
SUPERCALC

A REDUCE package for commutator calculations

Werner M. Seiler 1)

Institut f�ur Theoretische Physik, Universit�at Karlsruhe 2)

D-7500 Karlsruhe 1, West Germany

BITNET: BE04@DKAUNI2

Abstract

A REDUCE package for commutator calculations in supersymmetric theories (in-

cluding ordered products) and for in�nite sums is presented and an application

to the computation of anomalies in string theory is given.

1) Supported by Studienstiftung des deutschen Volkes
2) New address: Institut f�ur Algorithmen und Kognitive Systeme, Universit�at Karlsruhe

Program Summary

� Computers for which the program is designed and operable: Any computer with

an implementation of REDUCE 3.3. Tested on IBM 3090 with TSO, Siemens 7881

with TSS and SUN 3/60 with UNIX.

� Operating system: See above.

� Programming language used: REDUCE 3.3 (RLISP)

� High speed storage required: Depends on the complexity of the calculations.

� No. of lines in combined program and test deck: ca. 4000

� Keywords: Bracket computation in (super) Lie and Poisson algebras, ordered prod-

ucts and the theorem of Wick, in�nite sums, computer algebra

� Nature of physical problem: Symbolic computation of commutators, handling of

ordered products, evaluation of in�nite sums

� Method of solution: Using the algebraic properties of bracket structures, the com-

mutator (or Poisson bracket) of complicated operators is expressed by the com-

mutators of fundamental operators. For ordered products, the theorem of Wick is

applied. In�nite sums are simpli�ed by an heuristic approach.

� Typical running times: Depends on the complexity of the expressions; usually

between a few seconds and a few minutes.

� Unusual features: Applicable to a wide range of problems; due to close integration

into the REDUCE system fast.

1 Introduction

The package SUPERCALC, written in REDUCE 3.3 [1], arose out of a work in

superstring theory. To perform a BRST quantization of the di�erent supersymmetric

string models, requires the evaluation of many commutators between operators de�ned

as in�nite sums over ordered products. Doing these calculations by hand is a boring,

tedious and especially error prone task. Therfore, it is a natural thought to leave them

to a computer algebra system like REDUCE.

Up to now, applications of computer algebra to high energy physics are mainly con-

cerned with the computations of Feynman graphs. In model calculations and connected

problems, however, only few authors used computer algebra systems: Castellani reports

about using REDUCE in supergravity [2], other authors tried it in superspace formal-

ism [3,4]. This situation di�ers considerably from the situation in general relativity,

where the use of computer algebra has become fairly common [5].

The reason is easy to unterstand. In general relativity most calculations are within

the framework of exterior calculus. This formalism, which is well suited for computers,

has been implemented in many systems (e.g. the EXCALC package [6] for REDUCE).

Hence, it is possible to perform computer aided computation without being forced to

write large programs.

In model calculations, however, often elements from many di�erent branches of

mathematics come together. Many of them are not implemented in computer algebra

systems. Only for group theory, a larger number of programs exist, but they are mostly

written in languages like PASCAL or FORTRAN.

In this paper, we present the package SUPERCALC for commutator calculations in

supersymmetric theories, for handling ordered products, and for simpli�cation of in�nite

sums. As an application, the critical dimensions of string and superstring are deter-

mined by computing the anomalies (or Schwinger terms) of their constraint algebras.

Cecchini and Tarlani [7] recently presented a COMMON LISP program for commutator

calculations in Lie and Poisson algebras. But in our case, the integration into a general

3

purpose computer algebra system like REDUCE is important for further processing of

the results, especially of the in�nite sums.

The paper is organized as follows: Section 2 shows the physical problem sketching

the basic facts about string and BRST theory. The next two sections describe the

usage of SUPERCALC and present some sample calculations. Details of the package

are given in the following three sections. First, we consider commutator calculations

and the theorem of Wick. Then, section 6 deals with the simpli�cation of in�nite sums,

followed by the discussion of several other aspects of the package. In the last section,

some conclusions are drawn. Several comments on problems with �eld operators and

formal derivatives are given in appendix A. Appendix B contains a complete list of the

SUPERCALC procedures being accessible within the algebraic mode. Throughout this

paper, REDUCE commands are written in upper case, SUPERCALC procedures in lower

case.

