length was 

taken with the bolt gauge.  Then, the MTS machine slowly, applied an increasing load on the 

bolt.  As the transducer could stay in place during the whole test the stroke of the machine did 

not have to be stopped at any time.  
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Figure 2.8 Bolt test setup 

 

To gather information about the load-elongation behaviour of the bolt (see preceding 

section 2.3.1), 10 measurements before the yield load of the bolt and another roughly 20 

measurements beyond yield load were taken.  The bolt gauge stored the information on a 

built-in hard drive.  After the test, the information was downloaded onto a PC using a data 

transfer cable.  A regression analysis program then calculated a best fit curve for the load vs. 

"quasi-elongation" behaviour of the tested bolts.  Additionally, the yield and ultimate load of 

each bolt were recorded during the tests.  It was assumed that the results for bolts from a single 

batch are constant. 

2.4 Specimen Fabrication and Testing 
 
Figure 2.9 shows a typical fabrication drawing of a square flange-plate connection.  All 

specimens were fabricated with fillet welds (MIG welding) joining the flange-plate and the 

hollow section.  The welding process caused warping of the flange-plates.  To guarantee the 

alignment of the connection the critical flange-plates were heat treated until reasonably flat.  

 27



PART I  BOLTED FLANGE-PLATE CONNECTIONS  Experimental Investigation 

Subsequent specimens were welded with the flange-plates clamped to the welding table to avoid 

excessive distortions of the flange-plates.   

 

 
Figure 2.9 Fabrication drawing of square flange-plate connection 

 

One of the first test specimens (specimen S8-4) was equipped with eight strain gauges 

which were placed in the middle of each side.  Figure 2.10 shows the locations of the strain 

gauges.  The data of the strain gauges confirmed a uniform stress distribution along all four 

sides of the hollow section in the vicinity of the bolted connection.  As the length of the 
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specimens was not varied between the test series, it can be assumed that the influence of the 

gripping tongues is negligible for all connections.   

 

 6 strain gauges 

    

Figure 2.10 Strain gauge locations 

 

An air wrench was used to pretension the bolts.  Figure

pattern.  To control the pre-tensioning, the bolt forces were mea

using the ultrasonic bolt gauge. 

An unloading of some bolts occurred during the 

deformations in the flange-plates.  The deformations in the flan

uniform on all four sides so that, despite the unloading of the b

bolt was not expected be overly stressed.  The unloading of bolt

examined in an earlier study on bolt installation in connection

out by Birkemoe [1989].  Therefore, a second or third torquing 

equal load distribution (± 5-10 kN) for all bolts was reached.  V

flange-plates had been removed before assembly to minimise 

forces. 
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Figure 2.11 Bolt tensioning sequence  

 

To measure the connection elongation, four Linear Variable Differential Transformers 

(LVDTs) were mounted on each connection (see Figure 2.12).  The final stage was to grip the 

specimens and to begin the loading of the connection. 
 

124 mm + 2tp 

   LVDT 

 positioning screws 

 gripping bolts 

   positioning screws 

  gripping bolts T 

 

Figure 2.12 LVDT locations 
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For all specimens, a quasi-static test under tensile loading was carried out.  To ensure 

quasi-static loading conditions the tensile load was applied very slowly (about 50 kN per minute 

in the elastic range of the test or a stroke of 0.125 mm per minute).  During each test, all 

measurements from the MTS machine, the strain gauges and the LVDTs were read and recorded 

by a data acquisition system.  The testing procedure contained up to 15 load stages during which 

the forces in the bolts were measured with the bolt gauge.  As only a single transducer existed to 

measure up to ten individual bolts, it was necessary to take the transducer off the bolt head and 

measure one bolt after the other while keeping the machine stroke constant.  After the last load 

stage, indicated by bolt forces close to rupture load, the bolt gauge as well as all LVDTs were 

removed from the specimen to avoid any damage.  The connections were then wrapped with 

thick plastic foil to prevent the bolts from becoming projectiles upon rupture. 

 

2.5 Test Results 
 
A total of 20 bolted flange-plate connections has been tested.  All specimens failed due to 

rupture of at least one bolt.  The measured prying ratios in the following tables are calculated as 

follows: 

 

βux = 
ux

uxbu

ux

ux

N
NFn

N
Q −⋅=  (Equation 2.2), 

Nux

Qux
*)

n Fbu
*) n Fbu

*)

Qux
*)

*)   proportion of load on the corresponding side

 
 
 

with Qux being the total prying force and n the number of bolts in the connection.   

 

The next sections of this chapter will provide the following for each connection type: 

• a table with failure loads and corresponding prying ratios,  

• a typical picture of the flange-plates after failure, 

• a typical connection load versus displacement graph, 

• a typical bolt load versus connection load graph. 

Full documentation of the connection load versus displacement graphs as well as the bolt load 

versus connection load graphs can be found in Appendix Part I. 
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2.5.1 Square Flange-Plate Connections 

2.5.1.1 Specimens with Four Bolts 
 
Table 2.6 shows the test results for all tested specimens having four bolts.  For the specimens 

with the thin flange-plates (tp = 12 mm, S4-1 and S4-3), the prying ratios have significant 

values.  The prying action for the specimens with thicker flange-plates (tp = 16 mm, S4-2 and 

S4-4) is negligible.  The ratio of edge distance "a" to distance from bolt line to hollow section 

face "b", also influences the amount of prying action.  A smaller distance between bolts and 

hollow section, increasing ratio of "a" to "b", results in less prying action.   

Plastic deformation in the flange-plates can be reported for all four specimens (see 

Figure 2.13).  For the flange-plate connections with the thin plates the deformations were more 

pronounced. 

 

Table 2.6 Test results for square flange-plate connections with four bolts 
 
Specimen tp (mm) a/b Failure load Nux (kN) Bolt strength Fbu (kN) Prying ratio βux (%) 

S4-1 12 1.00 847 256 20.9 
S4-2 16 1.00 955 247 3.7 
S4-3 12 0.78 792 256 29.3 
S4-4 16 0.78 910 247 8.8 

 

 

 
Figure 2.13 Square flange-plate connection (S4-1) with four bolts after failure  
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Figure 2.14 shows a typical load versus displacement graph as recorded by the four 

LVDTs.  The displacement was measured over a distance of 65 mm (distance between the 

positioning screws of the top and bottom LVDT mounts, see Figure 2.12).  Due to the very high 

wall thickness of the hollow section, in comparison to the thickness of the flange-plate, the 

hollow section remained elastic during the whole test, thereby contributing only negligibly to 

the measured displacement of the LVDT.  The bold line in the graph represents the average 

displacement of all four LVDTs.  An initial stiff behaviour of the connection is followed by 

significant displacement in the later load stages.  The transition between stiff and flexible 

behaviour of the connection coincides with the separation load of the bolts (see Figure 2.15).   

A typical bolt load versus connection load graph is given in Figure 2.16.  The straight 

line in the graph represents the bolt load caused by the connection load (without prying forces 

or pretensioning loads), thus being the connection load divided by the number of bolts.  After 

the separation load, the distance between the measured bolt loads and this line indicates the 

amount of prying action.   
 

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3
Displacement (mm)

C
on

ne
ct

io
n 

L
oa

d 
(k

N
)

LVDT NE
LVDT NW
LVDT SW
LVDT SE
Average

 
Figure 2.14 Connection load versus displacement graph for specimen S4-2  
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Figure 2.15 Connection load versus average bolt load and average displacement  
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Figure 2.16 Bolt load versus connection load graph for specimen S4-2 (prying ratio of 

3.7%) 
 
 
2.5.1.2 Specimens with Eight Bolts 
 
The test results for the square flange-plate connections with eight bolts can be found in Table 

2.7.  The prying ratios vary between 2.1% for specimen S8-4 and 30.9% for specimen S8-7.  As 

with the 4-bolt specimens the flange-plate thickness exhibited the biggest influence on the 

connection strength.  A decrease in flange-plate thickness results in an increase in prying action.  

Comparing the results of specimens S8-5 and S8-6 with the results of specimens S8-7 and S8-9 
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(each having the same flange-plate thickness and distance between the bolts, "c") the influence 

of the ratio of edge distance "a" to distance from bolt line to hollow section face "b", can be 

observed.  A decrease in this ratio (increasing the distance between bolts and the hollow section) 

results in an increase in prying action.  The prying ratio was also shown to be influenced by the 

distance between the bolts on one side, distance "c".  The comparison between, e.g., specimens 

S8-1 and S8-3, or between S8-5 and S8-6, show that an increase in bolt spacing "c" results in an 

increase in prying action.   

 

Table 2.7 Test results for square flange-plate connections with eight bolts 
 
Specimen tp (mm) a/b c (mm) Failure load Nux (kN) Bolt strength Fbu (kN) Prying ratio βux (%) 

S8-1 16 1.00 140 1108 160 15.7 
S8-2 20 1.00 140 1162 152 4.5 
S8-3 16 1.00 70 1240 160 3.4 
S8-4 20 1.00 70 1190 152 2.1 
S8-5 12 1.00 140 903 138 22.2 
S8-6 12 1.00 70 946 138 16.6 
S8-7 12 0.78 140 843 138 30.9 
S8-8 16 0.78 140 946 134 13.5 
S8-9 12 0.78 70 881 138 25.2 
S8-10 16 0.78 70 1019 134 5.4 
S'8-1 16 1.00 -- 1049 160 22.2 
S'8-2 20 1.00 -- 1141 152 6.4 

 

As expected, the deformations in the flange-plates (see Figure 2.17) of the specimens 

with eight bolts were generally less pronounced than the deformations of the flange-plates in the 

4-bolt specimens.  The thinner the flange-plates (higher prying ratio) the larger were the 

observed deformations for all tested specimens. 
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Figure 2.17 Square flange-plate connection (S8-3) with eight bolts after failure  
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Figure 2.18a Connection load versus displacement graph for specimen S'8-2 
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Figure 2.18b Connection load versus displacement graph for specimen S8-5 

 

The results of the LVDTs indicate overall bending in some specimens (see Figures 

2.18a and 2.18b).  Specimens S8-1 to S8-4, and S'8-1 and S'8-2, generally showed more 

bending compared to the specimens of the second set of tests (S8-5 to S8-10).  The bending of 

the specimens of the earlier test series was probably caused by deformations in the flange-plates 

and general misalignment of the connections.  For the specimens of the second test series 

special consideration was taken to achieve perfect alignment of the two connection halves.  Due 

to the warped flange-plates in the first set of tests, it was also more difficult to achieve an equal 

load distribution between all bolts, as can be seen in Figures 2.19a and 2.19b.   

The bolt layout of specimens S'8-1 and S'8-2 (see Table 2.1) inherently caused an 

uneven load distribution in the bolts (see Figure 2.20).  This uneven load distribution caused an 

early failure of these connections.  The prying ratio is calculated based on the assumption that 

all eight bolts are stressed to their ultimate load at failure of the connection.  As some bolts of 

specimen S'8-2 were not stressed to their ultimate load at failure of the connection the reported 

prying ratio of 6.4% does not correspond with the average prying ratio shown in Figure 2.19a.  

Unfortunately, the measurement of the bolt loads cannot be done right up to failure of the 

connection as the transducer of the bolt gauge would be severely damaged when placed on a 

breaking bolt.  Also, it would be dangerous for the operator. 
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Figure 2.19a Bolt load versus connection load graph for specimen S'8-2 (prying ratio of 

6.4%) 
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Figure 2.19b Bolt load versus connection load graph for specimen S8-5 (prying ratio of 

22.2%) 
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Figure 2.20 Bolt load versus connection load graph for specimen S'8-1 (prying ratio of 

22.2%) 
 

2.5.2 Rectangular Flange-Plate Connections 

Table 2.8 shows the test results for the rectangular flange-plate connections.  As with the earlier 

connections, the flange-plate thickness had the biggest influence on the connection strength.  

The influence of the ratio of edge distance "a" to distance from bolt line to hollow section face 

"b", could also be observed.  A decrease in the a/b-ratio caused an increase in prying action.  As 

the distance between the bolts on one side, distance "c", was constant for all four specimens the 

influence of this dimension could not be studied in the experimental program. 

 

Table 2.8 Test results for rectangular flange-plate connections with ten bolts 
 
Specimen tp (mm) a/b c (mm) Failure load Nux (kN) Bolt strength Fbu (kN) Prying ratio βux (%) 

R10-1 12 0.78 110 1030 146 41.7 
R10-2 16 0.78 110 1153 141 22.2 
R10-3 12 1.00 110 1105 146 32.1 
R10-4 16 1.00 110 1240 141 13.6 

 

Despite high prying ratios, only negligible plastic deformations were found in the 

flange-plates after the test (see Figure 2.21). 
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Figure 2.21 Rectangular flange-plate connection (R10-1) with ten bolts after failure  

 

Figure 2.22 shows a typical connection load versus displacement graph for a rectangular 

specimen.  The displacement is measured over a distance of 65 mm.  An initial stiff connection 

behaviour is followed by flexible behaviour after the bolt separation load. 

The bolt load versus connection load graphs are given for specimen R10-1 in Figure 2.23.  

Due to the bolt layout of the rectangular specimens, an uneven load distribution of the bolts was 

observed (see Figures 2.23 and 2.24).  As also demonstrated for the square flange-plate connections 

with bolt layout type S'8 the inside bolts (bolts 2 and 7 in Figure 2.24) were more stressed compared to 

the remaining bolts.  The uneven load distribution was more pronounced in the connections with 

thinner flange-plates. 
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Figure 2.22 Connection load versus displacement graph for specimen R10-1  
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Figure 2.23 Bolt load versus connection load graph for specimen R10-1 (prying ratio of 

41.7%) 
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Figure 2.24 Bolt load versus connection load graph for specimen R10-3 (prying ratio of 

32.1%) 
 

2.6 General Observations from the Testing Program 
 
The main focus of this investigation was to study the influence of the flange-plate thickness as 

well as the bolt layout on the connection capacity.  Table 2.9 gives an overview of the main 

parameters and their respective influence on the connection capacity.  Tables 2.10a to 2.10c 

compare the prying ratios of specimen pairs where all but one parameter is constant.  Thereby, 

the influence of the differing parameter becomes apparent.   

 

Table 2.9  Influence of each parameter on the prying action and the connection 
capacity 

 
Parameter Prying action Connection capacity 

tp ↑ ↓ ↑ 
a/b ↑ ↓ ↑ 
c ↑ ↑ ↓ 
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Table 2.10a  Comparison of prying ratios for specimens with differing parameters 
(tp varies) 

 
Prying ratio βux (%) for tp = 

Specimens 
12mm 16mm 20mm 

S8-5, S8-1, S8-2 22.2 15.7 4.5 
S8-6, S8-3, S8-4 16.6 3.4 2.1 

S'8-1, S'8-2 -- 22.2 6.4 
S8-7, S8-8 30.9 13.5 -- 
S8-9, S8-10 25.2 5.4 -- 
S4-1, S4-2 20.9 3.7 -- 
S4-3, S4-4 29.3 8.8 -- 

R10-1, R10-2 41.7 22.2 -- 
R10-3, R10-4 32.1 13.6 -- 

 

Table 2.10b  Comparison of prying ratios for specimens with differing parameters 
(a/b-ratio varies) 

 
Prying ratio βux (%) for a/b = 

Specimens 
0.78 1.00 

S8-7, S8-5 30.9 22.2 
S8-9, S8-6 25.2 16.9 
S4-3, S4-1 29.3 20.9 
S4-4,S4-2 8.8 3.7 

R10-1, R10-3 41.7 32.1 
R10-2, R10-4 22.2 13.6 

 

Table 2.10c  Comparison of prying ratios for specimens with differing parameters 
(c varies) 

 
Prying ratio βux (%) for c = 

Specimens 
70mm 140mm 

S8-3, S8-1 3.4 15.7 
S8-4, S8-2 2.1 4.5 
S8-6, S8-5 16.6 22.2 
S8-9, S8-7 25.2 30.9 
S8-10, S8-8 5.4 13.5 

 

The flange-plate thickness has the biggest influence on the prying action.  The plastic 

bending capacity of the flange-plate is proportional to the square of the thickness, given by 

my = yp
2
pft

4
1 .  With an increase in flexural strength the prying effect decreases, therefore 

increasing the connection capacity.  The bolt layout dimensions (see Figure 2.1), namely the 

ratio of edge distance "a" to distance from bolt line to hollow section face "b", as well as the 
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distance between the bolts on one side, distance "c", also have a significant influence on the 

prying forces.  The lower the "a" to "b" ratio, the further away is the bolt line from the hollow 

section, thus increasing the lever arm and causing the prying forces, which in turn decreases the 

connection capacity.  The test results show that an increase in bolt spacing "c" increases the 

prying ratio.  This behaviour contradicts the yield line model of Kato and Mukai [1982].  Figure 

2.25 shows the predicted prying ratios using the Kato and Mukai model for the tested flange-

plate connections with increasing bolt pitches.   
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Figure 2.25 Prying ratios as predicted by Kato and Mukai [1982] 

 

With bolt layout S'8 for the square flange-plate connections and with the bolt layout of 

the rectangular connections (see Figure 2.1), some bolts were stressed more than the remaining 

bolts.  As the uneven load distribution caused early failure, these bolt layouts should be avoided.  

For square flange-plate connections bolt layout S8 (see Figure 2.1) should be used.  For 

rectangular connections with a high height to width ratio (hi/bi > 2), bolt layouts with bolts 

along the two long sides of the connections only seem more suitable.  As hollow sections with a 

height to width ratio of over two are not common, this will hardly ever become critical. 
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3 VALIDATION OF NUMERICAL MODELS 

3.1 General Introduction 
 
Due to ever-increasing costs as well as the high time factor involved in experimental testing, 

numerical analyses have become a popular tool for simulations of structural behaviour.  The 

development of suitable finite element programs (element libraries, solvers, material and 

geometric non-linearity) on the one hand and the knowledge of their use (discretisation, element 

choice, analysis technique) on the other hand have allowed finite element analysis to become an 

essential tool in design and research.  A lot of knowledge about stress and strain concentration 

factors for fatigue design of welded tubular connections [van Wingerde 1992, Herion 1994, 

Romeijn 1994] has been based on the results of numerical analyses.  The suitability of FE-

analysis for static strength predictions of hollow section connections has been demonstrated, 

e.g. in the publications of van der Vegte [1995], Lu [1997], Yu [1997] and de Winkel [1998].  

Based on a well-calibrated finite element model (verified by experiments within the range of 

parameters), it is possible to carry out a large number of parametric studies which are cheaper 

and faster than experimental investigations. 

 

3.2 Software and Hardware 
 
The software package ANSYS 5.6 [Swanson Analysis System Inc. 1999] has been used for pre- 

and post-processing as well as analyses of the FE-models.  The hardware used consisted of 

standard PCs (Intel Pentium 500MHz, 512 MB Ram) and a remotely accessible server SGI 

Origin 3200, with eight processors and two Gigabytes of memory.  The operating systems were 

Windows NT or Windows 2000 for the PCs and IRIX 6.5 for the workstations.   

 

3.3 General Considerations 
 
The accuracy of the numerical results is greatly affected by the following aspects: 

1. Element types; 

2. Geometrical and material non-linearities; 

3. Solution techniques used for the numerical analysis; 

4. Boundary conditions; 

5. Element discretisation. 
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3.3.1 Element Types used in the Study 
 
The finite element package ANSYS 5.6 [Swanson Analysis System Inc. 1999] offers a variety 

of shell and volume elements.  For the static analysis of the bolted flange-plate connections the 

following element types have been tested: 

• Solid45: 8-noded (linear) 3D structural solid element with 3 degrees of freedom per node, 

plasticity, large stress and strain capabilities, stress stiffening and optional reduced 

integration with hourglass control. 

• Solid95: 20-noded (quadratic) 3D structural solid element with 3 degrees of freedom per 

node, plasticity, large stress and strain capabilities, stress stiffening and optional reduced 

integration with hourglass control. 

• Shell43: 4-noded plastic large strain shell with 6 degrees of freedom per node, plasticity, 

large stress and strain capabilities and stress stiffening. It has 2x2 in-plane integration and 5 

integration points over its thickness. 

• Contac52: 2-noded 3D point to point contact element representing two surfaces. 

Compression in the normal direction and shear (Coulomb friction) in tangential direction is 

supported. 

With regard to the importance of the bolts for the failure of the connection, an 

independent study on the discretisation and choice of element types for the bolts has been 

carried out.  Shell elements were not considered for the modeling of the bolts as the 

3-dimensional mode of action of the bolts does not agree with the planar dimensionality of shell 

elements.  Figure 3.1 shows the force-displacement curves for the bolts used for specimens S8-8 

and S8-10 (see Tables 2.1 and 2.2) and their respective FE-models using different element types 

and discretisations.  For the coarse models, the 20-noded models generally gave better results 

than the 8-noded models.  The coarsely meshed 20-noded models perform marginally better 

than the 8-noded finely meshed models.  The difference between the results of the fine and 

coarsely meshed 20-noded models is negligible.  With regard to the CPU time and number of 

nodes and elements (see Table 3.1) the FE-model with a coarse mesh using 20-noded elements 

was preferred to the finer meshed model for further use.   
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Figure 3.1 Force-Displacement curve of bolts for specimens S8-8 and S8-10 

 

Table 3.1 CPU Time for the different bolt models 
 
Bolt model d (mm) Element type Mesh CPU-time (min.) # of nodes # of elements
B16-8-C 16 mm coarse 0.9 256 172 
B16-8-F 16 mm 

8-noded solids 
fine 3.7 1212 960 

B16-20-C 16 mm coarse 3.0 927 172 
B16-20-F 16 mm 

20-noded solids
fine 29.4 4575 960 

 

As with the bolts, different element types were considered for the remaining 

components of the specimens.  Within this study, 4-noded plastic large strain shell elements 

with 6 degrees of freedom per node (shell43) have been used in an initial FE-model for flange-

plate connections.  The results of the shell element model showed less agreement with the test 

results than the FE-models using solid elements.  The shell element model required a higher 

CPU time and the contact between the undersides of the flange-plates as well as the bolts and 

the flange-plates could only be modelled satisfactorily with extreme difficulties.  As for another 

successful numerical study on bolted flange-plate connections, but under moment loading 

[Wheeler et al. 2000], only volume elements were considered for the further numerical study.   

The comparison between FE-models of Specimen R10-1 using a coarse and a fine mesh, 

both using 8-noded solids (solid45) and an FE-model with a coarse mesh using 20-noded solid 

elements (solid95) showed little differences in the results (see Figure 3.2) yet large differences 

in CPU time (see Table 3.2) caused by the increased number of nodes and elements in the 

models with the fine mesh and the 20-noded elements.  It was not possible to model the 
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specimen with 20-noded elements using a finer mesh as the maximum number of nodes for the 

ANSYS version used was exhausted.   
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Figure 3.2 Load-Displacement curve of specimen R10-1 

 

Table 3.2 CPU Time for the different models of specimen R10-1 
 
FE-Model Element type Mesh CPU-time (min.) # of nodes # of elements

R1-8 C coarse 47.4 8304 4581 
R1-8-F 

8-noded solids 
fine 82.6 11752 7368 

R1-20-C 20-noded solids coarse 340.8 19329 5394 
 

The contact between the flange-plates as well as the flange-plates and the bolts was 

modelled using node-to-node contact elements (contac52).  Friction was not included in the FE-

models.  ANSYS supports three contact element types: node-to-node, node-to-surface, and 

surface-to-surface.  Node to node contact elements are the most simple contact elements, thus 

being more stable (divergence) and minimizing CPU time.  Node-to-node contact elements can 

be used if the nodes of the two surfaces line up, the relative sliding deformation is negligible, 

and deflections (rotations) of the two surfaces remain small.  The contact stiffness of the contact 

elements was calculated according to the formula provided by the ANSYS 5.6 [Swanson 

Analysis System Inc. 1999] manual: 
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K ≈  in lEf ⋅⋅
mm
N   

with:  K = contact stiffness in normal direction to contacting surface, 

 f = contact compatibility factor between 0.01 and 100, 

 E = Young’s Modulus of contacting area, 

 l = element length of elements on contacting surface.  

Unfortunately, the ANSYS 5.6 [Swanson Analysis System Inc. 1999] manual does not give 

any guidelines on the choice for the factor "f".  A factor of 1.0 resulted in good contact 

compatibility and was used for all FE-models. 

 

3.3.2 Geometrical and Material Non-Linearities 
 
Geometrical non-linearities have been accounted for by using the NLGEOM option within 

ANSYS.  For solid elements, "large strains" are allowed.  Large strain assumes that the strains 

are no longer infinitesimal (they are finite).  Shape changes (e.g., area, thickness, etc.) are taken 

into account.  Deflections and rotations may be arbitrarily large.   

For finite strain problems the true-stress-strain curves of the material should be used.  

For an uniaxial tensile specimen, the true stress and strain can be calculated as follows: 

εT = ∫
∆+

ε+=∆+=
ll

l
E1

l
ll

x
dx )ln(ln  

 σT = EEE

E

E
U

)1(

1
A
A

A
A σ⋅ε+=σ

ε+

=σ  

with: l: member length, 

 A: initial section area, 

 AU: updated section area, 

 εE: engineering strain, 

 εT: true strain, 

 σE: engineering stress, 

 σT: true stress. 

When necking occurs, the engineering stress-strain curve reaches its maximum.  The 

true stress, however, will still increase after the maximum of the engineering stress due to the 

decreasing section area.  Thus, after the maximum is reached the true stress-strain curve has to 

be determined by the Ramberg-Osgood power law [van der Vegte 1995]: 
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"ε0" and "σ0" are the reference strain and stress.  The constants "a" and "b" have to be 

determined from the engineering stress-strain curve.  Figure 3.3 shows typical stress-strain 

curves for the flange-plate material. 
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Figure 3.3 Stress-strain curves 

 

The bolt material in the FE-model was chosen so as to give the best results when 

comparing a tension test of a complete bolt with its corresponding FE-model.  The resulting 

yield and ultimate strengths of the bolt material as used in the FE-model are shown in Table 3.3. 

 

Table 3.3 Bolt material as used in the FE-model 
 

Bolt Material Specimens fy
1) (MPa) fu (MPa) 

S8-1 to S8-4 and S'8-1, S'8-2 1000 1050 
S8-5 to S8-10 750 875 ASTM A325 

(comparable to Grade 8.8) 
R10-1 to R10-4 730 905 

ASTM A490  
(comparable to Grade 10.9) S4-1 to S4-4 990 1085 

1)    Using the 0.2% strain offset method  
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3.3.3 Solution Techniques used in the Study 
 
Frontal direct equation solver (in-memory only) has been used throughout.  The solution was 

performed in multiple load steps.  After each load step, the solver was exited and specific results 

(displacement, connection load, bolt load) written to a list file.  The analysis was then restarted 

using the restart option which employs the deformed model for the subsequent analyses.  This 

procedure allowed the analysis of the flange-plate connections to be divided into three stages 

(see Figure 3.4).  In the first stage, the gap between bolts and flange is closed to avoid a sudden 

change from non-contact to large stresses between the contact nodes.  In the second load stage, 

pretension is applied to the bolts.  The final load stage applies the tension load to the hollow 

section member by continuously increasing the displacement of the nodes at the hollow section 

end.   

 
Figure 3.4  The three stages during each analysis 

 

The full Newton-Raphson procedure, in which the stiffness matrix is updated at every 

equilibrium iteration, has been used for the non-linear analysis of each FE-model.  ANSYS uses 

the tangent stiffness matrix only as long as the iterations remain stable.  If divergent trends are 

detected on an iteration, the program discards the divergent iteration and restarts the solution 

using a weighted combination of the secant and tangent stiffness matrices.  When the iterations 

return to a convergent pattern, the program will resume using the tangent stiffness matrix.   

 

3.3.4 Boundary Conditions 
 
Due to the geometry and loading symmetry of the specimens, it is sufficient to model only an 

eighth of the connection, provided symmetrical boundary conditions are applied along the 

planes of symmetry (see Figure 3.5).  The connection loading was applied by displacement of 

the nodes at the end of the hollow section (see Figure 3.6), thereby simulating the displacement 

controlled loading of the connection in the tests.  Pretension of the bolts was generated by 

predisplacement of the bolt shank end nodes (see Figure 3.7).  The required predisplacement for 
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the specific pretension of the bolt was found in a separate analysis of the connection.  In this 

analysis, prior to the analysis in which the connection was loaded under tension, the end nodes 

of the bolts were displaced in small increments until the reaction force in the bolt equalled the 

pretension from the experiments.  The predisplacement found was then used in the second load 

stage (application of the pretension, see previous section 3.3.3, Figure 3.4) of the analysis of the 

connection under tensile loading.  This procedure matches an earlier study on finite element 

modelling of bolted flange-plate connections [Cao et al. 2000]. 
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Figure 3.5 Symmetric boundary conditions along the planes of symmetry 
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Figure 3.6 Connection loading by displacement of the nodes at the end of the hollow 

section 
 

 

Bolt Shank End 
Nodes 

Figure 3.7 Bolt mesh 
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3.3.5 Discretisation 
 
3.3.5.1 Bolt Discretisation 
 
Due to the central role of the bolts in the flange-plate connection, special consideration was 

given to the modelling of the bolts.  In addition to the earlier mentioned uncertainty concerning 

the bolt material, assumptions had to be made about the nominal tensile area of the bolts.  

According to ANSI B18.2.1 [ANSI 1999] and ASME B1.1 [ASME 2001], the ratio between the 

nominal tensile area to the nominal shank area for 5/8" (16 mm) bolts equals: 

%7474.0
)in8/5(

4

in226.0
2

2

==
π

.   

Therefore, the radius for the threaded part in the bolt in the tensile area was chosen as follows: 
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Further assumptions had to be made concerning the grip length of the bolt in the nut.  

According to Bickford [1995], it takes up to ½ of the nut height until the tensile stress level in 

the bolt has decreased to zero.  To simulate this effect, the grip length of the modelled bolt was 

increased by ⅓ of the nut height.  The ⅓ value was obtained as a best fit to modelling results of 

a separate analysis in which the bolt tests for the calibration of the bolt gauge (see section 2.3.2) 

have been simulated.  As mentioned in the preceding section on element types (section 3.3.1), 

different models using coarse and a fine meshes were analysed.  Figure 3.8 shows the coarse 

and fine bolt mesh as used for the simulation of the tensile bolt tests.  Using the chosen coarse 

mesh with 20-noded volume elements, very good compliance between FE-models and tensile 

bolt tests was achieved (see Figure 3.9).  

In the FE analysis of the flange-plate connection tests, the grip length of the bolt was 

halved (see Figure 3.7) as only one side of the connection was modelled because of symmetry.  

By having the same ratio of unthreaded to threaded length over the grip length in the FE-model 

as in the test specimen, the bolt response in the FE-model was expected to replicate the 

behaviour of the real bolt. 
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Figure 3.8 Coarse and fine bolt mesh 
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Figure 3.9 Force-displacement curves of the ASTM A325 bolts for rectangular 

specimens (tp=12 mm and tp=16 mm) 
 

3.3.5.2 Flange-Plate Discretisation 
 
Figures 3.10 and 3.11 show the coarse and fine FE-model of specimen R10-1.  The results of the 

model with a fine discretization varied negligibly to those of the FE-model having a coarse 

mesh (see Figure 3.2 in section 3.3.1).  As mentioned in section 3.3.1, because of CPU time, a 

coarse mesh was chosen for all models.  The coarse mesh uses three elements over the thickness 

of the flange.  For the rectangular connections this results in a total of 2313 elements in the 

flange-plate.  The fine mesh results in 4528 elements in the flange-plate. 
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Figure 3.10 FE-Model with coarse discretisation 
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Figure 3.11 FE-Model with fine discretisation 

 

The flange-plate connections in the experimental test program showed large 

deformations of the end-plates caused by the welding procedure.  To achieve a good agreement 

between FE-models and tests, these deformations of the flange-plates have to be included in the 

FE-models [Wheeler et al. 2000].  The out-of-straightness of the flange-plates was modelled 
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three dimensionally by bends in the flange-plate along the outside of the hollow section (see 

Figure 3.12).  The flange-plate inside the hollow section remains flat.  The resulting gap at the 

edge of the flange can be calculated as follows: 

δp = tanα ·(a+b) ≈ α ·(a+b).  (Equation 3.1) 

Figures 3.13 and 3.14 compare the Load-Displacement curves and the bolt versus 

connection load curves of specimen S8-4 with the results of an FE-model including the flange 

deformation and an FE-model with a straight flange-plate.  While the agreement of the model 

with the deformation is very good, the results of the model without the deformations are rather 

poor.  Unfortunately, the gap between the flange-plates was not measured in the experimental 

program, so the values for "δp" had to be chosen according to an earlier numerical study by 

Wheeler et al. [2000] in which the deformation depends on the flange-plate thickness (the 

thinner the flange-plate the higher the deformations).   

 A:A 

 

A:A B:B 

B
:B

 

 δp 

δp α

a b

 
Figure 3.12  Modelled deformation in the flange-plate due to welding 
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Figure 3.13  Load-Displacement curves of specimen S8-4  
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Figure 3.14  Bolt versus connection load curves of specimen S8-4 
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3.3.5.3 Hollow Section Discretisation 
 
The significance of the hollow section behaviour on the connection behaviour and strength is 

rather small compared to the behaviour of the bolts and the flange-plates.  To save CPU time, 

only a single element was used over the thickness of the hollow section and the element size 

wasincreased towards the hollow section end away from the connection.   

The dimensions/shape of the hollow section have to be modelled very precisely as the 

footprint of the hollow section on the flange-plates influences the lever arm and the yield line 

location.  The shape of the hollow section, including the rounded corners, were therefore exactly 

copied in the FE-models.  A hollow section length four times the width of the hollow section 

eliminated any effects of the hollow section end on the connection behaviour.  A small gap 

between flange-plate and hollow section was modelled so that load transfer between hollow 

section and flange was only through the welds (see Figure 3.15).   

 

Gap
 
Figure 3.15  Gap between hollow section and flange-plate 
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3.3.5.4 Weld Discretisation 
 
The fillet weld connecting the hollow section and the flange-plate was modelled assuming a 

triangular shape (see Figure 3.15).  As the material properties of the weld were not known, the 

material properties of the hollow section were used for the weld. 

 

3.4 Validation of the Numerical Models with the Experimental Results 
 
To validate the numerical modelling all specimens of the experimental programme have been 

modelled and analysed numerically.  The experimental programme had shown obvious 

shortcomings (see section 2.6) of the bolt layout of specimens S'8-1 and S'8-2.  Therefore, 

specimens S'8-1 and S'8-2 were excluded, since their bolt layout would have required a 

completely new finite element model.  The predicted connection loads of the FE-models have 

been compared to the test results in Table 3.4.  The numerical and experimental connection 

capacities agree very well, having a mean of test to predicted ratio of 0.99 and coefficient of 

variation of 2.6%.   

 

Table 3.4 Comparison of the numerical and experimental results  
 

tp δp Test FE-Model 
Specimen 

(mm) (mm) Nux  (kN) βux (%) NuFE  (kN) 
Nux/NuFE 

S4-1 12 2.0 847 20.9 891 0.95 
S4-2 16 1.0 955 3.7 957 1.00 
S4-3 12 2.0 792 29.3 834 0.95 
S4-4 16 1.0 910 8.8 945 0.96 
S8-1 16 1.0 1108 15.7 1149 0.96 
S8-2 20 1.0 1162 4.5 1155 1.01 
S8-3 16 1.0 1240 3.4 1274 0.97 
S8-4 20 1.0 1190 2.1 1202 0.99 
S8-5 12 2.0 903 22.2 903 1.00 
S8-6 12 2.0 946 16.6 938 1.01 
S8-7 12 2.0 843 30.9 846 1.00 
S8-8 16 1.0 946 13.5 926 1.02 
S8-9 12 2.0 881 25.2 881 1.00 
S8-10 16 1.0 1019 5.4 1009 1.01 
R10-1 12 2.0 1030 41.7 996 1.03 
R10-2 16 1.0 1153 22.2 1146 1.01 
R10-3 12 2.0 1105 32.1 1086 1.02 
R10-4 16 1.0 1240 13.6 1188 1.04 

     Mean 0.99 
    Coefficient of variation (%) 2.64 
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3.4.1 Square Flange-Plate Connections 
 
Prior to and during the testing of the square connections, the deformation of the flange-plate was 

not measured.  Therefore, assumptions had to be made for the size of the gap between the 

flanges.  Wheeler et al. [2000] recommend for the imposed initial maximum flange-plate 

deformation "δp" (see Figure 3.12) a value ranging from δp = 1 mm (for tp = 20 mm) up to 

δp = 3 mm (for tp = 12 mm) depending on the flange-plate thickness tp.  A variety of flange-plate 

deformations δp were studied for the different specimens (see Tables 3.5 and 3.6).  For the tests 

reported in Chapter 2, a value of δp = 3 mm appears to be too high, as the flange-plates in the 

second test series (S8-5 to S8-10 and S4-1 to S4-4) were welded to the hollow section with the 

flange-plates clamped down to prevent too much bending in these parts.  In the first series of 

tests (specimens S8-1 to S8-4), the distance between the face of the hollow section and edge of 

the flange-plate of a+b = 70 mm was smaller than the corresponding distance of a+b = 80 mm 

for the second test series (specimens S8-5 to S8-10 and S4-1 to S4-4).  As the first series of tests 

was not fabricated with the flange-plates clamped down to the welding table, a bigger angle "α" 

(see Figure 3.12) between the deformed flange-plate and the plane of symmetry can be expected 

for the specimens in the first series compared to the second set of tests.  In the calculation of the 

gap "δp" (Equation 3.1) the bigger value for "α" is cancelled out by the smaller distance between 

the face of the hollow section and the edge of the flange-plate.  Therefore, the resulting gaps 

"δp" become about the same for the two test series. 

The assumed flange-plate deformations "δp" depending on the flange-plate thickness for 

comparison between numerical and experimental results (see Table 3.4) ware chosen as: 

• δp = 1 mm for tp = 16 mm and tp = 20 mm, 

• δp = 2 mm for tp = 12 mm. 

 

Table 3.5 Comparison of the numerical and experimental results of 4-bolt square 
specimens for different flange deformations "δp" 

 
FE-Model Test  

δp= 1.0mm δp= 2.0mm Specimen 
Nux (kN) tp (mm) NuFE (kN) Nux/NuFE NuFE (kN) Nux/NuFE 

S4-1 847 12.0 883 0.96 891 0.95 
S4-2 955 16.0 957 1.00 983 0.97 
S4-3 792 12.0 827 0.96 834 0.95 
S4-4 910 16.0 945 0.96 977 0.93 
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Table 3.6 Comparison of the numerical and experimental results of 8-bolt square 
specimens for different flange deformations "δp" 

 
FE-Model Test  

δp= 0.5mm δp= 1.0mm δp= 2.0mm Specimen 
Nux (kN) tp (mm) NuFE (kN) Nux/NuFE NuFE (kN) Nux/NuFE NuFE (kN) Nux/NuFE 

S8-1 1108 16.0 1140 0.97 1149 0.96 -- -- 
S8-2 1162 20.0 1130 1.03 1155 1.01 -- -- 
S8-3 1240 16.0 1251 0.99 1274 0.97 -- -- 
S8-4 1190 20.0 1191 1.00 1202 0.99 -- -- 
S8-5 903 12.0 -- -- 887 1.02 903 1.00 
S8-6 946 12.0 -- -- 914 1.03 938 1.01 
S8-7 843 12.0 -- -- 828 1.02 846 1.00 
S8-8 946 16.0 -- -- 926 1.02 945 1.00 
S8-9 881 12.0 -- -- 860 1.02 881 1.00 

S8-10 1019 16.0 -- -- 1009 1.01 1059 0.96 
 

To show the influence of the initial flange-plate deformation at the sides of the plate on 

the various connection types, the stress distribution (von Mises stresses) of the flange face after 

tensioning of the bolts is shown in Figures 3.16a to c.  Figures 3.17a to c show the face of the 

flange at ultimate load.  Figures 3.18a to c give an impression of the deformations in the 

connections at ultimate load (displacement scaling of 5).  As expected, the flange-plate 

deformations at ultimate load for the 4-bolt specimens are far more pronounced than the 

deformations for the 8-bolt specimens.  This agrees with observations from the experimental 

work.   
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Figure 3.16a Flange-plate face equivalent stresses caused by pretensioning (4-bolt 

specimen) 

 
Figure 3.16b Flange-plate face equivalent stresses caused by pretensioning (8-bolt 

specimen, c = 70 mm) 

 
Figure 3.16c Flange-plate face equivalent stresses caused by pretensioning (8-bolt 

specimen, c = 140 mm) 
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Figure 3.17a Flange-plate face equivalent stresses at ultimate load (4-bolt specimen) 

 
Figure 3.17b Flange-plate face equivalent stresses at ultimate load (8-bolt specimen, 

c = 70 mm) 

 
Figure 3.17c Flange-plate face equivalent stresses at ultimate load (8-bolt specimen, 

c = 140 mm) 
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Figure 3.18a Deformation (disp. x 5) at ultimate load (4-bolt specimen) 

 
Figure 3.18b Deformation (disp. x 5) at ultimate load (8-bolt specimen, c = 70 mm) 

 
Figure 3.18c Deformation (disp. x 5) at ultimate load (8-bolt specimen, c = 140 mm) 
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3.4.2 Rectangular Flange-Plate Connections 
 
Table 3.7 shows the numerical results of the rectangular flange-plate connections for different 

values of flange deformations "δp".  The flange-plate deformation was chosen as δp = 2.0 mm 

for tp = 12 mm and δp = 1.0 mm for tp = 16 mm, in accordance with the assumptions for the 

square flange-plate models (see shaded areas in Table 3.7). 

 

Table 3.7 Comparison of the numerical and experimental results of rectangular 
specimens for different flange deformations "δp" 

 
FE-Model Test  

δp= 1.0mm δp= 2.0mm Specimen 
Nux (kN) tp (mm) NuFE (kN) Nux/NuFE NuFE (kN) Nux/NuFE 

R10-1 1030 12.0 979 1.05 996 1.03 
R10-2 1153 16.0 1146 1.01 1176 0.98 
R10-3 1105 12.0 1064 1.04 1086 1.02 
R10-4 1240 16.0 1188 1.04 1219 1.02 

 

Figures 3.19 to 3.21 correspond to the Figures 3.16 to 3.18 showing the stress 

distribution after pretensioning, at ultimate load as well as the displacement of the connection at 

ultimate load, for a typical rectangular hollow section connection. 
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Figure 3.19 Flange-plate face equivalent stresses caused by pretensioning (rectangular 

specimen) 

 
Figure 3.20 Flange-plate face equivalent stresses at ultimate load (rectangular 

specimen) 

 
Figure 3.21 Deformation (disp. x 5) at ultimate load (rectangular specimen) 
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4 NUMERICAL STUDY 

4.1 Numerical Model 
 
For the finite element models of the subsequent numerical parameter study, the following 

generalizations were made: 

• Solid elements, 8-noded for hollow section, weld and flange and 20-noded for bolts, were 

used throughout.  Node to node contact elements modelled the contact between the flange-

plates and the bolts as well as the flange-plates with each other. 