2 String Theory

In the last years, string theory [8] has attracted much interest as a possible candi-

date for a uni�ed theory. A striking feature of this theory is the existence of a so-called

critical dimensionD. It turns out, that quantization can be performed consistently only

in a certain dimension of space-time. The critical dimensions of the di�erent models

have been determined with many di�erent techniques; in this paper, we use a mode

expansion and the BRST formalism.

Strings are one-dimensional objects. During their time evolution, they sweep out a

world sheet, a two-dimensional manifold embedded in space-time. As a natural exten-

sion of point dynamics, we take the area of the world sheet as action. The basic �elds

of the bosonic theory are therefore the embedding functions X� (� = 0; : : : ;D � 1) of

the world sheet. Our fundamental operators will be their Fourier modes ��m, satifying

the canonical commutation relation

[��m; �
�
n] =m����m+n;0 : (2:1)

Due to the reparametrization invariance of the action, the Lagrangian is degenerate

4

and as a constraint the energy-momentum tensor must vanish. Its Fourier modes

Lm =
1

2

1X

�1

�
�
m�n�n� (2:2)

generate the well-known Virasoro algebra

[Lm; Ln] = (m� n)Lm+n : (2:3)

A straightforward quantization leads to an inde�nite Fock space. To take care of

the constraints, we use the BRST formalism [9]. It introduces for each constraint Lm a

\ghost" cm with opposite grading and its conjugate momentum �cm obeying the canonical

algebra

[cm; cn]+ = [�cm; �cn]+ = 0 ; (2.4a)

[cm; �cn]+ = �m+n;0 : (2.4b)

The BRST operator given by

Q =
X

Lmc�m �
1

2

X
(m� n)c�mc�n�cm+n (2:5)

is nilpotent,

Q2 =
1

2
[Q;Q]+ = 0 ; (2:6)

and de�nes the physical states with its cohomology classes. We further introduce the

so-called extended constraints

L̂m := [Q; �cm] = Lm +
X

(m+ n)�cm�ncn : (2:7)

As usual, we must choose an ordering. The simplest choice is normal ordering

de�ned by the pairings:

��m�
�
n = m�(m)����m+n;0 ; (2:8a)

cm�cn = �(m)�m+n;0 : (2:8b)

5

But now the commutators (2.3) and (2.6) acquire anomalies. As consistency condition,

we demand either the vanishing of the anomaly in (2.6) or, equivalently, that the ex-

tended constraints (2.7) satisfy the Virasoro algebra (2.3) without an anomaly3). These

conditions determine the space-time dimension D uniquely.

To commute two ordered products, we need the theorem of Wick [10]. It expands a

product into a sum of ordered products. We are interested in the case, that two ordered

products are multiplied:

: A1 � � �An : : B1 � � �Bm : = : A1 � � �AnB1 � � �Bm : +

+
X

one pairing

: A1 � � �Ai � � �AnB1 � � �Bj � � �Bm : +

+
X

two pairings

: A1 � � �Ai � � �Ak � � �AnB1 � � �Bl � � �Bj � � �Bm : + : : :

(2:9)

3 Using SUPERCALC

Actually, i It is not necessary to make use of a computer algebra system in the

bosonic case outlined in the last section. However, the amount of calculation grows sig-

ni�cantly when we consider superstrings, especially in the case of models with extended

supersymmetry [11,12]. Even for these, it is still possible to perform the computations

by hand. But they become very tedious and the main problem is to get the right result;

computer algebra ensures here the correctness.

In SUPERCALC, operators are introduced with the procedures bosonic and fer-

mionic, resp.:

bosonic A; B; C;

Both procedures automatically declare their arguments as NONCOMmuting OPERATORs.