• Symmetry of the connection was taken into account by modelling only an eighth of the 

connection and applying suitable boundary conditions.  Displacement controlled loading 

conditions were simulated by applying axial displacements to the nodes of the hollow 

section end.   

• Nominal dimensions of the members were used for the parameter study.  The hollow 

sections for the square connections are cold-formed 150 x 150 x 10 mm hollow sections.  

For the rectangular connections, 250 x 150 x 8 mm cold-formed hollow sections have been 

modelled.  The corner radii have been chosen according to European Standards [EN10219-

2 1997] as 2.5·ti (see Table 10.1 in Chapter 10.2).  The flange-plate dimensions were 

310 x 310 mm and 410 x 310 mm for the square and rectangular connections respectively. 

• The hollow section steel grade was S355 with a yield strength of 355 MPa and an ultimate 

strength of 510 MPa [EN 10219-1 1997].  The flange-plate steel grade assumed was S355 

with a yield strength of 355 MPa and an ultimate strength of 490 MPa [EN 10025 1990]. 

• M16, Grade 8.8 bolts with an ultimate strength of 126 kN were assumed for the 8-bolt 

square and 10-bolt rectangular flange-plate connections.  For the 4-bolt square connection 

M20, Grade 10.9 bolts with an ultimate strength of 245 kN were assumed.  Figure 4.1 

shows the force-displacement curves assumed for the modelled bolts.  The ultimate tensile 

strength fub taken for the bolt material was 800 MPa and 1000 MPa for the Grade 8.8 and 

Grade 10.9 bolts respectively [Table 3, ISO 898-1 1999].  The ultimate bolt strength was 

calculated as Fbu = Abt fub with the tensile area Abt according to Tables 6/7 ISO 898-1 

[1999] (Abt =157 mm2 for the M16 bolts and Abt =245 mm2 for the M20 bolts). 

• The preload in the bolts was chosen according to ENV 1090-1 [1996] as 0.7 Fbu, resulting 

in a preload of 88 kN and 170 kN for the Grade 8.8 and Grade 10.9 bolts respectively. 

• For the deformation of the flange-plates due to welding (see section 3.3.5.2) a value of 

δp = 2mm was used.  The value was chosen according to allowable tolerances in 

Table 11.2.2, ENV 1090-1 [1996], with δp = w/150 = 310/150 ≈ 2 mm.  For the rectangular 
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connections, this value was also chosen for the longer side of the connection as the long 

and short side have to be equally deformed at the corner they meet. 

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Displacement (mm)

Fo
rc

e 
(k

N
)

M16, 8.8 bolts
M20, 10.9 bolts

125.7 kN

245.0 kN

 
Figure 4.1 Force-displacement curves assumed for the bolts used in the numerical 

study 
 

A closer description of the discretisation, element choice and boundary conditions of the 

numerical model can be found in the preceding section. 

 

4.2 Scope of Numerical Study 
 

The influence of the following parameters (see Figure 4.2) on the capacity of bolted flange-plate 

connections was studied in the numerical analyses: 

• Flange-plate thickness "tp"; 

• Ratio of edge distance "a" to distance from bolt line to hollow section face "b"; 

• Distance between bolts parallel to hollow section face "c"; 

• Shape (aspect ratio) of hollow section and flange-plate; 

• Weld type (fillet versus butt). 
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a b

c tp

a

b

c

c

 
Figure 4.2 Parameters studied in the numerical study 

 

The numerical analyses comprised of square flange-plate connections with four and 

eight bolts as well as connections for rectangular hollow sections with ten bolts.  Each 

connection has been modelled twice, one with a fillet weld and one with a butt weld connecting 

the flange-plate and the hollow section.  The weld leg size of the fillet weld equalled the hollow 

section thickness.  In agreement with the results of the experimental study, the fillet weld 

showed to have a significant influence on the connection capacity.  To provide the designer with 

a safe design method for connections employing butt welds for the connection of hollow section 

and flange-plate, additional models were made in which the hollow section and flange-plates 

were directly connected (see Figure 4.3).  The "butt" weld model simplifies the weld as it 

disregards the portion of the butt weld that protrudes beyond the hollow section wall (0.25ti) in a 

real specimen.  As this portion of the weld increases the capacity of the connection the chosen 

simplification is on the safe side.  The elements of the hollow section and the flange-plate in the 

fillet weld models are not connected to exclude any direct load transfer between hollow section 

and flange-plate. 
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Figure 4.3 Model with fillet weld (gap between hollow section and flange-plate) and 

"butt" weld (direct connection of hollow section and flange-plate) 
 

Table 4.1 gives an overview of the different parameters as well as their respective 

scopes.  A total of 234 flange-plate connections have been studied with 

• 18 connections for square flange-plate connections with four bolts; 

• 126 connections for square flange-plate connections with eight bolts; 

• 90 connections for rectangular flange-plate connections with ten bolts. 

 
Table 4.1 Scope of numerical study 
 

Models 

 

Parameters  
tp 10, 12 and 16 mm 

a/b 0.60, 0.78 and 1.00 
c -- 70 - 140 mm every 10 mm 90 - 140 mm every 10 mm 

Weld Fillet weld and "butt" weld (no weld) 
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4.3 General Aspects 

4.3.1 Deformation Limits 
 

With very thin flange-plates large deformations in the bolted flange-plate connections can occur 

without the connection/bolts failing.  In recent years a 1% wi deformation limit for serviceability 

loads [Wardenier 1982 and IIW 1989], and a 3% wi deformation limit for ultimate loads [Lu et 

al. 1994] has become widely accepted for hollow section connections.  The deformation limits 

are necessary to exclude large deformations or large distortions in the hollow section.  

Membrane effects occur with large deformations, and generally after an inflection point in the 

load displacement curve.  Due to the interaction of bolt failure and membrane action of the 

flange-plates, it was not possible to detect a clear inflection point of the load displacement 

curves for the bolted flange-plate connections.  Following the earlier research, 1%wp and 3%wp 

deformation limits for "δ" were used for the analyses of the results (see Figure 4.4).   

δ
δ

A:A

AA

wp
 

Figure 4.4 Deformation "δ" of the connection 

 

According to Eurocode [EN 1990, 2002] and Eurocode 3 [ENV 1993-1-1, 1992], the 

partial factors for permanent actions γG,i and the partial factors for transient/live loads, γQ,i, are 

generally 1.0 when checking for serviceability of a structure.  For serviceability limit states the 

partial factors for the material properties, γM should also be taken as 1.0 according to Eurocode 

[2002].  Thus, the design check at serviceability limit state is: 

NSserv = ∑Gk,,j + ∑Qk,i≤ 
M

%1N
γ

= N1% , 
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with:  Gk,,j : characteristic value of permanent/dead loads, 

 N1%: connection load at 1%wp deformation (δ = 1% wp , see Figure 4.4) 

 Qk,i : characteristic value of transient/live loads. 

For the most common static situations the design check at ultimate limit state is: 

NSd = ∑γG,i Gk,,j + 0.9 ∑γQ,i Qk,i ≤ ΝRd = 
M

%3N
γ

 

with  N3%: connection load at 3%wp deformation (δ = 3% wp , see Figure 4.4) 

γG,i : partial factor for permanent/dead loads (=1.35), 

γQ,i : partial factor for transient/live loads (= 1.5),  

γM : partial resistance safety factor (= 1.1). 

Thus the above equation can be written as: 

∑1.35Gk,,j + 0.9 ∑1.5Qk,i ≤ 
1.1

N %3  

<=> 1.35 ∑Gk,,j + 0.9 · 1.5 ∑Qk,i ≤ 
1.1

N %3  

<=> 1.35 ( ∑Gk,,j + ∑Qk,i) ≤ 
1.1

N %3  

Therefore, the resistance value at ultimate limit state N3% becomes critical if: 

 
35.11.1

N %3

⋅
 ≤ N1% <=> N3% ≤ 1.5 N1%  

If the load deflection curve reaches a peak load Np before the 3% deflection limit, the 

connection capacity equals the peak load.  The connection capacity is thus: 

 Np   if δp ≤ 3%wp , 

Nu =  N1%  if N3% ≥ 1.5 N1% , 

 N3% if N3% ≤ 1.5 N1% . 
 

4.3.2 Fabrication Tolerances 
 

According to ENV 1090-1 [1996] the fabrication tolerance for a single bolt hole placement is 

± 2 mm.  To study the influence of fabrication tolerances on the connection capacity of bolted 

flange-plate connections, an asymmetric FE-model was made for one complete side of the 

connection (one RHS member and flange-plate, see Figure 4.5).  Figure 4.6 shows the 

eccentricity applied to the top right bolt.  The comparison (Figure 4.7) of the results for 

specimens with varying eccentricities shows that the influence on the results due to 

eccentricities of a single bolt is negligible.  Due to the very high number of nodes and elements 
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in this model, the discretisation as well as the computation of this connection is very costly.  

Despite the negligible differences in the capacity for the chosen connection, a further 

investigation of the influence on fabrication tolerances for this connection type, as well as other 

bolted flange-plate connections, is recommended.  

 

 

 
Figure 4.5 Asymmetric FE-model including eccentricity of a single bolt (top right hand 

side) 
 

 76 



PART I  BOLTED FLANGE-PLATE CONNECTIONS Numerical Study 

 

∆ = +2 mm

Figure 4.6 Eccentricity of top right hand bolt 
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Figure 4.7 Load-Deformation curves of connections with misplaced bolt 
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4.4 Ultimate Load Capacity 
 
The Load-Displacement curves of all connections investigated in the numerical study can be 

found in Appendix Part I.  The ultimate load of the specimens is restricted to the load at the 3% 

deformation limit if no peak load has occurred up to that point.  As the load at the 3% 

deformation limit is generally less than 1.5 times the load at the 1% deformation limit (see 

section 4.3.1), the 1% deformation limit was not further taken into account.  The Tables with the 

results of all models are shown in Appendix Part I. 

 

4.4.1 Square Flange-Plate Connections 
 

4.4.1.1 Specimens with Four Bolts 
 
Deformations increase with a decrease in flange-plate thickness (see Figure 4.8).  Also the 

connection capacity decreases with a decrease in flange-plate thickness as well as a decrease in 

the a/b ratio (see Figure 4.9).  These findings correspond with the experience from the 

experimental study.   
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Figure 4.8 Load-Deformation curves of connections with different flange-plate 
thicknesses (Plate: 310 x 310 mm) 
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Figure 4.9 Load-Deformation curves of connections with different a/b ratios (Pla
310 x 310 mm) 

 
The difference in connection capacity between the FE-models with and withou

weld is apparent.  The fillet weld causes the yield line along the hollow section to shift to

the bolt line (see Figure 4.10).  By assuming a reduction of the distance between bolt li

hollow section (distance "b") of half the weld leg length of the fillet weld (w = 10 mm 

presented FE-models) the results of the corresponding numerical models compare well. 

4.2 compares the results of the models with corresponding flange-plate thickness and d

between hollow section and bolt line, where: 

b* = b  for connections with "butt" weld  (Equation

b* = b – w/2 for connections with fillet weld  (Equation
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bfillet weld

w

a

fillet weld

abbutt weld

b*= bbutt weld
 b*= bfillet weld-w/2

yield line
yield line

 
Figure 4.10 Shift of the yield line towards the bolt line due to fillet weld 

 

Table 4.2 Comparison of models with and without fillet weld 
 

 
Model with fillet weld  

NuFE (fillet weld model) 
(kN) 

Corresponding model 
with butt weld  

NuFE (butt weld model) 
(kN) 

Ratio of 
NuFE (fillet weld model) 

to NuFE (butt weld model) 

b* = 40 mm 506 501 1.01 
tp = 10 mm 

b* = 45 mm 455 451 1.01 
b* = 40 mm 654 658 0.99 

tp = 12 mm 
b* = 45 mm 594 596 1.00 
b* = 40 mm 860 852 1.01 

tp = 16 mm 
b* = 45 mm 812 806 1.01 

 
 

4.4.1.2 Specimens with Eight Bolts 
 
All FE-models with thin flange-plates (tp = 10 mm) show excessive deformations restricting 

their ultimate load capacity to the 3% deformation criterion.  The models with a medium flange-

plate thickness (tp = 12 mm) are hardly affected by the deformation criteria, either reaching peak 

load before deformations are beyond the 3% limit or having reached a load plateau at 3% 

deformation.  As expected, ultimate load is always reached well before 3% deformations for the 

models with thick flange-plates (tp = 16 mm).  Figure 4.11 shows the load deformation curves 

for connections with an a/b ratio of 0.78, a distance between two bolts on one side of 

c = 130 mm and varying flange-plate thicknesses (all connections without fillet weld).   

Besides the flange-plate thickness, the distance between bolt line and hollow section, 

distance "b", affects the extent of deformations.  A lower a/b-ratio (increase in distance "b") 

results in a more flexible and less strong connection.  The distance "c" between the bolts should 

be kept low (see Figure 4.12).  For low values of "c", e.g. c = 70 mm, the length of flange-plate 
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ped down by the bolts, roughly the distance "c" plus 2 times the bolt hole diam
ding the size of the bolt head/nut or washer), c+2d' = 70 mm + 2·(17 mm) = 104 mm, 

e hollow section width minus the outside corner radii, hi - 2rout = 150 mm -

 = 100 mm, allowing a direct load transfer.  Figure 4.12 shows the connections 

 depending on the distance between the bolts on one side, value "c". 

s with the connections with four bolts the difference between the models having a butt 

illet weld can be explained with the distance between bolt line and hollow section 

"b").  By reducing the distance "b" by half the weld leg length of the fillet weld the 

 capacities of the specimens become comparable (see Figure 4.12).   
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4.4.2 Rectangular Flange-Plate Connections 
 
The findings for the rectangular connections resemble the results of the square flange-plate 

connections.  A decrease in flange-plate thickness results in more deformations and less 

capacity (see Figure 4.13).  An increase in the distance between bolt line and hollow section, 

distance "b", increases the deformations and decreases the connection capacity.  As with the 

square flange-plate connections with eight bolts, the distance "c" between the bolts on one side 

has an effect on the ultimate connection strength.  If the value of the clamped down flange-plate 

(c+2d' for the short side and 2c+2d' for the long side of the connection) equals the hollow 

section width/height minus the corner radii (bi - 2rout for the short side and hi - 2rout for the long 

side), the connections have the highest capacities.  Figure 4.14 shows the results of the 

connection capacity for varying values of "c".  The models in this numerical study have the 

same distance between the bolts on the short and long side of the connection.   

For comparison of the FE-models with fillet welds and without fillet welds, a reduction 

of the distance between the bolt line and the hollow section is required.  The results of the 

models without fillet welds agree reasonably well if compared to the respective models with 

fillet welds but with a reduced distance between bolt line and hollow section.  The reduction can 

again conservatively be chosen as half the weld leg length (see Figure 4.14) assuming the yield 
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line to form within the height of the weld.  Due to the automatic meshing, the FE-models having 

fillet welds and a distance between the bolts of c = 70 mm and c = 80 mm showed very distorted 

elements.  The analysis of these models therefore gave implausible or no results (convergence 

problems).  A model with a changed discretisation is very time consuming.  As the comparable 

models with higher values of "c" did not indicate sudden changes in the connection capacity, the 

author abandoned the numerical results for these connections.  The 3% deformation limit for the 

rectangular connections was conservatively chosen according to the shorter side of the 

connection (= 3% of 310 mm). 
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5 ANALYTICAL STUDY AND SOLUTIONS  

5.1 Introduction 
 
For the design of bolted flange-plate connections for rectangular hollow section connections 

under tension, two basic approaches can be found.  First, a yield line analysis which uses a 

two-dimensional yield line pattern and applies the virtual work principle.  Secondly, in contrast 

to this two-dimensional yield line analysis, a model can be assumed which disregards the 

influence of the bordering sides and analyses each side of the connection individually.  The 

yield lines in this one-dimensional model form parallel to the hollow section.   

 

5.2 Yield Line Models 
 

5.2.1 One-Dimensional Yield Line Model 
 
Depending on the flange-plate and bolt properties three basic failure mechanisms can occur for 

a flange-plate connection: 

1. Bolt failure, no plastic hinge in the flange-plate (see Figure 5.1); 

2. Bolt failure, plastic hinge along the hollow section/weld line (see Figure 5.2); 

3. No bolt failure, plastic hinge along the hollow section/weld line and at the bolt line (see 

Figure 5.3). 

For all three failure mechanisms, the connection strength is calculated by adding up the 

proportion of the connection load that is transferred by each bolt: 

N =   (Equation 5.1). ∑
=

n

1i
i,bN
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Qb = 0

Nb

M2 < my p2

Nb = Fbu

p1/2

p1/2

p1/2

p1/2

p1/2

p1/2

a b

p2

p2

 
Figure 5.1 Failure mechanism 1 

Nb + Qb = Fbu

Qb

Nb

M1 < my p1

M2 = my p2

 
 

Figure 5.2 Failure mechanism 2 
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M1 = my p1

M2 = my p2

Nb + Qb

Nb

Qb

 
Figure 5.3 Failure mechanism 3 
 

Applying the force and bending moment equilibria (exact derivation of formulae can be 

found in Appendix Part I) for each failure mechanism the connection load of a single bolt can be 

calculated as: 

 

Failure mechanism 1: 

Nb1 = Fbu (Equation 5.2) 

Failure mechanism 2: 

Nb2 = )( 2ybu pmaF
ba

1 ⋅+⋅
+  (Equation 5.3a) 

⇔  Nb2 = )ptf
4
1aF(

ba
1

2
2
pypbu ⋅+⋅

+  (Equation 5.3b) 

Failure mechanism 3: 

Nb3 = y
21 m

b
pp +

 (Equation 5.4a) 

⇔  Nb3 = 2
pyp

21 tf
4
1

b
pp

⋅
+

 (Equation 5.4b) 
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The corresponding prying force Qb resisted by a single bolt is then: 

 

Failure mechanism 1: 

Qb1 = 0 

Failure mechanism 2: 

Qb2 = )pmbF(
ba

1
2ybu ⋅−⋅

+
 (Equation 5.5a) 

⇔  Qb2 = )ptf
4
1bF(

ba
1

2
2
pypbu ⋅−⋅

+
 (Equation 5.5b) 

Failure mechanism 3: 

Qb3 = y
1 m

a
p

 (Equation 5.6a) 

⇔  Qb3 = ⋅⋅ 2
pyp

1 tf
4
1

a
p

 (Equation 5.6b) 

 

Two flange-plate thickness limits determine which failure mechanism will rule for a certain 

connection: 

• Failure mechanism 1 for  tp  > tq1 ; 

• Failure mechanism 2 for  tq1 ≥ tp  ≥ tq2 ; 

• Failure mechanism 3 for  tp < tq2 . 

With: 

tq1 =
yp2

bu

fp
bF4

 (Equation 5.7) 

and 

tq2 =
yp

121

bu

f)
a
p

b
pp

(

F4

+
+

 (Equation 5.8) 

In accordance with the results of former studies (modified T-Stub model, Struik and de 

Back [1969]) the resultant bolt force is assumed to act somewhere between the bolt axis and the 

edge of the bolt head.  Therefore, "a" and "b" are replaced by "a' " and "b' ", with "a' " and "b' " 

given by: 

a' = a + d/2, with a ≤ 1.25 b          in calculation (but not necessarily in practise) (Equation 5.9) 

b' = b − d/2  (Equation 5.10) 

In accordance with the results of the numerical study further adjustments of the 

effective values for the distance between the inside and outside yield line, the distance "b", as 
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well as the length of the effective bolt pitch "p", are made. The following formulae have been 

derived based on a best-fit assumption in a regression analyses.   