So, the user does not need to give these declarations. The commutation relations of the

fundamental operators are de�ned with LET rules for the operator commutator4):

LET commutator(A(); B()) = C();

3) This equivalence, which facilitates the calculations signi�cantly, holds only for constraint algebras

of rank 1 [9]. The membrane, for example, yields a rank 2 algebra.
4) REDUCE does not know noncommuting variables. One must always use operators, hence we

write A() instead of A

6

(see also �gure 1 for the declarations for the bosonic string). As the symmetry properties

of a commutator are known to the system, it is not necessary to enter both, [A;B] and

[B;A]. If the switch zerocomm is set (which is the default in SUPERCALC), only the

nonvanishing commutators must be given. Any commutator without a de�ning LET rule

is automatically eliminated.

Commutator calculations are performed by the procedure bracket. It uses only

the three basic algebraic properties of a graded commutator:

[A;B] = (�)�A�B [B;A] ; (3:1a)

[A +B;C] = [A;C] + [B;C] ; (3:1b)

[AB;C] = A [B;C] + (�)�B�C [A;C]B ; (3:1c)

where �A denotes the grading of the operator A. Hence, bracket can be used for any

bracket structure obeying these rules, in particular for Poisson or Jacoby brackets.

In our calculations, all occuring operator products are normal ordered. In this case,

bracket cannot apply the rule (3.1c). Instead, it follows the de�nition of a commutator:

[: A :; : B :] = : A :: B : � : B :: A : : (3:2)

The products on the right hand side are evaluated using the theorem of Wick (2.9).

Evaluating the theorem of Wick is a very tedious task. But SUPERCALC provides

two procedures for this: wick expands a product in a sum of ordered products and

ordprod does the same for a product of ordered products. SUPERCALC supports two

orderings. For normal ordering, denoted by normord, the user must introduce the

pairings of the noncommuting operators. Similiar to the commutation relations, this is

done with LET rules, but now for the operator pairing:

LET pairing(A(); B()) = C();

As pairings possess a priori no symmetry, both, AB and BA must be given. But

SUPERCALC knows, that the pairing of two (anti)commuting operators vanishes. Weyl

ordering | total (anti)symmetrisation | is denoted by weylord. Here the pairing

is just half of the commutator. For example, wick(A()*B()) yields :A()*B():+C(),

whereas ordprod(normord(A()*B()),A()) results in :A()
2
*B():+:A()*C():.

7

SUPERCALC introduces the operator ssum for sums. It takes four arguments:

ssum(s,n,l,u) means
Pu

n=l s . If a bound is in�nity, the keyword aleph is used.

Whereas simple sums, that means with a summandwhich is constant, linear or quadratic

in the summation index, are automatically evaluated, the user must call the procedure

evalsum to simplify more involved sums. For example, evalsum(a*ssum(b*sin(n),n,-

aleph,aleph)) yields zero.

For a better legible output, SUPERCALC provides the declaration doindex. After

doindex A,B,C;, all arguments of the operators A, B, and C are written as subscripts.

In many cases, this yields a considerable improvement of the output. The declaration

can be cancelled by a call of the procedure offindex. Additionally, SUPERCALC writes

ordered products and commutators following the usual conventions (colons for normal

ordering and square brackets for commutators).

The so far presented procedures are the most important ones for calculations. Be-

sides these, SUPERCALC contains many others. Appendix B gives a complete list of all

procedures, which can be called within the algebraic mode of REDUCE.

4 Examples

As �rst example, we consider the bosonic string theory, as it was outlined in sec-

tion 2. The �rst step is to introduce the fundamental modes ��m and cn; �cn. The

corresponding declarations are shown in �gure 1. We distinguish cn and �cn by an ad-

ditional argument of the operator c. The space-time index � on the matter modes is

suppressed, because all expressions are completely contracted.

bosonic alpha; % definition of the modes
fermionic c;
FACTOR alpha,c;
doindex alpha,c; % index notation for the modes
FOR ALL m,n LET

commutator(c(1,m),c(0,n))=delta(m+n,0),
commutator(alpha(m),alpha(n))=delta(m+n,0)*m,
pairing(c(1,m),c(0,n))=delta(m+n,0)*theta(m),
pairing(c(0,m),c(1,n))=delta(m+n,0)*theta(m),
pairing(alpha(m),alpha(n))=delta(m+n,0)*theta(m)*m;

Figure 1. Commutation relations and pairings for the bosonic string as de�ned

in (2.1), (2.4) and (2.8). Only the nonvanishing commutators are given. The

FACTOR declaration improves the readibility of the output.