For connections with fillet welds, the results of the parametric study indicate that the 

plastic hinge along the outer wall of the hollow section is shifted by half the weld leg length 

(w/2 ≈ 0.7 a) towards the bolt line.  For flange-plate connections with very thin-walled hollow 

sections, the bending moment of the flange-plate along the outer face of the hollow section does 

not equal the plastic moment of the flange-plate.  The plastic hinge is located within the hollow 

section.  To accommodate this effect, Equation 5.10 becomes: 

b'' = b' − w/2 + (1 − χ) ti = b − d/2 − w/2 + (1 − χ) ti (Equation 5.11) 

with: χ = 
yp

2
p

yi
2
i

ft

ft
≤ 1 (Equation 5.12) 

Transferring this design model to flange-plate connections with bolts on all four sides, 

the tributary flange-plate width of each bolt "p1" and "p2" has to be determined.  In theoretical 

models for flange-plate connections with bolts on two sides of the hollow section, the tributary 

length "p2" is calculated as the flange-plate width divided by the number of bolts on one side 

and the length "p1" as the corresponding length p2 less the diameter of the bolt hole (see Figure 

5.4), therefore 

 
S

p

n
h

  (connection height) 

p2 =  (Equation 5.13) 

 
S

p

n
w

  (connection width) 

p1 = p2 – d' (Equation 5.14) 
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Equations 5.13 and 5.14 disregard the influence of the bolt pitch (length "c") for the 

calculation of the tributary flange-plate width.  For connections with bolts on all four sides (see 

Figure 5.5), the plastic hinges intersect at the corners of the flange-plate.  Therefore, it was 

found that it is not feasible to use the full width of the flange-plate for the calculation of the 

tributary flange-plate width "p1" and "p2".  To account for the difference between the model for 

connections with bolts on two sides and the present bolt layout, a factor "ψ" is introduced: 

 25.0

ii
)

'a
''b

t3h
s(
−

 for s ≤ hi - 3ti  (connection height) 

 and 25.0

ii

)
'a
''b

t3w
s
−

(   for s ≤ wi - 3ti  (connection width) 

ψ =   (Equation 5.15) 

 25.0ii )
'a
''b

s
t3h

(
−

 for s > hi - 3ti  (connection height) 

 and 25.0)
'a
''b

s
tw ii 3( −  for s > wi - 3ti  (connection width) 

With: s = c (nS – 1) + 2d' (Equation 5.16) 

The tributary lengths "p1" and "p2" are replaced and given by: 

 ψ ·
S

p

n
h

  

p2' =  (Equation 5.17) 

 ψ ·
S

p

n
w

 

 p1' = p2' – d' (Equation 5.18) 

The correction factor "ψ" is based on the results of the numerical as well as 

experimental study.  It has been chosen to give good agreement between the predicted failure 

loads and the results of the numerical and experimental study.   

Using the modified values for "a", "b", "p1" and "p2" the connection load for each bolt 

(Equations 5.2 to 5.4) and each failure mechanism now becomes: 

Failure mechanism 1: 

Nb1 = Fbu (Equation 5.2) 

Failure mechanism 2: 

Nb2 = )pm'aF(
''b'a

1 '
2ybu ⋅+⋅

+  (Equation 5.19a) 

⇔  Nb2 = )ptf
4
1'aF(

''b'a
1 '

2
2
pypbu ⋅+⋅

+  (Equation 5.19b) 
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Failure mechanism 3: 

Nb3 = y

'
2

'
1 m

''b
pp +

 (Equation 5.20a) 

⇔  Nb3 = 2
pyp

'
2

'
1 tf

4
1

''b
pp

⋅
+

 (Equation 5.20b) 

 

Table 5.1 shows the results of the regression analysis for the proposed formula when 

applied to the connections of the numerical and experimental investigation. 

 

Table 5.1 Results of the regression analysis for the one-dimensional yield line model 
 

 Number of 
Data Points 

Mean Nux/Nu 
(>1 safe) 

Coefficient of 
Variation (%) 

Correlation 
R2 

FE-Study 
Square Specimens 

 

4-bolts 18 1.02 3.87 0.99 
8-bolts 144 0.98 5.55 0.95 
Rectangular Specimens  
10-Bolts 123 1.01 9.33 0.94 
All FE-Study 285 1.00 7.57 0.95 
Experimental Study 
Square Specimens 

 

4-bolts 4 1.00 2.64 0.96 
8-bolts 10 1.00 5.58 0.92 
Rectangular Specimens  
10-Bolts 4 0.94 0.53 1.00 
All Experimental Study 18 0.99 5.18 0.94 
All 303 1.00 7.46 0.95 

 

5.2.2 Two-Dimensional Yield Line Model 
 
Three failure modes have been studied in the following two-dimensional yield line model: 

1. Bolt failure without prying action:  The plastic capacity of the flange-plate material is not 

exhausted before the bolts fail. 

∑Fbu ≤ Nyp ⇒   Nu = ∑Fbu. 

2. Bolt failure with prying action:  The plastic capacity of the flange-plate material is 

exhausted simultaneously with bolt failure. 

Nyp + Q > ∑Fbu > Nyp  ⇒   Nu = ∑Fbu − Q 
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3. Flange-plate failure:  The plastic capacity of the flange-plate material is exhausted without 

the bolts failing. 

Nyp + Q < ∑Fbu  ⇒   Nu = Nyp. 
 

In the analysis of the yield line model, a number of simplifications have been made: 

• the shape of the hollow section is considered to be rectangular with sharp corners, 

neglecting the corner radii; 

• the full utilisation of the plastic moment along all yield lines is regarded as flange-plate 

failure; the ultimate strength of the flange-plate material is not considered; 

• the edge distance, distance "a", and the distance from bolt line to hollow section face, 

distance "b", is constant for all sides; 

• the distance between bolts parallel to hollow section face, distance "c", is constant for 

all sides;  

• non-plastic states, up until the full development of the plastic hinge along all lines of the 

yield line pattern, have not been considered; 

• the prying force is assumed to be concentrated along the edge of the flange. 

 

Figure 5.6 shows the assumed yield line pattern for a rectangular flange-plate connection.  The 

derivation of the following formulae can be found in Appendix Part I.   
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s1h = hi − s2h (Equation 5.22a) 

s1w = wi − s2w (Equation 5.22b) 

and, 

s2h = = nS c (height, see Figure 5.6) (Equation 5.23a) 

s2w = = nS c (width, see Figure 5.6) (Equation 5.23b) 

 

The corresponding critical load Nyp (yield strength of the flange-plate) is then: 

Nyp =  8{
b
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4
18
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with: 

my = yp
2
pft

4
1  (Equation 5.25) 

The prying force which corresponds to this yield line mechanism is then given by: 

Q = 2
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wminw2

2wmin

hminh2
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my (Equation 5.26) 

The formulae are also applicable for flange-plate connections with square hollow 

sections.  For square flange-plate connections, the values "s1h" and "s1w" as well as "s2h" and 

"s2w" are respectively identical.  In connections with four bolts only, a value of s2 = 0 has to be 

used in the preceding equations.   

 

The results of the regression analysis for the two-dimensional yield line model are 

shown in Table 5.2.   
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Table 5.2 Results of the regression analysis for the two-dimensional yield line model 
 

 
Number of 
Data Points 

Mean Nux/Nu 
(>1 safe) 

Coefficient of 
Variation (%) 

Correlation 
R2 

FE-Study 
Square Specimens  
4-bolts 18 1.18 10.52 0.95 
8-bolts 144 0.97 17.70 0.88 
Rectangular Specimens  
10-Bolts 123 0.98 21.61 0.81 
All FE-Study 285 0.99 19.68 0.85 
Experimental Study 
Square Specimens 

 

4-bolts 4 1.08 12.71 0.95 
8-bolts 10 1.02 15.53 0.59 
Rectangular Specimens  
10-Bolts 4 0.92 7.97 0.90 
All Experimental Study 18 1.01 14.73 0.78 
All 303 0.99 19.41 0.85 
 
 

5.3 Summary 
 
Two analytical approaches for the calculation of bolted flange-plate connections with square 

and rectangular hollow sections have been proposed.  The first design model, based on a one-

dimensional yield line analysis, has better agreement between predicted and measured failure 

loads than the second design model based on a two-dimensional yield line analysis.  The two-

dimensional yield line model involves rather complicated formulae that might deter many 

designers from the application of this method.  Therefore, the design method based on the one-

dimensional yield line analysis is suggested for the calculation of bolted flange-plate 

connections.  Figure 5.7 shows a flowchart of the proposed calculation method.  The validity 

range for rectangular connections is 0.75 ≤ hp/wp ≤ 1.33.  For connections with a hp/wp-ratio not 

covered by the validity range, a connection with bolts along just the longer side of the 

connection is recommended. 
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Figure 5.7 Flowchart of the proposed calculation method 
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PART II HIDDEN JOINT CONNECTIONS 
 

6 LITERATURE REVIEW 
 
Hollow sections enable architects to build elegant structures that show the exposed steel.  The 

most typical applications can be found in large-scale buildings such as airport terminals, 

bridges, arenas or exhibition halls.  To span the large dimensions of a roof or bridge structure, 

trusses are commonly used.  Flange-plate as well as gusset plate connections are usually found 

if it becomes necessary to splice the members of the truss.  Standard gusset plate connections 

(see Figure 6.1) in which the gusset plate is slotted into the hollow section, with the plate 

protruding out of the slots at the two ends, as well as the flange-plate connections described in 

Part I, destroy the elegant appearance of the structure.  A need for invisible connections arises.  

Hidden joint connections (see Figure 6.1) represent such an invisible connection.  A cover (non-

structural) in the shape of the hollow section (see Figure 6.2) hides the bolted gusset plate that 

protrudes beyond the end of the hollow section.  The gusset plates are then completely out of 

sight.  With regard to the fabrication of the connection, in particular the welding inside the 

hollow section, a single shear connection with only two gusset plates placed slightly eccentric 

below and above the axis of the hollow section is not only more economical in fabrication than 

other arrangements, but also easy to erect.  A hidden joint free of eccentricity would require 

three plates; two parallel plates which are fitted into one hollow section and a single central 

plate which is fitted into the other hollow section.  The single plate would then be inserted in 

between the other two plates during erection.  As all welding has to be done from the open ends 

of the hollow section and the operating room for the welder is restricted to half of the cross 

sectional area of the hollow section, the number and length of welds should be minimised.  

Therefore, only a single shear connection with two gusset plates has been considered here.   
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Figure 6.1 Standard gusset plate connection (left) and hidden joint connection (right) 
 

cover

 
 
Figure 6.2 Hidden joint connection with cover 

Hidden joint connections can potentially fail in various modes and in various components of the 

connection: 

I. Hollow section 

a) gross yielding of the hollow section material, 

b) block shear tear-out along the welds, 
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c) shear lag failure due to stress concentrations at the weld end. 

II. Gusset plate 

a) gross yielding of the gusset plate material, 

b) block shear tear-out along the welds,  

c) net section failure of the gusset plate, 

d) shear lag failure of the plate due to stress concentrations at the weld end. 

III. Welds 

a) failure due to shear stresses parallel to the axis of the weld. 

IV. Bolts 

a) failure in single shear, 

b) bolt bearing failure of the gusset plate. 

 

Most failure modes for this connection type are well known and can be excluded by 

applying the design rules provided in national steel codes.  The least known failure mode is 

shear lag failure, in particular the rupture of the hollow section due to shear lag.  Unfortunately, 

specific research on hidden joint connections, especially with regard to shear lag of the hollow 

section, is not published or studied as yet.  Supposedly, standard gusset plate connections with 

slotted hollow sections (see Figure 6.1) have a nearly similar behaviour as hidden joint 

connections.  The following literature review therefore covers predominantly research done on 

slotted gusset plate connections. 

 

6.1 Shear Lag Failure of the Hollow Section 
 
Shear lag failure occurs if the unconnected circumference of the hollow section is not fully 

engaged and contributes only in part to the resistance of the member.  If the hollow sections are 

slotted as for standard gusset plate connections, local stress peaks at the slot ends cause 

initiating cracks that will result in an even earlier failure of the connection.  The location of 

these stress peaks coincides with the heat affected zone caused by the weld between the hollow 

section and the gusset plate.  The local stress peaks due to the slots will not occur in the non-

slotted hidden joint connections.  As these stress peaks decrease the hollow section capacity, the 

current design models for shear lag are bound to err on the safe side.  

6.1.1 International Specifications 
 
Eurocode 3 [1992], particularly Eurocode 3 Part 1-8 [prEN 1993-1-8, 2002], addresses shear lag 

failure in bolted connections for angles connected by one leg and other unsymmetrically 
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connected tension members by giving formulae to calculate the effective net area depending on 

the connected length.  Unfortunately, these design rules are only applicable for bolted 

connections as the formulae use the bolt hole diameter to determine the reduction factor of the 

net section (see Table 3.7 in Eurocode 3, Part 1-8 [prEN 1993-1-8, 2002]).  For connections 

with welds, no specific design method is provided in the Eurocode.  Shear lag is mentioned in 

connection with locally introduced shear loads causing bending moments in longitudinally 

stiffened plated structures.  Formulae are given to calculate an effective width used for the 

buckling analysis of thin gauge members and sheets [Eurocode 3 Part 1-3, prEN 1993-1-3, in 

prep.] and plated structural elements [Eurocode 3 Part 1-5, prEN 1993-1-5, in prep].  For axial 

tension loading, reference is made to the earlier-mentioned formulae for bolted connections of 

angles connected by one leg and other unsymmetrically connected tension members. 

The American specification for structural hollow sections [AISC 2000] uses the concept 

of "effective net area" which refers to Clause B3-2 in the LRFD specifications for structural 

steel buildings [AISC 1999].  The design method provided is based on research carried out by 

Chesson and Munse [1963].  An eccentricity factor "U" is calculated from the connection 

eccentricity "x"  (see Figure 6.3) and the welded connection length "Lw": 

U = 1 - 
wL

x  ≤ 0.9 (Equation 6.1), 

with:  x  =
)hw(4

hw2h

ii

ii
2
i

+
+

  for rectangular  (Equation 6.2a), 

and x  =
8
3 hi for square hollow sections (Equation 6.2b). 

 

The effective net area is then calculated as: 

A'ne = Ane · U  (Equation 6.3). 

As the hollow section in the hidden joint connections is unslotted, the net section "Ane" 

equals the gross cross sectional area of the RHS, "Ai". For gusset plate connections with slotted 

hollow sections (see Figure 6.1), the cross sectional area of the RHS is reduced by the area of 

the slot (Ane = Ai - 2tp·ti).  In practise, the slot width tslot is usually greater than tp to allow ease of 

fabrication, and in such cases Ane = Ai - 2tslot·ti 
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Figure 6.3 Hidden Joint dimensions and symbols 
 

Recently, a general examination of the AISC LRFD shear lag design provision has 

been given by Kirkham and Miller [2000].  Based on recent studies, it was concluded that the 

existing design approaches are overly conservative and further research is necessary. 

The former Canadian Standard CAN/CSA-S16.1-94 [1994] addresses shear lag in 

elements connected by a pair of welds parallel to the load by calculating the "effective net area" 

(Clause 12.3.3) based on an efficiency factor that depends on the ratio between the distance 

between the welds around the hollow section perimeter "w" and the connection length "Lw".  

The distance between the welds for slotted plate hollow section connections in nominally taken 

as half the hollow section circumference (see Figure 6.3) [Packer and Henderson 1997].  The 

efficiency factor is: 

• 1.0 for Lw/w ≥ 2.0; 

• 0.87 for 2.0 > Lw/w ≥ 1.5; 

• 0.75 for 1.5 > Lw/w ≥ 1.0. 

Lw/w values smaller than 1.0 are not permitted.  In their current design guide for hollow 

sections, Packer and Henderson [1997] propose an efficiency factor of 0.62 for connections with 

0.6 ≤ Lw/w < 1.0 based on the results of an experimental study by Korol et al. [1994].  For 

values smaller than Lw/w = 0.6 shear rupture of the base metal of the hollow section along the 

weld line is considered to govern. 
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The current Canadian Standard CAN/CSA-S16-01 [2001] is slightly less conservative 

then the superseded code of 1994.  The efficiency factor according to the new provisions on 

shear lag (Clause 12.3.3.3) is: 

• 1.0  for Lw/w ≥ 2.0; 

• 0.5 + 0.25 Lw/w  for 2.0 > Lw/w ≥ 1.0; 

• 0.75 Lw/w for 1.0 > Lw/w. 

The new code allows Lw/w values smaller than 1.0.  Compared to the American specifications, 

the new Canadian specification is more conservative if applying to hollow section connections 

with Lw/w values smaller than about 1.5.   

6.1.2 Recent Research on Shear Lag 
 
Specific research on hidden joint connections, especially with regard to shear lag of the hollow 

section, is not published or studied as yet.  For connections with the gusset plate slotted into the 

hollow section, only a few studies have been carried out.  In an experimental study by British 

Steel [Swinden Laboratories 1992] on slotted end plate connections for circular, square and 

rectangular hollow sections, 13 of the 24 specimens failed by shear lag. 

The results of an experimental as well as numerical investigation on shear lag failure 

for slotted circular hollow sections were given by Cheng et al. [1996].  Nine tests on gusset 

plate connections to CHS tension members were performed.  None of the specimens failed by 

shear lag.  However, the experimental and numerical investigation showed that considerable 

stress concentrations occur at the slot ends.  Comparing the results of the study with the 

Canadian [Cheng et al. 1998] as well as the American specifications [Cheng and Kulak 2000], it 

is shown that neither code accurately models the behaviour of slotted round tubular (CHS) 

connections.  In contrast to the specifications, Cheng and Kulak [2000] conclude that shear lag 

failure is not critical for tubular sections if the connection length is longer than 1.3 times the 

diameter of the circular hollow section and provided that the slot end is welded (U = 0.76 with 

x  = di/π for round hollow sections, or Lw/w = 0.83 theoretically, but Cheng and Kulak imply 

that U = 1.0 if Lw > 1.3 di).  

A study on shear lag in slotted square and rectangular hollow sections has been 

performed by Korol et al. [1994].  A total of 18 specimens was tested under tensile loading with 

seven specimens failing by shear lag.  Shear lag failure was characterized by a circumferential 

tube failure at the beginning of the weld in combination with reduced deformation (sudden 

failure).  The authors concluded that for six of the seven specimens that failed by shear lag, all 

with Lw/w ≈ 1.0, the connection capacity was nearly equal to the tensile capacity of the hollow 

section, Nu = Ane · fu.  Only one of the specimens (Lw/w = 0.61) failed very prematurely due to 
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shear lag.  For Lw/w-ratios smaller than 0.6, base metal shear resistance of the hollow section 

governed.  The influence of the eccentricity " x " on the connection capacity was found to be 

only minor.  Based on the results of the earlier study, Korol [1996] proposed a slightly modified 

approach for the calculation of the effective shear lag net section area.  Instead of using the 

efficiency factors as given in the Canadian or American specifications, less conservative 

formulae were provided: 

• for Lw/w ≥ 1.2 (net/gross section failure governs), α = 1.0; (Equation 6.4a) 

• for 1.2 > Lw/w ≥ 0.6 (shear lag governs), 

α = 0.4 + 0.5 · Lw/w  (Equation 6.4b); 

• for Lw/w < 0.6 block shear tear-out governs. 

In contrast to the American specifications, the eccentricity factor "U" is now calculated as 

follows: 

U = 1 – 0.4 
wL

x  (Equation 6.5). 

The effective shear lag net section is then: 

A'ne = Ane · α · U (Equation 6.6). 

 

Table 6.1 compares the strength predictions for shear lag failure (including gross 

section fracture of the hollow section) of the different calculation methods for the specimens 

tested by British Steel [Swinden Laboratories 1992], Korol et al. [1994] and Cheng et al. [1996].  

Specimens that failed in the gusset plate or bolts or by block shear tear-out of the hollow section 

along the welds have not been considered here.  All methods err on the safe side (mean values 

larger than 1.0).  The formulae by Korol [1996] and by AISC [2000] give better predictions than 

the more conservative design method by Packer and Henderson [1997].  For connections with 

very low Lw/w-ratios, the predicted capacity according to the design method by AISC [2000] is 

too high (unsafe) compared to the test result.   
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Table 6.1 Comparison of calculation methods  
  

Test Series Nux/Nu 
Korol 
[1996] 

AISC 
[2000] 

Packer and 
Henderson [1997] 

Mean 1.14 1.18 1.43 Swinden 
Laboratories 

[1992] 

6 tests on CHS and 10 
tests on RHS 
connections 

Coeff. of Var. 
(%) 8.1 7.4 12.4 

Mean 1.12 1.06 1.53 Korol et al. 
[1994] 

7 tests on RHS 
connections Coeff. of Var. 

(%) 2.4 7.4 12.2 

Mean 1.25 1.29 1.49 Cheng et al. 
[1996] 

9 tests on CHS 
connections Coeff. of Var. 

(%) 6.9 3.3 13.8 
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7 EXPERIMENTAL INVESTIGATION 

7.1 Introduction 
 
The experimental work, which has been carried out within the framework of CIDECT Research 

Programme 8E, had two main objectives, namely to study the structural strength and possible 

failure modes of this connection type as well as to establish the technical feasibility of the 

fabrication (welding).  The data from the tests have also been used to verify a finite element 

model which has been used in a subsequent numerical study. 

 

7.2 Scope of Experimental Programme 
 
The experimental study consisted of six hidden joint connection tests under tensile loading.  Hot 

rolled square S355 J2H hollow structural sections [EN 10210-1 1994], of sizes 200 x 6.3 mm 

and 200 x 12.5 mm and a nominal yield strength of 355 MPa were used.  The gusset plate 

material was Grade S355 J2G3 [EN 10025 1994] with a nominal yield strength of 355 MPa.  

The stress-strain curves of the tensile coupon tests can be found in Appendix Part II.  The 

material for the hollow sections with similar dimensions, as well as for the gusset plates with 

similar thicknesses, each came from a single length.  The gusset plate thickness varied between 

12 mm and 25 mm.  Tables 7.1 and 7.2 show the measured dimensions and material properties 

of the six specimens.  High tensile strength hexagonal fitted bolts of Grade 10.9 [ISO 898-1 

1999], size M24 and M30, with a nominal design shear strength (γM = 1.25, single shear plane) 

of 199 kN and 311 kN respectively have been used throughout.  Material tests on the bolts were 

not carried out as the bolts were not critical elements. 

 

Table 7.1 Measured dimensional properties of test specimens 
 

Specimen hi 
(mm) 

ti 
(mm) 

Ai
1) 

(mm2) 
tp 

(mm) 
wp 

(mm) 
Lw 

(mm) 
a2) 

(mm)
rout 

(mm)
x  

(mm) 
w3) 

(mm) n d 
(mm) 

VK6-2-04 160 8.1 
VK6-2-06 

12.5 
240 8.3 

4

VK6-3-04 160 8.2 
VK6-3-06 

200 6.4 5090 
20.0 

187 

240 8.3 

17.5 75.0 400 24 

VK12-2-04 160 8.1 
VK12-2-06 

199 12.4 8940 24.7 174 
240 8.0 

24 74.6 398 
6

30 

1)  Measured area obtained by weighing a specific length of hollow section and using a density of 
7850 kg/m3 [Eurocode 3 Part 1-2 1995] 

2)  Measured throat thickness of the fillet weld between hollow section and gusset plate 
3)  Measured distance between the welds, equals half the hollow section circumference 
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Table 7.2 Measured material properties of test specimens 
 

  fy (MPa) fu (MPa) εu1 (%)1) E (MPa) 
Plate     

tp = 12 mm 364.0 525.5 27.6 228000 
tp = 20 mm 365.5 538.8 30.0 252258 
tp =25 mm 428.02) 567.52) 26.02) 2215002) 

Hollow Section         
ti = 6.5 mm 385.5 537.5 28.9 242000 
ti = 12.5 mm 394.5 536.0 26.4 204000 

1) Measured over a gauge length of 60 mm (t = 6.5 mm), 90 mm (t = 12 and 12.5 mm), 100 mm 
(t = 25 mm, round coupons with dcoupon = 20 mm) and 140 mm (t = 20 mm) 

2)  Derived from tensile coupon tests with round coupons 
 

7.3 Testing and Measuring Equipment 
 
All specimens have been tested in a vertical testing frame (see Figure 7.1).  The load was 

applied by a pair of hydraulic cylinders that jacked up a horizontal beam on top of the frame.  

Load cells which were placed between the hydraulic cylinders and the beam monitored the 

applied load.  Besides the measurements of the load, the strains on the hollow section as well as 

the gusset plate were monitored by 12 strain gauge rosettes (triaxial, 45°) on each specimen.  

The exact location of the strain gauges is shown in Figure 7.2.   

 

7.4 Specimen Fabrication and Testing 
 
Special attention has been given to the fabrication of welds.  GMAW welding (gas-shielded 

metal arc welding) was used for all fillet welds.  Shielding gas M21, 82% Argon and 18% CO2, 

[EN 439 1994] and wire electrodes G4SI1, Ø 1mm, [EN 440 1994] were used throughout.  

Figure 7.3 shows a close-up of a typical weld.  The length of the weld connecting the hollow 

section and the gusset plate is restricted by the operating space inside the hollow section.  It was 

found that the limit for square hollow sections with hi = 200 mm is roughly 240 mm or 1.2 times 

the height of the hollow section.  A weld length of 1.2 times the height of the hollow section is 

probably feasible for larger hollow sections as well.  In any case, the weld length should not 

exceed the arm length of the welder for practical considerations. 
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Load cell

Hydraulic cylinder 

Figure 7.1 Specimen VK6-3-06 in testing frame (typical) 
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Figure 7.2 Strain gauge positions 

 

Figure 7.3 Typical fillet weld 
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7.5 Test Results 
 
A total of six specimens were tested.  Table 7.3 shows the connection strength as well as the 

failure mode for each specimen.  All specimens except specimen VK6-2-04 with the smallest 

plate thickness (tp = 12.5 mm) and weld length (Lw = 160 mm) failed due to plate tensile failure 

through the first line of bolts (see Figure 7.4).  Specimen VK6-2-04 failed due to shear lag of 

the plate, yet with plate failure imminent (see Figure 7.5).  Bending of the gusset plate (see 

Figure 7.6) was observed for all specimens.  None of the hollow sections or welds showed any 

signs of failure.  The complete results of all strain gauge measurements on the hollow section 

and gusset plate can be found in the Appendix Part II. 

All specimens failed at tensile loads higher than the calculated net section failure load 

of the gusset plate (at the first line of bolts).  The difference between calculated and measured 

failure loads is between 10% and 16% (see Table 7.3).  In tensile coupon tests the stress 

distribution is constant over the full width of the cross section material and the material is free 

to neck.  The stress distribution in the gusset plates during the specimen tests is not constant. 

Stress peaks exist around the bolt holes.  Due to a restriction of deformation in this area (caused 

by the remaining material) the stress can increase and initiate "premature" failure. 

 

Table 7.3 Test results 

Test Nux (kN) Nup(kN)1) Nux/Nup Failure Mode 

VK6-2-04 1003 1.11  Shear lag failure of the plate and plate 
tensile failure imminent 

VK6-2-06 990 
901 

1.10 Plate tensile failure 
VK6-3-04 1646 1.11 Plate tensile failure 
VK6-3-06 1632 

1481 
1.10 Plate tensile failure 

VK12-2-04 1808 1.15 Plate tensile failure 
VK12-2-06 1828 

1574 
1.16 Plate tensile failure 

1) Nup = predicted net section strength of gusset plate 
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Figure 7.4 Plate tensile failure along the bolt line for specimen VK6-3-04 (typical for 

all specimens except VK6-2-04) 

 

 

Figure 7.5 Shear lag failure of the gusset plate for specimen VK6-2-04 (smallest plate 
thickness tp = 12.5 mm, and weld length, Lw = 160 mm) 
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Figure 7.6 Bending in the gusset plate for specimen VK6-3-06 (typical for all 
specimens) 

 

7.5.1 Results of Strain Gauge Measurements 
 
Figure 7.7 shows the measured strains on the hollow section at a particular cross section during 

the test for specimen VK6-3-04.  The strains are measured along the axis of the hollow section 

(loading direction).  The maximum strain that can be measured by this type of strain gauge is 

about 5000 to 6000 µm/m (= 5 to 6 ‰).  As expected, the strain readings of strain gauge 1 

(strain gauge at the centre line) are much higher compared to strain readings of strain gauges 2 

and 3.  The strains at the corner closer to the eccentrically placed gusset plate (strain gauge 2) 

are also slightly higher than the strains at the corner further away from it (strain gauge 3).  

Despite the rather high strain readings from the strain gauges of the hollow section, no visible 

plastic deformation could be reported in the hollow sections after failure of the connection.  

Figure 7.8 compares the principal strains and the principal angle for strain gauge 1 

(hollow section, centre position) of specimen VK6-3-04.  The principal strain angle stays 

constant at about 6° during the test.  The angle between loading direction and principal strain 

direction is caused by the slight eccentricity of the gusset plate in the single shear connection. 

Figure 7.9 compares the strain readings of strain gauge 1 (strain gauge at the centre line) 

in the longitudinal axis direction for specimens VK6-3-04 and VK6-3-06.  The specimens only 
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 113

vary with regard to the length of the gusset plate inside the hollow section, such that strain 

gauge 1 for VK6-3-06 is deeper inside the RHS than for VK6-3-04. However, the strain gauge 

readings for both specimens are still about the same. 

 

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000 7000 8000
Strain (µm/m)

C
on

ne
ct

io
n 

L
oa

d 
(k

N
) Strain Gauge 1

Strain Gauge 2
Strain Gauge 3

 
Figure 7.7  Hollow section strain gauge readings (VK6-3-04) 
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Figure 7.8 Principal strains and principal angle of strain gauge 1 (VK6-3-04) 
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Figure 7.10 compares the gusset plate strains for specimen VK6-2-04 which failed by 

shear lag fracture of the plate.  The strain readings of the strain gauges on the gusset plate show 

increasing strains closer to the hollow section (strain gauge 9).  
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Figure 7.9 Comparison of strain results of strain gauge 1 on hollow section for 

specimens with varying lengths "LW" 
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Figure 7.10  Gusset plate strain gauge readings (VK6-2-04) 
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7.6 General Observations from the Testing Program 
 
The experimental study on six hidden joint connections indicates that shear lag in the hollow 

section is not critical for such hidden joint connections, within the parameter range of these six 

experiments.  Due to the restricted width of the gusset plates, failure is prone to occur in this 

component of the connection for all practical cases.  The bolt holes decrease the net section of 

the gusset plates even more.  Due to the eccentric placement of the gusset plates along the axis 

of the connection, bending of the gusset plates was apparent during the test.  The use of thicker 

gusset plates is restricted, as thicker gusset plates which would allow shear failure in the 

rectangular hollow section decrease the operating room for the welder. Embrittlement and cold 

cracking provisions require a minimum throat thickness of the fillet weld, e.g. a ≥ tmax -

0.5 mm as given in the German steel code DIN 18800-1 [1990].  On the other hand, throat 

thickness is restricted by the minimum thickness of each component, a ≤ 0.7·min t [DIN 18800-

1 1990] to exclude warping and minimise residual stresses.  

The bolt size is a further concern in the design of this connection type.  Assuming two 

bolts across the plate width, the maximum bolt hole size can be calculated from the minimum 

edge distances, 1.2 d', and the bolt spacing, 3 d', as given in Eurocode 3 [1992].  The maximum 

possible size "d' " of the bolt holes is therefore 
4.5

1  times the width of the gusset plate. 

The results of the experimental test program indicate that shear lag in the hollow section 

is not likely not to be critical, for all practical cases, provided that the hollow section material is 

of the same grade, or higher than, the gusset plate material.  Net section failure of the gusset 

plate along the line of bolts is the dominant failure mode.  The length of the gusset plate inside 

the hollow section, length "Lw", only had a minor influence on the strains recorded by the strain 

gauges on the hollow section. 
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8 VALIDATION OF NUMERICAL MODELS 

A general introduction to numerical studies can be found in Section 3.1.  In accordance with the 

earlier numerical study on bolted flange-plate connections the complete pre- and post-

processing as well as the analysis of all finite element models has been carried out using the 

finite element package ANSYS 5.6 [Swanson Analysis System Inc. 1999].   

8.1 General Consideration 
 
The following general considerations are made regarding the finite element models for the 

hidden joint connections, with respect to: 

1. Element types; 

2. Geometrical and material non-linearities; 

3. Solution techniques used for the numerical analysis; 

4. Boundary conditions; 

5. Element discretisation. 

 

8.1.1 Element Type used in the Study 

 
Element type solid45, an 8-noded 3D structural solid element with 3 degrees of freedom per 

node, has been used for all components of the connection.  This linear solid element includes 

plasticity, large stress and strain capabilities, and stress stiffening.  Reduced integration with 

hourglass control has been applied as the use of full integration is not recommended for linear 

solid elements [Puthli and van der Vegte 2002]. 

To verify and establish the choice of this element type, three finite element models of 

specimen VK12-2-04 have been done.  All components in the first model have been modelled 

using 8-noded, linear solids.  The hollow section in the second model was meshed with 20-

noded solids while the remaining components used linear solids.  Quadratic solid elements (20-

noded brick element, solid95) could not be used for all components of the connection, as the 

number of nodes would have exceeded the maximum number of nodes in the ANSYS version 

used.  The last model consisted of shell elements.  Figure 8.1 shows the Load-Displacement 

curves for all three FE-models of specimen VK12-2-04.  The difference between the three 

models is only marginal.  Table 8.1 compares the CPU time of the three models.  The FE-model 

using both linear and quadratic solids requires about five times more time than the models only 

with linear solids or shell elements.  Finally, 8-noded solid elements have been chosen for the 
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finite element study as the welds can be discretized more accurately with solid than with shell 

elements.  
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Figure 8.1 Load-Displacement curve of specimen VK12-2-04 

Table 8.1 CPU Time for the different models of specimen VK12-2-04 

FE-Model CPU-time (min.) # of nodes # of elements
8-noded solids 31.1 9858 7074 

8-noded and 20-noded solids 179.2 19389 7074 
Shell elements 25.0 2768 2675 

 

 

8.1.2 Geometrical and Material Non-Linearities 
 
The element type (solid45) used allows "large strains".  Strains are referred to as "large" if they 

are no longer infinitesimal (they are finite).  Shape changes (e.g., area, thickness, etc.) are then 

taken into account.  Deflections and rotations can therefore be arbitrarily large.   

The material properties were input as a multi-linear curve with the engineering stress 

and strain converted into the true stress and strain values (see Figure 8.2).  A closer description 

of the relationship between true and engineering stress and strain can be found in chapter 3.3.2.  

To check the material input, tensile coupons were modelled with finite elements and the Load-

Displacement curves of the FE-models compared to the data from the tensile coupon tests of the 

specimen material (see Figure 8.3).  With these tensile coupon FE models the maximum 

equivalent plastic strain for rupture of the material was also determined.  Elements which 

exceed this equivalent plastic strain limit are assumed to have cracked.  If any integration point 
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in an element during the analysis of the hidden joint connections reaches the equivalent plastic 

strain, the stiffness of this element is drastically reduced in the following load steps to simulate 

the "loss" of this element.  
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Figure 8.2   Engineering and true stress-strain curves 
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Figure 8.3   Load-Displacement graph of tensile coupon 
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8.1.3 Solution Techniques used in the Study 
 
The solver in the study is a frontal direct equation solver.  The solution has been carried out in 

multiple load steps.  The load is applied by displacement (see following Chapter) of the nodes at 

the end of the hollow section away from the vicinity of the connection.  In the elastic region of 

the test, the increase in load is very large for small changes in displacement.  On the other hand, 

a smaller increase or decrease in load takes place once plasticity occurs, due to loss of stiffness.  

To account for this behaviour the displacement increments are chosen to be very small for the 

first few load steps and to increase in the plastic regions.  After each load step, the solver has 

been exited and specific results (load, displacement, strains at strain gauge locations) have been 

written to a list file.  In addition, the equivalent plastic strain was determined for each element 

of the connection and compared to the strain limit.  The stiffness of each element that exceeded 

the strain limit was reduced drastically to simulate a crack in the element (see preceding 

Chapter).  The analysis was then restarted using the restart option which employs the deformed 

model for further analysis.   

 

8.1.4 Discretization and Boundary Conditions 
 
Due to the eccentricity of the gusset plate, the connection possesses only a single plane of 

symmetry.  Therefore, only half of the specimen has been modelled (see Figure 8.4).  As failure 

of the bolts was not of interest in the study, the bolts were not discretizised and the finite 

element model ended at the first line of bolts.  The welds were fully modelled. Figure 8.5 shows 

the gap between the gusset plate and the hollow section, assuming that the fillet welds have no 

penetration into the gusset plate.  The gap was modelled to prohibit any direct stress transfer 

between the gusset plate and the hollow section. 

Exact measurements of the wall thickness of the hollow sections in the experimental 

study were made in the corners as well as in the flat areas.  It was found that the thickness 

varied up to 17% between the thicker corners and the flat part of the hot-formedhollow section.  

These changes in thickness have been incorporated into the calibration model of the hollow 

section. 

The boundary conditions are shown in Figure 8.6.  Symmetry boundary conditions have 

been employed along the plane of symmetry (translations of the solid elements at the planes of 

symmetry of the plate and the hollow section are fixed normal to the plane of symmetry) and the 

nodes at the gusset plate end are also fixed.  The specimens were loaded by displacing the nodes 

at the end of the hollow section.  
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Figure 8.4   FE-Model of specimen VK6-2-04 

 
 

 

 

Gap 

 

Figure 8.5   Gap between hollow section and plate 
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Figure 8.6 Boundary conditions 

 

8.2 Validation of the Numerical Models with the Experimental Results 

 
Table 8.2 shows the comparison of maximum loads for the six tested specimens.  Generally, the 

finite element models have slightly lower capacity than the tested specimens (mean of 0.96).  

Failure occurs at the first line of bolts in the gusset plate.  In the FE-model this location is 

restricted by its boundary conditions.  This can cause slight errors. In addition, any load which 

has been transferred by friction between the gusset plates in the test is not accounted for in the 

numerical model.  A full representation of the gusset plate and bolts (including contact and 

friction) would have meant excessive costs in analysis time.  As the main area of investigation 

of the numerical research lay in the study of the hollow section, the error in these components 

was neglected. 

Figure 8.7 compares the strain gauge readings (strains parallel to member axis, in 

loading direction) on the hollow section of connection VK6-3-04 in the test and the numerical 

study for two load stages.  Specimen VK6-3-04 has the biggest plate to hollow section wall 

thickness ratio, tp/ti-ratio of 3, and the smallest weld length, Lw = 160 mm, thus having the 

highest longitudinal strains in the hollow section of all specimens.  The result for the central 
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strain gauge (∆y = 0) at 1072 kN has been linearly extrapolated to about 7800 µm/m, from 

earlier load stages as the readings of the strain gauges stopped at about 6500 µm/m.  The 

comparison for the strain of the gusset plate is shown in Figure 8.8.  Therefore, good agreement 

is observed between the results of the numerical and experimental study can be found for the 

hollow section and reasonable agreement for the gusset plate at higher loads.  The less 

favourable results for the gusset plate are probably caused by the vicinity of the gusset plate end 

in the FE-model (see Figure 8.6). 

 

Table 8.2 Comparison between test and numerical results 

Test FE-Model 
Specimen ti 

(mm) 
tp 

(mm) 
x /LW 
(mm) Nux (kN) NuFE (kN) 

NuFE/ Nux 

VK6-2-04 0.40 1003 980 0.98 
VK6-2-06 

12.5 
0.60 990 981 0.99 

VK6-3-04 0.40 1646 1571 0.95 
VK6-3-06 

6.4 
20.0 

0.60 1632 1585 0.97 
VK12-2-04 0.40 1808 1706 0.94 
VK12-2-06 

12.4 24.7 
0.60 1828 1708 0.93 

     Mean 0.96 
   Coefficient of variation (%) 2.25 
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Figure 8.7   Strain distribution on hollow section side wall, specimen VK6-3-04 
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9 NUMERICAL STUDY  

9.1 Numerical Model 
 
The numerical model that has been verified by the results of the experimental study can be 

summarized as follows: 

• 8-noded solid elements were used for all parts of the connection. 

• Symmetry of the connection was taken into account by modelling only a half of the 

connection and applying suitable boundary conditions.  Displacement controlled loading 

conditions were simulated by applying axial displacements to the nodes of the hollow 

section end.   

• Bolts were not discretizised and the finite element model ended at the first line of bolts. 

• Nominal dimensions of the members were used for the parameter study.  The square 

hollow sections are hot rolled 200 x 6.5 mm and the rectangular hollow sections are either 

300 x 200 x6.5 mm or 400 x 200 6.5 mm hollow sections all with an outside corner radius 

of 10 mm [EN10210-2 1997] (see Table 10.1 in Chapter 10.2).  The gusset plate thickness 

tp = 20 mm relates to about three times the hollow section thickness.  The gusset plate 

width of 187 mm is determined by the width and thickness of the hollow section. 

• The hollow section steel grade was S235 with a yield strength of 235 MPa and an ultimate 

strength of 340 MPa [EN 10210-1 1994].  The steel grade of the gusset plate and welds was 

chosen to be S355 with a yield strength of 355 MPa and an ultimate strength of 490 MPa 

[EN 10025 1990].  To exclude any failure in the gusset plate or welds, the plate and weld 

strength was increased (fy = 600 MPa, fu = 800 MPa) for some models. 

 

To relate the capacity of the hidden joint connection with the capacity of the steel 

tension member, one square and two rectangular control tubes were modelled and calculated.  

The control tubes have the same dimensions and are meshed in the same way as the hollow 

sections in the parametric study except that there is no plate or welding present.  Figure 9.1 

shows the Load-Displacement graph of the square control tube.  The cross sectional area of the 

square control tube (ti = 6.5 mm) is Ai = 4872 mm2 resulting in a calculated yield strength of 

1145 kN and a tensile strength of 1656 kN.   
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Figure 9.1  Load-Displacement graph of square control tube 

 

9.2 Scope of Numerical Study 

 
The design models in the current codes address shear lag by calculating efficiency factors based 

on either the ratio of connecting length "Lw" to "w", the distance between the welds measured 

around the hollow section perimeter (Clause 12.3.3 in CAN/CSA-S16.1-94 [1994]), or based on 

the ratio of connecting length "Lw" to eccentricity "x" , the vertical distance between the welds 

and the centre of gravity of the connected part (Clause B3-2 in the American LRFD 

specification for structural steel buildings [AISC 1999]).  Figure 9.2 shows the respective 

dimensions.   

To study the ratio of "Lw" to "w" and the ratio of "Lw" to "x" , nine hidden joint 

connections for square hollow sections (wi/hi = 1.00) and another 10 connections for rectangular 

hollow sections (wi/hi = 0.50 and 0.67) have been modelled.  In contrast to the experimental 

study, it was possible to study connection lengths "Lw" greater than 1.2 times the height of the 

hollow section.  Due to the slight eccentricity of the gusset plate, the length "w" as well as the 

eccentricity "x"  differ between the top and bottom side of the hollow section.  Choosing the 

more critical side for the further study, "w" and "x"  can be calculated as w = hi + wi and 

x  =
)hw(4

hw2h

ii

ii
2
i

+
+

, respectively.   
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Figure 9.2 Critical dimensions for shear lag of the hollow section 

 

The scope of the numerical study was thus: 

• LW/w-ratio of 0.40 to 1.20; 

• x /LW-ratio of 0.10 to 0.47; 

• wi/hi-ratio of 0.50, 0.67 and 1.00. 