8

Figure 2 shows a complete session calculating the matter sector with anomaly. Due

to the normal ordering, the Virasoro algebra has now acquired a central term:

[Lm; Ln] = (m� n)Lm+n +
D

12
(m3 �m)�m+n;0 : (4:1)

Because of the suppression of the space-time indices, the dimension D does not appear

in the �nal result. The calculation splits in two steps: The �rst one is to perform

the commutator calculation and is done completely automatic. The second and more

complicated one consists of the simpli�cation of the result. Here the user must give

some hints.

setgreater(m,0);
Time: 3 ms
pp:=bracket(normord(alpha(m-j)*alpha(j)),

normord(alpha(n-k)*alpha(k)));
PP := DELTA *DELTA *THETA(-J+M)*THETA(J)*J*(-J+M)

-J-K+M+N,0 J+K,0
+DELTA *DELTA *THETA(-K+N)*THETA(K)*K*(K-N)

-J-K+M+N,0 J+K,0
+DELTA *THETA(-J+M)*:ALPHA *ALPHA :*(-J+M)

-J-K+M+N,0 J K
+DELTA *THETA(-K+N)*:ALPHA *ALPHA :*(K-N)

-J-K+M+N,0 J K
+DELTA *DELTA *THETA(-J+M)*THETA(J)*J*(-J+M)

-J+K+M,0 J-K+N,0
+DELTA *DELTA *THETA(-K+N)*THETA(K)*K*(K-N)

-J+K+M,0 J-K+N,0
+DELTA *THETA(-J+M)*:ALPHA *ALPHA :*(-J+M)

-J+K+M,0 -K+N J
-(DELTA *THETA(K)*K)*:ALPHA *ALPHA :

-J+K+M,0 -K+N J
+DELTA *THETA(-K+N)*:ALPHA *ALPHA :*(K-N)

J-K+N,0 -J+M K
+DELTA *THETA(J)*J*:ALPHA *ALPHA :

J-K+N,0 -J+M K
+DELTA *THETA(J)*J*:ALPHA *ALPHA :

J+K,0 -J+M -K+N
-(DELTA *THETA(K)*K)* :ALPHA *ALPHA :

J+K,0 -J+M -K+N
Time: 1378 ms
for all x such that not freeof(x,n) let

delta(m+n,0)*x=delta(m+n,0)*sub(n=-m,x);
Time: 15 ms
qq:=evalsum ssum(pp,j,-aleph,aleph);
QQ := -(2*DELTA *THETA(-K)*THETA(K+M)*K)*(K+M)

M+N,0
+2*DELTA *THETA(-K-M)*THETA(K)*K*(K+M)

M+N,0
-(THETA(-K)*K)*:ALPHA *ALPHA :

-K+N K+M
-(THETA(-K)*K)*:ALPHA *ALPHA :

K+M -K+N
+2*THETA(-K+N)*:ALPHA *ALPHA :*(K-N)

-K+M+N K
+2*THETA(K-N)*:ALPHA *ALPHA :*(K-N)

9

-K+M+N K
-(THETA(K)*K)*:ALPHA *ALPHA :

-K+N K+M
-(THETA(K)*K)*:ALPHA *ALPHA :

K+M -K+N
Time: 3068 ms
rr:=evalsum ssum(qq,k,-aleph,aleph);

2
RR := (DELTA *M*(M -1)

M+N,0
+6*SSUM(:ALPHA *ALPHA :*I:1,I:1,-ALEPH,ALEPH)

M+N-I:1 I:1
-3*SSUM(:ALPHA *ALPHA :*I:1,I:1,-ALEPH,ALEPH)