 

9.3 Numerical Results and Observations 

 
9.3.1 Square Hidden Joint Connections 
 

Table 9.1 shows the results of the numerical study on square hidden joint connections.  The ratio 

of connection strength to ultimate strength of the hollow section varies between 63% and 96%.  

Generally, an increase in connection length "Lw" results in an increase in connection strength.  

For connections with high Lw/w-ratios (Lw/w ≥ 1.0) only marginal differences exist between the 

strength of the hidden joint connection and the ultimate strength of the pure tension member 

(control tube).   
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Table 9.1  Results of square connections (wi/hi = 1.00) 
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Properties Parameters Results 

 wi 
(mm) 

hi 
(mm)

Lw 
(mm) 

w 
(mm) 

x  
(mm)

Nyi 
(kN) 

Nui 
(kN) i

i

h
w  

w
Lw

wL
x NuFE 

(kN) yi

uFE

N
N

 

ui

uFE

N
N  

160 0.40 0.47 1049 0.92 0.63 
200 0.50 0.38 1243 1.09 0.75 
240 0.60 0.31 1397 1.22 0.84 
280 0.70 0.27 1513 1.32 0.91 
320 0.80 0.23 1559 1.36 0.94 
360 0.90 0.21 1575 1.38 0.95 
400 1.00 0.19 1587 1.39 0.96 
440 1.10 0.17 1590 1.39 0.96 

200 200 

480 

400 75.0 1144 1656 1.00 

1.20 0.16 1590 1.39 0.96 

e load-deformation behaviour of the hidden joint connections depends on the 

 length (see Figure 9.3).  Hidden joint connections with a low Lw/w-ratio have less 

n capacity.  The connections with Lw/w-ratios smaller than or equal to 0.67 fail 

by block shear tear-out.  The connections failing by shear lag all reach the yield 

 the hollow section in contrast to the connections failing by block shear tear-out.  The 

s with Lw/w-ratios greater than or equal to 1.0 show a load-deformation behaviour 

ar to that of the hollow section (control tube).  However, all connections posess the 

al stiffness. 
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Figure 9.4 shows the influence of Lw/w-ratio on the connection capacity.  The white 

dotted line is a bilinear approximation of the results from the FE-Analyses.  In an earlier study 

on slotted hollow sections by Korol [1996], block shear tear-out of the base metal along the 

weld governed for Lw/w-ratios smaller than 0.6, which roughly compares to the 0.67 value 

found in this numerical study (dashed line).  For connection lengths greater than 1.2 times the 

distance between the welds (Lw/w = 1.2), influence of shear lag becomes negligible.  Figures 9.5 

to 9.8 show the equivalent plastic strain distribution of the hollow section at failure load for 

connections with varying Lw/w-ratios.  A full plastification along the welds can be seen for low 

Lw/w-ratios, Lw/w = 0.4 and 0.6.  For Lw/w = 0.8, the equivalent plastic strains are concentrated 

locally around the perimeter at the cross-section where the connection ends, which initiates 

rupture due to shear lag.  The hollow section in the connection with Lw/w = 1.0 shows these 

high strains over the whole length (gross yielding/plastifications).  These findings agree with the 

behaviour of the Load-Displacement curves (see Figure 9.3).   
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Figure 9.4 Influence of Lw/w-ratio on connection capacity 
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Figure 9.5 Equivalent plastic strains at failure for the connection with Lw/w = 0.4 

    
Figure 9.6   Equivalent plastic strains at failure for the connection with Lw/w = 0.6 
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Figure 9.7 Equivalent plastic strains at failure for the connection with Lw/w = 0.8 

    
Figure 9.8 Equivalent plastic strains at failure for the connection with Lw/w = 1.0 
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9.3.2 Rectangular Hidden Joint Connections 
 

The results of the rectangular hidden joint connections with a width to height ratio of the hollow 

section (wi/hi-ratio) of 0.67 and 0.50 are shown in Tables 9.2 and 9.3 respectively.  As with the 

results of the square hidden joint connections, the ratio of connection strength to yield or 

ultimate strength of the hollow section varies considerably (81% to 136% or 56% to 94% 

respectively).  The connection with the lowest strength ratio NuFE/Nyi is connection R20_3_04 

with a wi/hi-ratio of 0.5 and a LW/w-ratio (connection length to distance between the welds) of 

0.4.  The highest strength ratio NuFE/Nyi is attained by connection R15_3_12 with a wi/hi-ratio of 

0.67 and a LW/w-ratio of 1.2.   

 

Table 9.2  Results of rectangular connections with wi/hi = 0.67 

 Properties Parameters Results 

Connection wi 
(mm) 

hi 
(mm)

Lw 
(mm) 

w 
(mm) 

x  
(mm)

Nyi 
(kN) 

Nui 
(kN) i

i

h
w  

w
Lw

wL
x NuFE 

(kN) yi

uFE

N
N

 

ui

uFE

N
N  

R15_3_04 200 0.40 0.40 1236 0.85 0.59 
R15_3_06 300 0.60 0.27 1636 1.13 0.78 
R15_3_08 400 0.80 0.20 1868 1.29 0.89 
R15_3_10 500 1.00 0.16 1961 1.35 0.93 
R15_3_12 

200 300 

600 

500 80.0 1450 2098 0.67 

1.20 0.13 1979 1.36 0.94 
 

Table 9.3  Results of rectangular connections with wi/hi = 0.50 

 Properties Parameters Results 

Connection wi 
(mm) 

hi 
(mm)

Lw 
(mm) 

w 
(mm) 

x  
(mm)

Nyi 
(kN) 

Nui 
(kN) i

i

h
w  

w
Lw

wL
x NuFE 

(kN) yi

uFE

N
N

 

ui

uFE

N
N  

R20_3_04 240 0.40 0.35 1429 0.81 0.56 
R20_3_06 360 0.60 0.23 1865 1.06 0.73 
R20_3_08 480 0.80 0.17 2173 1.24 0.86 
R20_3_10 600 1.00 0.14 2309 1.31 0.91 
R20_3_12 

200 400 

720 

600 83.3 1756 2540 0.50 

1.20 0.12 2342 1.33 0.92 
 

The load-displacement curves of the rectangular hidden joint connections (see Figures 

9.9 and 9.10) resemble the respective curves for the square hidden joint connections (see 

Figure 9.3).  The initial stiffness of the connections is similar regardless of the connection 

length "Lw".  Connections failing in block shear tear-out (Lw/w < 0.67) do not reach the yield 

plateau of the hollow section but start to yield early and fail suddenly.  The connections failing 

in shear lag reach the yield plateau of the hollow section but break before reaching the ultimate 

strength of the hollow section.  The connections with an Lw/w-ratio of 1.0 or higher show a 

deformation behaviour similar to that of the hollow section. 
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Figure 9.9 Load-Displacement Graph of rectangular hidden join
wi/hi = 0.67 
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Figure 9.10 Load-Displacement Graph of rectangular hidden join
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Figure 9.11 compares the different existing design methods with the results of the 

numerical analysis.  In accord with the comparison between existing experimental results of 

slotted gusset plate connections and the predictions by different design methods (see Section 

6.1.2), Korol [1996] again gives the best predictions.  While Korol suggests that shear lag is 

critical for Lw/w-ratios greater than or equal to 0.6, the results of this numerical study suggest 

that the lower bound for shear lag is roughly 0.67.   

The design method by Packer and Henderson [2002] seems to be overly conservative.  

Comparing the results of connections with the same Lw/w-ratio but varying wi/hi-ratios, the 

design method provided by AISC [2000] predicts the most favourable results for connections 

with a lower wi/hi-ratio.  Generally, all design methods err on the safe side.  All design methods 

have been developed for gusset plate connections with slotted hollow sections.  High stresses 

occur at the end of the slot inside the hollow section and can cause an initiating crack which will 

lead to an early failure of the connection.   
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Figure 9.11 Influence of Lw/w-ratio on connection capacity 
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10 ANALYTICAL STUDY AND SOLUTIONS 

10.1 Introduction 
 
Shear lag in hollow sections occurs if the unconnected parts of the hollow section circumference 

are not fully engaged and contribute only in part to the resistance of the member.  Failure in the 

hollow section is caused by the stress concentrations at the end of the weld between the hollow 

section and the gusset plate.  Figure 10.1 shows the location of these stress concentrations.   

      

Location of
crack initiation

Stresses at
critical

location

τ

σ

σ

   
Figure 10.1 Stresses at critical location (crack initiation) 

 

At the critical cross section, two axial and one shear stress can be distinguished in the plane of 

the hollow section web: 

• σ   caused by the tensile loading of the web; 

• σ   caused by the eccentricity of the load in the flanges; 

• τ   caused by the shear stress between hollow section and weld/plate. 
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Using these stresses an equivalent stress "σe" can be calculated as follows: 

σe = 222 3τ+σ+σσ−σ  (Equation 10.1). 

10.2 Determination of σ  , σ  and τ 

 
A simple idealisation is used for the following formulations.  The stresses in the top and bottom 

chord can be substituted by two forces along the top and bottom of the web (see Figure 10.2).  

The magnitude of these forces equals the load transferred by the top and bottom flange and can 

be calculated as follows: 

Nflange = 
w

a2w
2
N −⋅  (Equation 10.2), 

with  

a = out
i r

2
h

−  (Equation 10.3). 

The outside corner radii of hollow sections generally depend on the wall thickness as 

well as the forming process (hot rolled versus cold formed).  Table 10.1 shows the outside 

corner radii used for design according to EN 10210-2 [1997] and EN 10219-2 [1997]. 

Table 10.1  Outside corner radii of hollow sections according to European Standards 

Hollow section wall 
thickness ti 

Hot-rolled hollow sections 
[EN10210-2 1997] 

Cold-formed hollow sections
[EN10219-2 1997] 

ti ≤ 6 mm rout = 2.0 ti 
6 mm < ti ≤ 10 mm rout = 2.5 ti 

ti > 10 mm 
rout = 1.5 ti 

rout = 3.0 ti 
 

 

The load transferred in the web is: 

Nweb = 
w
aN

w
a2

2
N =⋅  (Equation 10.4). 

For simplicity, it is assumed in the analytical model, that Nflange acts at the extremities of the 

web before the tangent of the corner radius. 
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Figure 10.2  Side view of the gusset plate connection 

 

Due to the eccentricity of the load in the top and bottom flange, a moment exists which 

causes compressive stresses normal to the member loading in the web at the beginning of the 

connection and tensile stresses at the hollow section opening (see Figure 10.2).  Depending on 

the height of the web, "a", and the length of the connection, "Lw", the compressive force at the 

beginning of the weld is: 

w

flange

L
a

2
N

N ⋅=  (Equation 10.5). 

The stress at the critical cross section can now be calculated on the basis of the above 

assumptions.  The parallel stress in the critical area of the hollow section is assessed as follows: 

σ   = 
web

web

A
N

=
iA

N    (tension) (Equation 10.6). 

The stresses normal to the hollow section axis are caused by the eccentricity of the 

forces in the flange.   

at
N

i λ⋅
=σ = 

at
1

L2
aN

iw

flange

λ
=

λ
⋅−⋅

iw tL
1

w
a2w

4
N   (compression)  (Equation 10.7) 

with ti ≈ 
w2

Ai  Equation 10.7 becomes: 

σ   = 
wi L

a2w
2
1

A
N −

λ
⋅   (compression) (Equation 10.8) 

The shear plane is assumed to be in the hollow section wall running parallel to the weld.  

The shear stresses due to the force in the flanges is not supposed to act at the critical location.  
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Thus, the force causing the shear loads at the critical location equals the load transferred in the 

web.  The shear stresses caused by the load transfer of the force in the web to the gusset plate 

are estimated as follows: 

τ = 
wi

web

L2t
N

=
wi L2t

1
w
aN =

wi L
a

A
N ⋅  (Equation 10.9) 

Inserting σ  , σ  and τ into Equation 10.1, the equivalent stress "σe" becomes: 

σe = 222 3τ+σ+σσ−σ   

 = 2

w

2

ww

2

i
)

L
a(3)

L
a2w

2
1()

L
a2w

2
1(11

A
+−

λ
−+−

λ
−⋅−N  

 = 2

w

2

w
2

wi
)

L
a(3)

L
a2w(

4
1

L
a2w

2
11

A
+−

λ
+−

λ
+N  (Equation 10.10). 

If the equivalent stress reaches ultimate stress the connection fails.  Setting "σe" equal to 

the ultimate tensile stress of the hollow section material, "fui", the ultimate connection load for 

shear lag of the hollow section can be calculated: 

Nu = fui Ai 

2

w

2

w
2

w
)

L
a(3)

L
a2w(

4
1

L
a2w

2
11

1

+−
λ

+−
λ

+
 (Equation 10.11) 

In accordance with the earlier introduced design provisions for shear lag, the efficiency factor 

"α" for determining the net section area for shear lag becomes: 

2

w

2

w
2

w
)

L
a(3)

L
a2w(

4
1

L
a2w

2
11

1

+−
λ

+−
λ

+
=α  (Equation 10.12) 

Based on the results of the numerical results a value of λ = 5 (equivalent to a slope of 1:2.5, 

which is commonly used for load dispersion at the plastic state) has given good agreement 

between the results of the numerical study.  Table 10.2 compares the results of the numerical 

study with the strength predictions of the newly proposed design method.  In accordance with 

the numerical study, the range of validity for the proposed design method is 0.67 < 
w

L w  < 1.2.  

Applying this formula to the gusset plate connections tested in earlier studies [Swinden 

Laboratories 1992, Korol et al. 1994], good agreement is also found (see Table 10.2).   
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Table 10.2 Comparison of calculation methods 

Test Series Nux/Nu 
Equation 10.12 

using λ = 5 
Korol 
[1996] 

AISC 
[2000] 

Packer and 
Henderson [1997] 

Mean Nux/Nu 
(>1 safe) 1.03 1.21 1.15 1.33 

Coeff. of Var. 
(%) 2.1 15.7 9.1 11.0 Numerical 

Study 
Correlation 

R2 0.99 0.91 0.96 0.95 

Mean Nux/Nu 
(>1 safe) 1.02 1.14 1.18 1.43 

Coeff. of Var. 
(%) 7.2 8.1 7.4 12.4 

Swinden 
Laboratories 

[1992] Correlation 
R2 0.98 0.97 0.98 0.95 

Mean Nux/Nu 
(>1 safe) 1.04 1.12 1.06 1.53 

Coeff. of Var. 
(%) 6.4 2.4 7.4 12.2 Korol et al. 

[1994] 
Correlation 

R2 0.89 0.98 0.91 0.75 

 

Using a value of λ = 5 and introducing the coefficient "ω" into Equation 10.12 the 

coefficient for shear lag net section failure becomes: 

2

w

2 )
L
a(3

100
1

10
11

1

+ω+ω+
=α  (Equation 10.13) 

with: 

ω = 
wL

a2w −  (Equation 10.14) 

10.3 Summary 
 
A semi-empirical design method has been developed.  The correlation between the connection 

strengths predicted by the new design formulae and the results of the numerical study is very 

good.  Unfortunately, specific tests on hidden joint connections to verify the new design method 

do not exist, since the connections tested as part of this study did not fail in shear lag of the 

hollow section.  Applying the new design method to gusset plate connections with slotted 

hollow sections, reasonable agreement is also obtained between the load prediction and test 

results.  This finding supports the assumption that only a small difference exists between the 

shear lag behaviour of the hollow section for hidden joint connections and gusset plate 

connections with slotted hollow sections. 
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CONCLUSIONS AND RECOMMENDATIONS 

The presented work covers two types of bolted connections for rectangular hollow sections 

under tensile loading.  The first connection type, the bolted flange-plate connection, has been 

studied with respect to prying action failure while the second connection type, the hidden joint 

connection, was studied with respect to shear lag in the hollow section.  For each connection 

type, an experimental, parametric (numerical) and analytical study has been carried out.   

Bolted Flange-Plate Connections 

Prying forces occur when deforming flange-plates lever against each other.  These forces add to 

the initial bolt forces caused by the member loading on the splice.  So far, the unpredictability of 

the prying forces has been the main obstacle in the use of this connection type.   

The experimental study comprised of 20 square and rectangular bolted flange-plate 

connections with the bolts placed on all four sides of the hollow section.  The connections 

varied in their flange-plate thickness as well as their bolt layout.  The experimental study 

demonstrated that prying can very seriously decrease the capacity of square and rectangular 

bolted flange-plate connections. Prying ratios (ratio of prying forces to connection loading) of 

over 30% and 40% for square and rectangular connections respectively occurred during testing, 

which equals a loss of about 23% and 28% in connection capacity compared to a similar 

connection not affected by prying.  The tests showed that the main geometrical parameter 

influencing the connection capacity is the flange-plate thickness "tp".  The bolt layout can be 

optimised by placing the bolts as close to the hollow section as possible (small value of "b") as 

well as keeping the distance between bolts on one side of the connection, distance "c" or bolt 

pitch, small.  For certain bolt layouts (square connections with bolt layout S'8 and rectangular 

connections, see Table 2.1 in Chapter 2), the even distribution of the connection load on all 

bolts is not guaranteed.  The higher stress in some bolts causes them to rupture before the 

remaining bolts are fully utilised.  After rupture of the initially overstressed bolts, the remaining 

bolts are not able to compensate for the missing bolts, resulting in the failure of the connection.  

A further finding of the experimental study was that the fillet weld between hollow section and 

flange-plate acted as a stiffening element for the flange-plate.  The lever arm between the forces 

in the bolts and the hollow section decreases with an increase in fillet weld size as the yield line 

along the outer hollow section wall is shifted towards the bolt line.  To study the influence of 

the fillet weld on prying, the numerical study considered flange-plate connections with fillet 

welds as well as butt welds.  In the direct comparison of models with fillet weld and butt weld, 
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the increase in capacity due to the fillet weld could be quantified; a shift of the inner yield line 

towards the bolt line of half the weld leg size was established.  The numerical study also 

allowed a closer study of the flange-plate thickness and the parameters describing the bolt 

layout with respect to their influence on the connection capacity.  The findings on each 

parameter were included into a semi-analytical model which is based on a one-dimensional 

yield line model.  The one-dimensional yield line model is currently used by the design methods 

for bolted flange-plate connections with bolts on two sides of the hollow section, which can be 

found in the AISC HSS Connections Manual [1997] for example.  The design model is now 

transferred to connections where the bolts are placed on all four sides.  To account for the 

difference between these connections, certain modifications with respect to the bolt pitch have 

been made.  In addition, the influence of the fillet weld is now also considered in the calculation 

of the connection capacity.  In addition to the one-dimensional yield line model, a two-

dimensional yield line model has been developed.  Unfortunately, the formulae derived from the 

two-dimensional yield line model are less descriptive and more complicated.  The strength 

predictions are also less accurate than the results of the one-dimensional yield line model.  

Based on these findings for connections with bolts on all four sides of the hollow 

section, it is reasonable to assume that the fillet weld can also increase the capacity in 

connections where the bolts are placed on two sides only.  Future design formulae for this 

connection type could consider incorporating the fillet weld size to allow a more efficient 

design. 

Hidden Joint Connections 

Shear lag in hollow sections occurs if the unconnected parts of the hollow section circumference 

are not fully engaged and contribute only in part to the resistance of the member.  In gusset plate 

connections, the gusset plate is welded to the relatively more flexible side walls (web) of the 

hollow section.  If the connection is highly stressed, a crack may eventually initiate in the 

hollow section web at the beginning of the weld between hollow section and gusset plate.  The 

crack will continue circumferentially around the hollow section resulting in a sudden failure of 

the section/splice.  

In contrast to the more common gusset plate connections where the gusset plate 

protrudes beyond the width of the slotted member, the gusset plate of the hidden joint 

connection is fitted into the inside width of the unslotted hollow section.  After bolting of the 

gusset plates, a cover is placed over the part of the gusset plates that extends outside of the 

hollow section.  Only a small test series on hidden joint connections has been carried out.  
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Unfortunately, the studied failure mode of shear lag in the hollow section could not be obtained.  

Failure of the tested connections occurred by rupture of the gusset plates.  However, the 

experimental study still gave valuable insights into the fabrication problems, in particular with 

regard to welding between the hollow section and the gusset plate.  All welding has to be done 

from the open ends of the hollow section and the operating room for the welder is restricted to 

half of the cross sectional area of the hollow section as the connection is designed to be invisible 

from the outside.  It was found that the maximum weld length possible inside the square hollow 

section is roughly 1.2 times the height of the section (or the arm length of the welder).  Due to 

the large number of strain gauges applied to the hollow section as well as the gusset plate, the 

tests could be used to verify a numerical model which was then used for further parametric 

studies.  Based on experience from studies on gusset plate connections with slotted hollow 

sections, the governing parameters were found to be the ratio of weld length "Lw" to the length 

between the welds around the circumference of the hollow section "w", as well as ratio of 

eccentricity of the top or bottom half of the hollow section " x " to the weld length "Lw".  The 

numerical study consisted of connections with square (hi/wi = 1.00) and rectangular hollow 

sections (hi/wi = 1.5 and 2).  The weld length varied between 0.4 and 1.2 times the length 

between the welds measured circumferentially along the hollow section.  It was found that shear 

lag failure is critical only for connections with 0.67 < Lw/w < 1.2; for smaller connection/weld 

lengths, block shear tear-out along the weld will govern, whereas the hollow section will fail by 

gross cross section ultimate strength in connections with Lw/w ≥ 1.2 (connection has not failed 

but the member itself).  The analytical study concentrated on the critical location in the hollow 

section web at the beginning of the weld between the hollow section and the gusset plate.  The 

parallel, normal and shear stresses of the critical location have been assessed and are used to 

calculate an equivalent stress.  Comparing the equivalent stress with the ultimate stress of the 

hollow section material, the connection capacity for shear lag failure of the hollow section can 

be calculated.  The derived formula compares very well to the results of the numerical study.  A 

comparison with a limited number of gusset plate connections with slotted hollow sections from 

earlier studies also resulted in reasonable results.   

Experimental data on hidden joint connections (especially for rectangular hollow 

sections) as well as gusset plate connections with slotted hollow sections is still very limited; 

further research is desirable.  Gusset plate connections with slotted hollow sections are generally 

easier and thus cheaper to fabricate.  Also, the range for the parameters is increased, since the 

connection length "Lw" is not restricted by fabrication limits.  Due to the similarity between the 

two connection types, future studies should therefore concentrate on gusset plate connections 

with slotted hollow sections. 
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Experimental Study 
 

Tensile Coupon Tests 
Square Hollow Section (152 x 9.5 mm) 

0

100

200

300

400

500

600

0 5 10 15 20 25
Strain (%)

St
re

ss
 (M

Pa
)

0

100

200

300

400

500

600

0.0 0.1 0.2 0.3 0.4 0.5

 
Rectangular Hollow Section (254 x 152 x 8 mm) 

0

100

200

300

400

500

600

0 5 10 15 20 25
Strain (%)

St
re

ss
 (M

Pa
)

0

100

200

300

400

500

600

0.0 0.1 0.2 0.3 0.4 0.5

 

I-2 



PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Flange-plate (tp = 12 mm) 
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Flange-plate (tp = 16 mm, Test Series 2) 
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Connection Load versus average LVDT Displacement Curves 
 
The displacement was measured over a distance of 65 mm (distance between the positioning 

screws of the top and bottom LVDT mounts, see Figure 2.10).  The average displacement of all 

four LVTSs for each specimen is shown.   
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Fbu (kN) 

Connection strength 
Nux (kN) 

Prying ratio 
βux 1)(%) 

S4-3 35 45 792 29.3 
S4-1 4 40 40 12 256 847 20.9 

 

 

 

 

 

                                                      

1) βux = 
ux

uxbu

N
NFn −⋅
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Square Flange-plate Connections with four Bolts (contd.) 
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 Properties Results 

Connection n a (mm) b (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection strength 
Nux (kN) 

Prying ratio 
βux

1) (%) 
S4-4 35 45 910 8.8 
S4-2 4 40 40 16 247 955 3.7 

 

 

                                                      

1) βux = 
ux

uxbu

N
NFn −⋅
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Square Flange-plate Connections with eight Bolts 
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 Properties Results 

Connection n a (mm) b (mm) c (mm) tp 
(mm)

Bolt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
S8-9 70 881 25.2 
S8-7 8 35 45 140 12 138 843 30.9 
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tp = 12 mm 
a/b = 1.00 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp 
(mm)

Bolt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
S8-6 70 946 16.6 
S8-5 8 40 40 140 12 138 903 22.2 

uxbu NFn −⋅
1)
 βux = 
uxN
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Square Flange-plate Connections with eight Bolts (contd.) 
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 Properties Results 

Connection n a (mm) b (mm) c (mm) tp 
(mm)

Bolt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
S8-10 70 1019 5.4 
S8-8 8 35 45 140 16 134 946 13.5 
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 Properties 

Connection n a (mm) b (mm) c (mm) tp 
(mm)

B

S8-3 70 
S8-1 140 
S'8-1 

8 40 40 
0  2) 

16 
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1) βux = 
ux

uxbu

N
NFn −⋅ ,   

2) Specimen with bolt layout S'8.  Bolts are placed in
flange-plate. 
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m)

 = 0 mm

 
Results 

olt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
1240 3.4 
1108 15.7 160 
1049 22.2 

 the corner and the middle of the 
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Square Flange-plate Connections with eight Bolts (contd.) 
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3)

 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp 
(mm)

Bolt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
S8-4 70 2) 1190 2.1 
S8-2 140 1162 4.5 
S'8-2 

8 40 40 
0 3) 

20 152 
1141 6.4 

 

1) βux = 
ux

uxbu

N
NFn −⋅   

2) Due to installation of strain gauges the displacement was only measured over a distance of 
57 mm.   

3) Specimen with bolt layout S'8.  Bolts are placed in the corner and the middle of the 
flange-plate. 
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Rectangular Flange-plate Connections with ten Bolts 
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 Properties Results 

Connection n a (mm) b (mm) c (mm) tp 
(mm) 

Bolt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
R10-1 35 45 1030 41.7 
R10-3 10 40 40 110 12 146 1105 32.1 
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tp = 16 mm 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp 
(mm) 

Bolt strength 
Fbu (kN) 

Connection 
strength Nux (kN) 

Prying ratio 
βux

1) (%) 
R10-2 35 45 1153 22.2 
R10-4 10 40 40 110 16 141 1240 13.6 
 

1) βux = 

ux

uxbu

N
NFn −⋅  
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Numerical Study 
 

Connection Load versus Displacement Curves 
 

Load-Deformation Curves of Square Connections with four Bolts 

(Butt weld, all values of "a", "b" and "tp") 

 

0

100

200

300

400

500

600

700

800

900

1000

0

C
on

ne
ct

io
n 

L
oa

d 
(k

N
)

b
a

d

 

Connection n a (m

NW_10_50 30
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1) βux = 
uFE

uFEbu

N
NFn −⋅
Butt wel
5 10 15 20 25 30 35
Deformation (mm)

3% deformation 
limit

 

 tp=10mm, a/b=1.00 
 a/b=0.78 
 a/b=0.60 
 tp=12mm, a/b=1.00 
 a/b=0.78 
 a/b=0.60 
 tp=16mm, a/b=1.00 
 a/b=0.78 
 a/b=0.60 

Properties Results 

m) b (mm) tp 
(mm) 

Bolt strength 
Fbu (kN) 

Connection strength 
NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 
 50 420 138.0 
 45 451 121.3 
 40 

10 250 
501 99.3 

 50 549 80.4 
 45 596 66.1 
 40 

12 248 
658 50.5 

 50 757 29.5 
 45 806 21.7 
 40 

16 245 
852 15.1 

B
utt w

eld 
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Load-Deformation Curves of Square Connections with four Bolts (contd.) 

(Fillet weld, all values of "a", "b" and "tp") 
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 Properties Results 

Connection n a (mm) b (mm) tp 
(mm) 

Bolt strength 
Fbu (kN) 

Connection strength 
NuFE (kN) 

Prying ratio 
βuFE

 1)
 (%) 

W_10_50 30 50 455 119.3 
W_10_45 35 45 506 97.3 
W_10_40 40 40 

10 250 
568 75.9 

W_12_50 30 50 594 66.6 
W_12_45 35 45 654 51.3 
W_12_40 40 40 

12 248 
724 36.7 

W_16_50 30 50 812 20.7 
W_16_45 35 45 860 14.0 
W_16_40 

4 

40 40 
16 245 

905 8.3 

Fillet w
eld

 

 

 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Load-Deformation Curves of Square Connections with eight Bolts 

(a = 40 mm, b = 40 mm, tp = 10 mm) 
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a

c

btp = 10 mm 
a/b = 1.00 
butt weld 

tp = 10 mm 
a/b = 1.00 
fillet weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1)
 (%) 

NW10_40_140 140 509 98.5 
NW10_40_130 130 543 86.2 
NW10_40_120 120 573 76.3 
NW10_40_110 110 599 68.7 
NW10_40_100 100 619 63.2 
NW10_40_90 90 632 59.9 
NW10_40_80 80 637 58.6 
NW10_40_70 

8 40 40 

70 

10 126 

630 60.5 
 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W10_40_140 140 604 67.4 
W10_40_130 130 641 57.7 
W10_40_120 120 672 50.4 
W10_40_110 110 696 45.2 
W10_40_100 100 705 43.3 
 W10_40_90 90 710 42.3 
 W10_40_80 80 715 41.4 
 W10_40_70 

8 40 40 

70 

10 126 

708 42.7 

Fillet w
eld 

B
utt w

eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 35 mm, b = 45 mm, tp = 10 mm) 
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c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

Properties Results 

n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1)
 (%) 

 140 469 115.3 
 130 498 102.9 
 120 524 92.9 
 110 545 85.3 
 100 562 79.8 
 90 572 76.7 
 80 574 76.2 
 

8 35 45 

70 

10 126 

568 77.8 

B
utt w

eld

Properties Results 

n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

140 554 82.3 
130 586 72.4 
120 612 65.0 
110 632 59.8 
100 645 56.6 
90 651 55.1 
80 650 55.5 

8 35 45 

70 

10 126 

641 57.7 

Fillet w
eld 

                                

uFE

uFEu N−
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Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 30 mm, b = 50 mm, tp = 10 mm) 
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b
tp = 10 mm 
a/b = 0.60 
butt weld 

tp = 10 mm 
a/b = 0.60 
fillet weld 
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 c=100mm
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 c=120mm
 c=130mm
 c=140mm

c=70mm 
c=80mm 
c=90mm 
c=100mm 
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c=130mm 
c=140mm 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1)
 (%) 

NW10_50_140 140 433 133.4 
NW10_50_130 130 457 121.1 
NW10_50_120 120 478 111.2 
NW10_50_110 110 496 103.6 
NW10_50_100 100 509 98.3 
 NW10_50_90 90 517 95.3 
 NW10_50_80 80 519 94.7 
 NW10_50_70 

8 30 50 

70 

10 126 

514 96.7 

B
utt w

eld

 
 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W10_50_140 140 508 98.8 
W10_50_130 130 536 88.5 
W10_50_120 120 558 81.2 
W10_50_110 110 574 76.0 
W10_50_100 100 584 72.9 
 W10_50_90 90 589 71.4 
 W10_50_80 80 587 72.2 
 W10_50_70 

8 30 50 

70 

10 126 

579 74.5 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 40 mm, b = 40 mm, tp = 12 mm) 
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a

c

btp = 12 mm 
a/b = 1.00 
butt weld 

tp = 12 mm 
a/b = 1.00 
fillet weld 

 c=70mm 
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 c=90mm 
 c=100mm
 c=110mm
 c=120mm
 c=130mm
 c=140mm

c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
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c=130mm
c=140mm

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1)
 (%) 

NW12_40_140 140 648 55.3 
NW12_40_130 130 669 50.2 
NW12_40_120 120 672 49.7 
NW12_40_110 110 678 48.3 
NW12_40_100 100 687 46.5 
 NW12_40_90 90 696 44.5 
 NW12_40_80 80 708 42.1 
 NW12_40_70 

8 40 40 

70 

12 126 

716 40.5 

B
utt w

eld 

 
 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W12_40_140 140 711 41.5 
W12_40_130 130 724 39.0 
W12_40_120 120 735 36.8 
W12_40_110 110 746 34.8 
W12_40_100 100 754 33.3 
 W12_40_90 90 762 31.9 
 W12_40_80 80 770 30.7 
 W12_40_70 

8 40 40 

70 

12 126 

778 29.3 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 35 mm, b = 45 mm, tp = 12 mm) 
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a

c

btp = 12 mm 
a/b = 0.78 
butt weld 

tp = 12 mm 
a/b = 0.78 
fillet weld 

 c=70mm 
 c=80mm 
 c=90mm 
 c=100mm 
 c=110mm 
 c=120mm 
 c=130mm 
 c=140mm 

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1
 
)(%) 

NW12_45_140 140 603 66.6 
NW12_45_130 130 632 59.0 
NW12_45_120 120 633 58.9 
NW12_45_110 110 634 58.6 
NW12_45_100 100 639 57.3 
 NW12_45_90 90 648 55.1 
 NW12_45_80 80 657 53.1 
 NW12_45_70 

8 35 45 

70 

12 126 

667 50.8 

B
utt w

eld 

 
 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W12_45_140 140 674 49.3 
W12_45_130 130 680 47.9 
W12_45_120 120 686 46.6 
W12_45_110 110 694 44.9 
W12_45_100 100 701 43.4 
 W12_45_90 90 707 42.3 
 W12_45_80 80 718 40.0 
 W12_45_70 

8 35 45 

70 

12 126 

722 39.2 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 30 mm, b = 50 mm, tp = 12 mm) 
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a

c

btp = 12 mm 
a/b = 0.60 
fillet weld 

tp = 12 mm 
a/b = 0.60 
butt weld 

 c=70mm 

 c=80mm 

 c=90mm 

 c=110mm

 c=120mm

 c=130mm

 c=140mm

 c=70mm 

 c=80mm 

 c=90mm 

 c=100mm
 c=110mm
 c=120mm
 c=130mm
 c=140mm

 c=100mm

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

NW12_50_140 140 561 79.1 
NW12_50_130 130 587 71.4 
NW12_50_120 120 590 70.5 
NW12_50_110 110 586 71.6 
NW12_50_100 100 588 71.0 
 NW12_50_90 90 593 69.5 
 NW12_50_80 80 600 67.6 
 NW12_50_70 

8 30 50 

70 

12 126 

613 63.9 

B
utt w

eld 

 
 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W12_50_140 140 633 58.9 
W12_50_130 130 634 58.5 
W12_50_120 120 636 58.1 
W12_50_110 110 640 57.1 
W12_50_100 100 645 55.8 
 W12_50_90 90 649 54.9 
 W12_50_80 80 658 52.8 
 W12_50_70 

8 30 50 

70 

12 126 

663 51.8 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 40 mm, b = 40 mm, tp = 16 mm) 
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a

c

b
tp = 16 mm 
a/b = 1.00 
butt weld tp = 16 mm

a/b = 1.00 
fillet weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

NW16_40_140 140 785 27.8 
NW16_40_130 130 800 25.4 
NW16_40_120 120 813 23.3 
NW16_40_110 110 825 21.7 
NW16_40_100 100 833 20.4 
 NW16_40_90 90 838 19.7 
 NW16_40_80 80 843 18.9 
 NW16_40_70 

8 40 40 

70 

16 125 

847 18.5 

B
utt w

eld 

 
 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W16_40_140 140 828 21.1 
W16_40_130 130 851 17.9 
W16_40_120 120 871 15.2 
W16_40_110 110 885 13.4 
W16_40_100 100 907 10.6 
 W16_40_90 90 912 10.0 
 W16_40_80 80 915 9.6 
 W16_40_70 

8 40 40 

70 

16 125 

919 9.2 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 35 mm, b = 45 mm, tp = 16 mm) 
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tp = 16 mm 
a/b = 0.78 
fillet weld c=70mm 

c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

c
c
c
c
c
c
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 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength
Fbu (kN) 

NW16_45_140 140 
NW16_45_130 130 
NW16_45_120 120 
NW16_45_110 110 
NW16_45_100 100 
 NW16_45_90 90 
 NW16_45_80 80 
 NW16_45_70 

8 35 45 

70 

16 125 

 
 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength
Fbu (kN) 

W16_45_140 140 
W16_45_130 130 
W16_45_120 120 
W16_45_110 110 
W16_45_100 100 
 W16_45_90 90 
 W16_45_80 80 
 W16_45_70 

8 35 45 

70 

16 125 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Deformation (mm)
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Results 

 Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

751 33.5 
764 31.3 
775 29.4 
784 27.9 
790 26.9 
794 26.3 
797 25.9 
802 25.2 

B
utt w

eld

Results 

 Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

809 24.0 
831 20.8 
841 19.3 
853 17.6 
868 15.6 
872 15.1 
872 15.0 
872 15.0 

Fillet w
eld



PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Square Connections with eight Bolts (contd.) 

(a = 30 mm, b = 50 mm, tp = 16 mm) 
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a

c

btp = 16 mm 
a/b = 0.60 
butt weld 

tp = 16 mm
a/b = 0.60 
fillet weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

NW16_50_140 140 749 34.0 
NW16_50_130 130 766 30.9 
NW16_50_120 120 780 28.6 
NW16_50_110 110 794 26.3 
NW16_50_100 100 802 25.1 
 NW16_50_90 90 811 23.7 
 NW16_50_80 80 816 22.9 
 NW16_50_70 

8 30 50 

70 

16 125 

820 22.3 

B
utt w

eld

 
 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

W16_50_140 140 790 27.0 
W16_50_130 130 811 23.7 
W16_50_120 120 829 21.0 
W16_50_110 110 845 18.7 
W16_50_100 100 854 17.4 
 W16_50_90 90 865 16.0 
 W16_50_80 80 869 15.4 
 W16_50_70 

8 30 50 

70 

16 125 

872 15.1 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts 

(a = 40 mm, b = 40 mm, tp = 10 mm) 
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tp = 10 mm 
a/b = 1.00 
fillet weld 

tp = 10 mm 
a/b = 1.00 
butt weld 

c=70mm 
c=80mm 
c=90mm 

c=100mm

c=110mm

c=120mm

c=130mm

 Properties Result

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

P
β

RNW10_40_130 130 636 
RNW10_40_120 120 689 
RNW10_40_110 110 728 
RNW10_40_100 100 756 
 RNW10_40_90 90 764 
 RNW10_40_80 80 757 
 RNW10_40_70 

10 40 40 

70 

10 126 

738 
 

 Properties Result

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

P
β

RW10_40_140 140 655 
RW10_40_130 130 722 
RW10_40_120 120 780 
RW10_40_110 110 826 
RW10_40_100 100 870 
 RW10_40_90 

10 40 40 

90 

10 126 

874 
 

       
                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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c=90mm 
c=100mm
c=110mm
c=120mm
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 1) (%) 

98.7 
83.2 
73.6 
67.1 
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66.9 
71.2 

B
utt w

eld 

s 

rying ratio 
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1) (%) 

92.9 
75.0 
61.9 
52.9 
45.2 
44.6 
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 35 mm, b = 45 mm, tp = 10 mm) 
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a
b

c

c c

tp = 10 mm 
a/b = 0.78 
fillet weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

RNW10_45_140 140 551 129.2 
RNW10_45_130 130 592 113.2 
RNW10_45_120 120 630 100.5 
RNW10_45_110 110 662 90.8 
RNW10_45_100 100 685 84.4 
 RNW10_45_90 90 690 83.1 
 RNW10_45_80 80 683 84.9 
 RNW10_45_70 

10 35 45 

70 

10 126 

665 89.8 

B
utt w

eld 

c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

tp = 10 mm 
a/b = 0.78 
butt weld

 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

RW10_45_140 140 627 101.5 
RW10_45_130 130 674 87.3 
RW10_45_120 120 723 74.8 
RW10_45_110 110 765 65.2 
RW10_45_100 100 788 60.3 
 RW10_45_90 

10 35 45 

90 

10 126 

793 59.3 

Fillet w
eld

 

                                                      

1) βuFE = 
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N
NFn −⋅

 

I-23 



PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 30 mm, b = 50 mm, tp = 10 mm) 
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tp = 10 mm 
a/b = 0.60 
butt weld 

tp = 10 mm 
a/b = 0.60 
fillet weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

c
c  
c  
c  
c  
c  

 Properties Result

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

P
β

RNW10_50_140 140 513 
RNW10_50_130 130 545 
RNW10_50_120 120 576 
RNW10_50_110 110 603 
RNW10_50_100 100 622 
 RNW10_50_90 90 624 
 RNW10_50_80 80 618 
 RNW10_50_70 

10 30 50 

70 

10 126 

602 
 

 Properties Result

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

P
β

RW10_50_140 140 586 
RW10_50_130 130 627 
RW10_50_120 120 668 
RW10_50_110 110 698 
RW10_50_100 100 715 
 RW10_50_90 

10 30 50 

90 

10 126 

718 
 

                                                      

1) βuFE = 
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NFn −⋅
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 40 mm, b = 40 mm, tp = 12 mm) 
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a
b

c

c ctp = 12 mm 
a/b = 1.00 
fillet weld 

tp = 12 mm
a/b = 1.00 
butt weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 

c=90mm 

c=100mm 

c=110mm 

c=120mm 

c=130mm 

c=140mm 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

RNW12_40_130 130 737 70.7 
RNW12_40_120 120 791 58.9 
RNW12_40_110 110 819 53.5 
RNW12_40_100 100 845 48.8 
RNW12_40_90 90 870 44.5 
RNW12_40_80 80 874 43.8 
RNW12_40_70 

10 40 40 

70 

12 126 

875 43.7 

B
utt w

eld 

 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

RW12_40_140 140 776 62.0 
RW12_40_130 130 841 49.5 
RW12_40_120 120 883 42.4 
RW12_40_110 110 905 38.9 
RW12_40_100 100 923 36.1 
 RW12_40_90 

10 40 40 

90 

12 126 

936 34.3 

Fillet w
eld
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 35 mm, b = 45 mm, tp = 12 mm) 
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 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt s
Fbu

RNW12_45_140 140 
RNW12_45_130 130 
RNW12_45_120 120 
RNW12_45_110 110 
RNW12_45_100 100 
RNW12_45_90 90 
RNW12_45_80 80 
RNW12_45_70 

10 35 45 

70 

12 1

 

 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt s
Fbu

RW12_45_140 140 
RW12_45_130 130 
RW12_45_120 120 
RW12_45_110 110 
RW12_45_100 100 
 RW12_45_90 

10 35 45 

90 

12 1

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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c=90mm 

c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

Results 

trength 
 (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

654 92.3 
704 78.5 
747 68.2 
766 64.1 
784 60.3 
803 56.4 
812 54.9 

26 
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Results 

trength 
 (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

740 69.9 
794 58.3 
828 51.8 
844 48.9 
859 46.3 
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 30 mm, b = 50 mm, tp = 12 mm) 
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 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