M+I:1 N-I:1
-3*SSUM(:ALPHA *ALPHA :*I:1,I:1,-ALEPH,ALEPH)

N-I:1 M+I:1
-(6*N)*SSUM(:ALPHA *ALPHA :,I:1,-ALEPH,ALEPH))/3

M+N-I:1 I:1
Time: 2934 ms
for all k let

ssum(normord(alpha(m+k)*alpha(n-k))*k,k,-aleph,aleph)=
ssum(normord(alpha(m+n-k)*alpha(k))*(k-m),k,-aleph,aleph);

Time: 32 ms
rr/4;

2
(DELTA *M*(M -1)

M+N,0
+6*SSUM(:ALPHA *ALPHA :,I:1,-ALEPH,ALEPH)*(M-N))/12

M+N-I:1 I:1
Time: 275 ms

Figure 2. A sample session computing the Virasoro algebra (4.1). The output

is slightly edited (some blanks removed and lines reordered). The times refer to

a Siemens 7881 mainframe with TSS; an IBM 3090 has approximately double

speed. A SUN 3/60 with UNIX needs between seven and ten times longer, but

the whole calculation is still done in less than a minute.

The �rst line declares m to be greater than zero. We must distinguish di�erent

cases here, because the collection of some intermediate expressions depends on that; but

the �nal results show no dependency. The next step computes the commutator of two

Virasoro operators (2.2). Before we sum over the dummy indices, we give SUPERCALC

a hint, how to handle products with �m+n;0. This help is necessary to achieve the

simplest form of the result. (This rule entered before bracket is called slows down the

calculation by 50%!) Some index shifts must be performed, before the mode expansion

of Lm+n can be recognized. They are again implemented with LET rules. Indices of the

form i:<number> are generated by SUPERCALC.

As second example, we compute the fermionic contribution to the algebra of the

super Virasoro operators for the N = 1 superstring. They are de�ned by

Lm =
1

2

X

n2ZZ

: ��m�n�n� : +
1

2

X

n2ZZ+1

2

(n �
m

2
) : d�m�ndn� : (4:2)

10

and again satisfy the algebra (2.2). The modes d�m bear half integer indices and also

obey canonical commutation relations:

[d�m; d
�
n]+ = ����m+n;0 : (4:3)

Their ordering is de�ned by d�md
�
n = �(m)����m+n;0. These properties are introduced

to the system analogously to �gure 1. Again we suppress the world sheet indices.

Because of the similiarity to the �rst example, �gure 3 shows only the input lines

and the �nal result. The �rst command declares the indices as half integer. The ghost

contributions are calculated exactly the same way. All put together yields the well-

known values of D = 26 and D = 10 for the bosonic and the N = 1 superstring, resp.

Similarly, one can compute the algebras of the extended constraints and so the critical

dimensions for the models with extended supersymmetry. In each case, the number of

modes and hence the size of the algebras doubles. The results are D = 2 for N = 2 and

D = �2 for N = 4 in accordance with [11].

halfind j,k;
Time: 3 ms
for all x such that not freeof(x,n) let

delta(m+n,0)*x=delta(m+n,0)*sub(n=-m,x);
Time: 16 ms
setgreater(m,0);
Time: 4 ms
pp:=bracket((j-m/2)*normord(d(m-j)*d(j)),

(k-n/2)*normord(d(n-k)*d(k)));
Time: 8435 ms
qq:=evalsum ssum(pp,j,-aleph,aleph);
Time: 8292 ms
rr:=evalsum ssum(qq,k,-aleph,aleph)/4;

2
RR := (2*DELTA *M*(M -1)

M+N,0
2

+24*SSUM(:D *D :*H:2 ,H:2,-ALEPH,ALEPH)
M+N-H:2 H:2

+12*SSUM(:D *D :*H:2,H:2,-ALEPH,ALEPH)*(-M-3*N)
M+N-H:2 H:2

2
+12*SSUM(:D *D :*H:2 ,H:2,-ALEPH,ALEPH)

M+H:2 N-H:2
+6*SSUM(:D *D :*H:2,H:2,-ALEPH,ALEPH)*(M-N)

M+H:2 N-H:2
2

-12*SSUM(:D *D :*H:2 ,H:2,-ALEPH,ALEPH)
N-H:2 M+H:2

+6*SSUM(:D *D :*H:2,H:2,-ALEPH,ALEPH)*(-M+N)
N-H:2 M+H:2

+6*SSUM(:D *D :,H:2,-ALEPH,ALEPH)*N*(M+2*N)
M+N-H:2 H:2

-(3*M*N)*SSUM(:D *D :,H:2,-ALEPH,ALEPH)
M+H:2 N-H:2

11

+3*M*N*SSUM(:D *D :,H:2, - ALEPH,ALEPH))/48
N-H:2 M+H:2

Time: 9415 ms

Figure 3. Fermionic contribution to the algebra of the super Virasoro operators.

The indices are now half integers. There exist no easy way to simplify the �nal

result with LET rules.

In the example of �gure 2, it would be easily possible to reexpress the result as

a Virasoro operator with the help of a LET rule. In �gure 3 we encounter a di�erent

situation. The necessary index shifts are much more tricky here5). The result can be

simpli�ed to m�n
2

P
j2ZZ+ 1

2

(j � m+n
2

) : dm+n�jdj :. But to �nd the shifts requires to

have an idea of the form of the �nal expression. It is for instance crucial to know that

no quadratic term in j but a factor (m� n) should occur. Furthermore, one must split

terms and perform di�erent shifts on the parts. The whole operation is too complex to

be worthwhile programming, if an algorithmic approach exists at all.

Besides, the most important result is always the anomaly. The structure constants

of the algebras can be more or less guessed. In the example of �gure 3, they follow

already from the bosonic part which was calculated in �gure 2. For the anomalies, one

can only derive their form (which powers ofm are occurring) with the help of the Jacoby

identity [12] but not the exact expressions. evalsum was able to simplify all occurring

scalar sums; all anomalies came out in the simplest possible form.

5 Commutator Calculations and the theorem of Wick in SUPERCALC

In principle, bracket uses a simple recursive implementation of the rules (3.1): The

arguments are decomposed, until both are fundamental operators. Then the commuta-

tor of these is returned to be evaluated by the LET rules given by the user. But this

leads to a fairly ine�cient algorithm, because many calculations are executed several

times, as it can be seen from the simple example [A +B + C;O], where O is some com-

plicated expression. An application of rule (3.1a) yields [A;O] + [B;O] + [C;O], which

5) Further problems arise from the fact, that the REDUCE pattern matcher does not work correctly

with noncommuting quantities. This can be seen already from �gure 2, where it does not lead to

an error, because bosonic operators can be interchanged in an ordered product.

12

means that O must be decomposed three times. Such redundancy cannot be avoided

completely; the same happens in hand calculations.

bracket tries two strategies to improve the e�ciency. First, it computes the com-

plexity (de�ned as the number of needed recursive calls) of each argument and starts

with the more complicated one. But the decisive point is that for the most common

cases { both arguments are either sums, products or powers { special procedures are

invoked. These implement a formula for the corresponding special case, which can be

computed iteratively.

bracket can handle any expression built arithmetically with the exception of the

division by an operator. Hence, the inverse of an operator has to be introduced sepa-

rately. This range can be enlarged in two ways: An operator can be declared first (get

the
ag first in its property list). This means, that physical operators occur only in

its �rst argument and that the operator is linear in this argument. So the commutator

can be interchanged with the operator. As default, the REDUCE operators DF (di�er-

entiation) and INT (integration) and the SUPERCALC summation operator ssum bear

this
ag.

For special operations (e.g. a new ordered product), a user can provide own pro-

cedures which are automatically invoked by bracket. For this purpose, the name of

the procedure must be PUT under the special indicator. If the property list of an

operator contains an entry with this indicator, its value is interpreted as the name of

a function with two arguments that will perform the computation of the commutator.

The function can be written in either mode, symbolic or algebraic.