RNW12_50_140 140 
RNW12_50_130 130 
RNW12_50_120 120 
RNW12_50_110 110 
RNW12_50_100 100 
RNW12_50_90 90 
RNW12_50_80 80 
RNW12_50_70 

10 30 50 

70 

12 126 

 

 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

RW12_50_140 140 
RW12_50_130 130 
RW12_50_120 120 
RW12_50_110 110 
RW12_50_100 100 
 RW12_50_90 

10 30 50 

90 

12 126 
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c=90mm 

c=100mm

c=110mm

c=120mm

c=130mm

c=140mm
4 6 8
ormation (mm)
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Results 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

616 104.0 
663 89.7 
698 80.1 
710 77.0 
720 74.5 
735 71.0 
743 69.2 
743 69.1 

B
utt w

eld 

Results 
Connection 

strength 
NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

708 77.5 
752 67.1 
772 62.8 
782 60.7 
790 59.2 
870 44.4 
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 40 mm, b = 40 mm, tp = 16 mm) 
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 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt streng
Fbu (kN) 

RNW16_40_130 130 
RNW16_40_120 120 
RNW16_40_110 110 
RNW16_40_100 100 
 RNW16_40_90 90 
 RNW16_40_80 80 
 RNW16_40_70 
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70 

16 125 

 

 Properties 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt streng
Fbu (kN)

RW16_40_140 140 
RW16_40_130 130 
RW16_40_120 120 
RW16_40_110 110 
RW16_40_100 100 
 RW16_40_90 

10 40 40 

90 

16 125 
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th Connection 
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NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

951 31.9 
981 27.8 

1001 25.2 
1014 23.7 
1019 23.0 
1022 22.7 
1024 22.5 
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Connection 
strength 
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Prying ratio 
βuFE

1) (%) 

973 28.9 
1020 22.9 
1049 19.6 
1066 17.7 
1087 15.4 
1094 14.7 
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PART I  BOLTED FLANGE-PLATE CONNECTIONS  Appendix 

Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 35 mm, b = 45 mm, tp = 16 mm) 
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a
b

c

c ctp = 16 mm 
a/b = 0.78 
butt weld 

tp = 16 mm 
a/b = 0.78 
fillet weld

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

c=90mm 

c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1) (%) 

RNW16_45_140 140 876 43.1 
RNW16_45_130 130 915 37.0 
RNW16_45_120 120 936 33.9 
RNW16_45_110 110 950 32.0 
RNW16_45_100 100 958 30.9 
 RNW16_45_90 90 962 30.3 
 RNW16_45_80 80 966 29.8 
 RNW16_45_70 

10 35 45 

70 

16 125 

967 29.7 

B
utt w

eld

 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

RW16_45_140 140 941 33.2 
RW16_45_130 130 983 27.5 
RW16_45_120 120 1009 24.2 
RW16_45_110 110 1027 22.1 
RW16_45_100 100 1038 20.8 
 RW16_45_90 

10 35 45 

90 

16 125 

870 44.4 

Fillet w
eld 

 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Load-Deformation Curves of Rectangular Connections with ten Bolts (contd.) 

(a = 30 mm, b = 50 mm, tp = 16 mm) 
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a
b

c

c c
tp = 16 mm 
a/b = 0.60 
butt weld 

tp = 16 mm 
a/b = 0.60 
fillet weld 

c=70mm 
c=80mm 
c=90mm 
c=100mm 
c=110mm 
c=120mm 
c=130mm 
c=140mm 

c=90mm 

c=100mm
c=110mm
c=120mm
c=130mm
c=140mm

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

 1)
 (%) 

RNW16_50_140 140 842 48.9 
RNW16_50_130 130 872 43.8 
RNW16_50_120 120 891 40.7 
RNW16_50_110 110 901 39.2 
RNW16_50_100 100 905 38.5 
 RNW16_50_90 90 908 38.1 
 RNW16_50_80 80 909 37.9 
 RNW16_50_70 

10 30 50 

70 

16 125 

909 38.0 

B
utt w

eld 

 

 Properties Results 

Connection n a (mm) b (mm) c (mm) tp (mm) Bolt strength 
Fbu (kN) 

Connection 
strength 

NuFE (kN) 

Prying ratio 
βuFE

1) (%) 

RW16_50_140 140 927 35.3 
RW16_50_130 130 978 28.2 
RW16_50_120 120 1005 24.8 
RW16_50_110 110 1016 23.4 
RW16_50_100 100 1028 21.9 
 RW16_50_90 

10 30 50 

90 

16 125 

1028 22.0 

Fillet w
eld 

                                                      

1) βuFE = 
uFE

uFEbu

N
NFn −⋅
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Analytical Study 
 

One-Dimensional Yield Line Model 
 

Equation 5.3 

 

2
M∑   - myp2 = Qb(a+b) – (Nb+Qb) b (1) 

 

with: 

Nb + Qb  = Fbu (2) 

⇔  Qb  = Fbu - Nb  

 

(2) in (1): 

 - my p2  = (Fbu - Nb)(a+b) – Fbu b 

⇔  Nb (a+b)  = )( 2ybu pmaF +  

⇔  Nb  = )( 2ybu pmaF
ba

+
+
1  

 

 

Equation 5.4 

 

1
M∑   my p1 = Qba (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.1   Moment equilibria for different 

failure mechanisms 

Nb + Qb = Fbu

Qb

Nb

M1 < my p1

M2 = my p2

M1 = my p1

M2 = my p2

Nb + Qb

Nb

Qb
⇔  Qb  = 1ypm

a
1  

2
M∑  - my p2 = Qb(a+b) – (Nb+Qb)b  

 - my p2  = 

(2) 

 

(1) in (2): 

1ypm
a
1 (a+b) – (Nb + 1ypm

a
1 )b 

 Nb b = my p1 + my p2   

 Nb = 

⇔

pp +
⇔ y

21 m
b
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Equation 5.8 

 

For tp = tq2 the connection strength due to Failure mechanism 2 (Equation 5.3b) equals the 

connection strength due to Failure mechanism 3 (Equation 5.4b), thus: 

 )( 2
2

2qypbu ptF
4
1aF

ba
1 ⋅+⋅
+

 =  2
2qyp

21 tF
4
1

b
p

⋅
+p

 

⇔  2
2qyp

212 tF
4
1

b
pp

ba
p

)(
+

−
+

 =  aF
ba

1
bu ⋅

+
−  

⇔  2
2qyp212 tF

4
1bappbp )))((( ++−  =   baFbu ⋅⋅−

⇔  2
2qyp121 tF

4
1bpapp ))(( ++  =     baFbu ⋅⋅

⇔  2
2qyp

121 tF
4
1

a
p

b
pp

)( +
+

 = Fbu 

⇔  tq2  = 
yp

121

bu

F
a
p

b
pp

F

)( +
+

4
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Two-Dimensional Yield Line Model 
 

Analysis of yield line mechanism 

 

Assuming a virtual displacement δ the internal and external work of the yield line mechanism as 
shown in Figure A.2 is calculated based on varying lengths xh and xw.  The lengths xminh and 
xminw then correspond to the minimum failure load P(xminh , xminw ). 
 

δ 

δ 

0

0 
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0

0 0 

0

0 

2

  s
1h

 /2
 

 s 1
h /

2 

  s1w /2

w

w

hp 
hi 

s 2
h =

 2
c 

s2w

a b xW 

 

Figure I.2 Symbols 
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External work: 

 Wext = N · δ 

Internal work: 

 Wint = ∑ Wint,i with Wint,i  being the internal work done by segment i 

 

Segment 1 

 Wint,1 = Wint,1h + Wint,1w = [2(s1h + s2h) θ1h + 2(s1w + s2w) θ1w] my 

  with θ1h = θ1w = 
b
δ  

⇒  Wint,1 = [2(s1h + s2h) + 2(s1w + s2w)]
b
δ my 

Segment 2 

 Wint,2 = Wint,2h + Wint,2w = [2 s2h θ2h + 2s2w θ2w] my 

  with θ2h = θ2w = 
b
δ  

⇒  Wint,2 = [2 s2h + 2 s2w]
b
δ my 

θ1h θ1h 

δ

0

0 

0 

0 

hh
h h 

1  1  
 θ2w  θ2w 

θ1w θ1w 

θ2h θ2h 

considered yield line 

not considered yield line 

Figure I.3 Angles 

 

δ

2  2  

ww

θ1
ww

h , θ1w and θ
11
2h , θ2w 
22
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Segment 3 

Wint,3 = Wint,3h + Wint,3w = [4 l3 θ3h + 4 l3 θ3w] my 

with  l3 = 2 (a+b) 

and θ3h = '
hl
δ

, θ3w = '
wl
δ

 

Looking at segment 3w: 

y1 +y2 = 2 a and  
2

1

y
y

=
b2/s

2/sbax

w1

w1w

−
−++

 

⇒  y2 = 2 a 







+

−
ax

b2/s

w

w1  

l'w = 2 b + y2 

⇒  l'w = 
ax
asbx2

2
1

w

w1w

+
+

 

⇒  θ3w = '
wl
δ

= 2
w1w

w

asbx2
ax

+
+

δ 

 
 
 

 
 

 

 

 

 

 

 

 

y1

y2

s1w/2

s1w/2-b

π/4 π/4

δ

θ3w

θ3h

l'

l3

0 

0 

δ 

Fig

 

Cal
ure I.4 Angles θ3

culating θ3h accordingl

Wint,3 = 8(a+b) 



b2

 

(a+b)-s1w/2 xw

w

w , θ3h and lengths l'w ,y1 and y2 

y, the internal work done by segment 3 is: 





+
+

+
+
+

w1w

w

h1h

h

asbx2
ax

asx
ax

 δ my 
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Segment 4 

 Wint,4 = Wint,4h + Wint,4w = 4(l4h θ4h + l4w θ4w) my 

with θ4h = ''
hl
δ

, θ4w = ''
wl
δ

 

Looking at segment 4w: 

z1 + z2 = a  and 
1

2

z
z

=
2/sx

2/s

w1w

w1

−
 

⇒  z2 = 2/s
x
a

w1
w

 

2

''
w

zb
l
+

= 
w4

w

l
x

  

⇒  l''w = )2/asbx(
l
1

w1w
w4

+  

⇒  θ4w = l4w
2/asbx

1

w1w +
 δ 

 

 

 

 

 

 

 

 

 

 

 

z1

z2

xw

s1w/2

π/4

δ

θ4w

l''wl4w

δ 

0 

0

Figure I.5 Angle θ4w and lengths l''w ,z1 and z2 

 

Calculating θ4h accordingly, the internal work done by segment 4 is: 

Wint,4 = 4 )
2/asbx

1l
2/asbx

1l(
w1w

2
w4

h1h

2
h4 +

+
+

 δ my 

  with l = a2
h4

2 +  and = a2
hx 2

w4l 2 +  2
wx

⇒  Wint,4 = 4 )
2/asbx

xa
2/asbx

xa
(

w1w

2
w

2

h1h

2
h

2

+
+

+
+
+

 δ my 
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Segment 5 

 Wint,5 = Wint,5h + Wint,5w = 4(l5h θ5h + l5w θ5w) my 

 

Looking at segment 5w : 

θ5w =
21 q
'

q
' δ−δ−δ   with 

δ
δ' =

w5

1

l
r

 

⇒  θ5w = δ−− )
l
r

q
1)

l
r

1(
q
1

w5

1

2w5

1

1
(  

solving for r1 , q1 and q2 : 

b
r1 =

w5l
b    r⇒ 1 = 

w5

2

l
b   ⇒

w5

1

l
r

= (
w5l

b )2 

b
q1 = 

w5

1

l
2/s

  q⇒ 1 = s1/2
w5l

b  

1

2

r
q

= 
2''2

w5

''

ll

l

−
  q⇒ 2 = 

w5

2

2''2
w5

''

l
b

ll

l

−
 

using the equations 

2
w5l = (s1w/2)2 +b2  and  = 2''

wl 2
w

2

2
w1w

xa
)2/asbx(

+
+

 (see Segment 4) 

⇒  θ5w = 
)asbx2(b2

)b4s(a
l
1

w1w

22
w1

w5 +
+

 δ 
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π
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Calculating θ5h accordingly, the internal work done by segment 5 is: 

 Wint,5 =4(
)asbx2(b2

)b4s(a

h1h

22
h1

+
+

+
)asbx2(b2

)b4s(a

w1w

22
w1

+
+

) δ my 

 

 

The internal work done by the flange-plate is depending on the variables xh and xw (yield line 
pattern) and equals the sum of all segments: 
 

Wint(xh, xw) = Wint,1 + Wint,2 + Wint,3 + Wint,4 + Wint,5 

 

By equating the internal and external work the ultimate load for the yield line mechanism is 
found: 
 

 N(xh, xw) = 2 {
)asbx2(b

]b8ab8s[a]x)ba(x[b4
b

)ss(2ss

h1h

22
h1h

2
hw2h2w1h1

+
+++++

+
+++

 

+
)asbx2(b

]b8ab8s[a]x)ba(x[b4

w1w

22
w1w

2
w

+
+++++

}my 

The governing yield line pattern is the pattern caused by the minimum ultimate load.  As xh and 
xw are independent variables the lengths xminh and xminw corresponding to the minimum collapse 

load can be found by the operation 
hx

N
∂
∂ = 0 and 

wx
N

∂
∂ = 0.  The lengths xminh and xminw 

corresponding to the minimum collapse load are then: 
 

xminh = )
b

s
)8

b
s

2
b
s

)(
a
b1((

2
a h1h1

2

2
h1 −+−+   

and xminw = )
b

s
)8

b
s

2
b
s

)(
a
b1((

2
a w1w1

2

2
w1 −+−+ . 

Introducing the lengths xminh and xminw into the expression for N, the corresponding critical load 
Nyp becomes: 
 

Nyp =  8{
b

ss
4
18

b
s

2
b
s

8
b

s
2

b
s

a
b1

b2
a w1h1w1

2

2
w1h1

2

2
h1 +

+












+−++−+  

 1)
b2
ss

1(
b
a

b
ss

2
1 w1h1w2h2 +

+
−+

+
+ }my 
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Calculation of the prying force 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.7 Linear distributed prying force 

Q1

my

qw1
Q11Area 4 Area 3 

Area 2 

Area 1 

 

Assuming the prying force is acting only along the edges of the flange-plate co
other, the prying force can be calculated.  The linear distribution of the prying
Figure A.7.  For each area the prying force can be divided into three linear dis
each opposing the bending moment along one side of the trapezium.  The pryi
on Area 1 thus becomes: 

 Q1 = Q11 + Q12 + Q13. 

To find Q11 trapezium A (Area 1) is analysed.  According to Figure A.8 the lin
prying force at a distance x from the bending axis is: 

qx = x
h

q

1

1w . 

The bending moment acting on a small segment ds, caused by the prying force
 dM = qxxds 

with ds = dx
h

x2

1

wmin2 +s
. 
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X

my

s2w

a

h1

ds

s2+2xminw

xminw

l0

x

qx

qw1  
Figure I.8 Distribution of the prying stress 

 

The bending moment about the X-Axis due to the prying force is: 

M1 =  = ∫ dM ∫
+ 1h

0

2

1

wmin2

1

1w dxx
h

x2s
h

q
= 1w

0

2
wmin2 q

l
)x2s(a

3
1 +

 

This moment has to balance the plastic moment my of the flange-plate, thus: 

 M1 = l0 my. 

Solving this equilibrium for qw1 ,qw1 becomes: 

 qw1 = 2
wmin2

y
2
0

)x2s(a

ml3

+
 

The prying force balancing the plastic moment along this side then becomes: 

 Q11 = ∫ q = 
1h

0
xds xdx

h
x2s

h
q1h

0 1

wmin2

1

1w∫
+

= 1wwmin2 q)x2s(
2
1 +  
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Inserting the earlier calculated qw1 , and knowing that = a2
0l

2 + , the prying force Q2
wminx 11 is 

then: 

 Q11 = y
wminw2

2
wmin

2

m
)x2s(a

xa
2 +

+3 . 

In the same way the prying forces Q12 and Q13 are found: 

 Q12 = Q11 = y
wminw2

2
wmin

2

m
)x2s(a

xa
2
3

+
+

 

 Q13 = y
w2 m

a
s

 

Using the above derivation, the prying forces acting on Area 2 to 4 are found.  The total prying 
force acting on the flange-plate connection is thus: 

 Q = Q1 +Q2 + Q3 +Q4 = 2


















+

+
+

+
+

+

+

a
ss

a
x

2
a

s

))
a

x
(1(3

a
x

2
a

s

))
a

x
(1(3

w2h2

wminw2

2wmin

hminh2

2hmin

my 
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APPENDIX PART II 
 

Experimental Study        II-2 
 

Tensile coupon Tests        II-2 

Square Hollow Section (200 x 6.3 mm)      II-2 

Square Hollow Section (200 x 12.5 mm)     II-2 

Gusset Plate (tp = 12 mm)       II-3 

Gusset Plate (tp = 20 mm)       II-3 

Gusset Plate (tp = 25 mm)       II-4 

 

Strain Gauge Measurements       II-5 

Strain Gauge Measurements of the Hollow Section    II-5 

Strain Gauge Measurements of the Gusset Plate     II-9 

 

 

Numerical Study         II-13 
 

Numerical results          II-13 

Results of square connections (wi/hi = 1.00)     II-13 

Results of rectangular connections with wi/hi = 0.67    II-13 

Results of rectangular connections with wi/hi = 0.50    II-13 
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Experimental Study 
 

Tensile Coupon Tests 
Square Hollow Section (200 x 6.3 mm) 
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Square Hollow Section (200 x 12.5 mm) 
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Gusset Plate (tp = 12 mm) 
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Gusset Plate (tp = 20 mm)1)  
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1) Gauge had to be removed beyond the yield plateau 
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Gusset Plate (tp = 25 mm) 
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Strain Gauge Measurements  
 

The following graphs show the strains in z-direction (along the axis of the connection) for each 
specimen.  The exact location of each strain gauge can be found in Figure 7.2 in chapter 7. 

 

Strain Gauge Measurements on the Hollow Section 
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wp 
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Nux  

(kN) Failure Mode 

6.4 12.5 187 160 400 1003    Shear lag failure of the plate and 
plate tensile failure imminent 
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Strain Gauge Measurements on the  
Hollow Section (contd.) 
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Strain Gauge Measurements on the  
Hollow Section (contd.) 
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Strain Gauge Measurements on the  
Hollow Section (contd.) 
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Strain Gauge Measurements on the Gusset Plate 
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Strain Gauge Measurements on the  
Gusset Plate (contd.) 
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Strain Gauge Measurements on the  
Gusset Plate (contd.) 
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Strain Gauge Measurements on the  
Gusset Plate (contd.) 
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Numerical Study 
 

Numerical results 
 

Results for square connections (wi/hi = 1.00) 

Lw

x

centre of
gravity of
top half

w

wi

hi

 
 Properties Parameter Results 

Connection wi 
(mm) 

hi 
(mm) 

Lw 
(mm) 

w 
(mm)

x  
(mm)

Nyi 
(kN) wi/hi Lw/w x /Lw 

Connection 
strength 

NuFE (kN) 
NuFE/Nyi 

P6_3_04 160 0.40 0.47 1049 0.92 
P6_3_05 200 0.50 0.38 1243 1.09 
P6_3_06 240 0.60 0.31 1397 1.22 
P6_3_07 280 0.70 0.27 1513 1.32 
P6_3_08 320 0.80 0.23 1559 1.36 
P6_3_09 360 0.90 0.21 1575 1.38 
P6_3_10 400 1.00 0.19 1587 1.39 
P6_3_11 440 1.10 0.17 1590 1.39 
P6_3_12 

200 200 

480 

400 75.0 1144 1.00 

1.20 0.16 1590 1.39 
 

 

Results for rectangular connections with wi/hi = 0.67 

 
 Properties Parameter Results 

Connection wi 
(mm) 

hi 
(mm) 

Lw 
(mm) 

w 
(mm)

x  
(mm)

Nyi 
(kN) wi/hi Lw/w x /Lw 

Connection 
strength 

NuFE (kN) 
NuFE/Nyi 

R15_3_04 200 0.40 0.40 1236 0.85 
R15_3_06 300 0.60 0.27 1636 1.13 
R15_3_08 400 0.80 0.20 1868 1.29 
R15_3_10 500 1.00 0.16 1961 1.35 
R15_3_12 

200 300 

600 

500 80.0 1450 0.67 

1.20 0.13 1979 1.36 
 

 

Results for rectangular connections with wi/hi = 0.50 

 
 Properties Parameter Results 

Connection wi 
(mm) 

hi 
(mm) 

Lw 
(mm) 

w 
(mm)

x  
(mm)

Nyi 
(kN) wi/hi Lw/w x /Lw 

Connection 
strength 

NuFE (kN) 
NuFE/Nyi 

R20_3_04 240 0.40 0.35 1429 0.81 
R20_3_06 360 0.60 0.23 1865 1.06 
R20_3_08 480 0.80 0.17 2173 1.24 
R20_3_10 600 1.00 0.14 2309 1.31 
R20_3_12 

200 400 

720 

600 83.3 1756 0.50 

1.20 0.12 2342 1.33 
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