The theorem of Wick is implemented in two procedures: wick expands a product

into a sum of ordered expressions, ordprod performs the same for the product of two

ordered products as shown in (2.9). As mentioned in section 3, ordprod is used by

bracket, if ordered terms appear. Both procedures apply a depth-�rst algorithm to

generate all pairings. This algorithm has a high complexity: For a small number of

factors, the number of terms in the expansion grows exponentially, asymptotically the

complexity is even nn. For an ordered product with �ve factors we get 25 terms, with

six already 75 and with seven 231 and with eight 763 summands6), resp.

6) Seven or eight factors can easily occur. The BRST quantization of the membrane requires for

example to commute two ordered expressions with �ve factors. This yields 1545 terms!

13

For further computations ordered terms must be transformed into a canonical rep-

resentation to allow for the identi�cation of identical terms. This task is performed by

simpord. It takes scalar or c-number factors out of the ordering and rearranges the

operators in a standard order (induced by ORDP). For this purpose, simpord applies a

simple sorting routine which takes care of the signs generated by commuting fermionic

operators. wick and ordprod call simpord automatically, so their results are always

normalized.

6 Simpli�cation of Sums

SUPERCALC makes no use of summation theory. It uses a completely heuristic

approach. The choice of the implemented rules followed from the need of the intended

calculations: They su�ce to compute all anomalies arising in the BRST quantization of

string models.

The simpli�cation takes place in two steps. For elementary sums it is integrated

into the REDUCE simpli�er. These sums { at present: summand constant, linear or

quadratic in the summation index { are evaluated by a kind of table look-up. At the

same level, the linearity of ssum is implemented. This cannot be done with a LINEAR

declaration, because we must often work with noncommuting summands and this case

is not treated by REDUCE.

More involved sums are taken care of by evalsum. This procedure implements a

rule based algorithm using six rules to simplify formal sums. The �rst three concern

single sums. These are �rst checked for an even or odd symmetry. Then, sums with

a Kronecker � are evaluated at once, if SOLVE can detect equal arguments of � within

the summation range. Eventually, the bounds of sums containing step functions of the

form �(const � n) are adjusted. Here the usual convention of string theory �(0) = 1
2
is

adopted.

The three other rules work on expressions linear in ssum. They try to reduce

the number of sums. First,evalsum looks for sums with ranges of equal size. They

are collected into one sum in the hope that REDUCE �nds a simpli�cation of the new

summand. Then, sums with equal summands are collected, if either they cancel each

14

other partially or their ranges are adjacent. Often these rules can be applied only after

an index shift. evalsum tries to deduce such shifts from the bounds of the sums and

performs them automatically then.

To make the evaluation process more e�cient, a special data structure is used

within evalsum. Any expression linear in ssum is transformed into a list which allows

easy access to all relevant parameters. Nevertheless, simplifying sums consumes a lot

of time, especially for multiple sums where each level must be considered separately.

The main reason for this ine�cency is the control strategy for applying the rules.

It turned out to be surprisingly tricky. The problem is that we must always test all

rules for both forms
P

ai +
P

bi and
P
(ai + bi), if a collection is possible. Hence, it

often happens that a sum is tested several times for an application of the same rule.

After each change, all rules must be checked again. But this is the drawback of any rule

based system.

7 Some remarks

Sections 5 and 6 described the main algorithms of SUPERCALC. But beside these

a lot of small r problems have to be tackled. They add up to one third of the total code

of the package! This e�ect is probably typical for a symbolic mode program and the

main disadvantage of using RLISP. REDUCE is a completely open system at this level,

the programmer has access to and can rede�ne everything. But on the other hand, the

symbolic mode does not o�er much programming comfort.

As a �rst point, we need the procedures setless and setgreater to declare a

variable to be greater or less than a given number. For instance in the example of

�gure 2, the step functions in some intermediate sums can be handled only, if it is

known, whether some bounds are greater or less than zero. Now we must of course

extend the relations less and greater, so that they make use of the declarations.

These new procedures can also handle in�nity.

In the Neveu-Schwarz sector of the superstring the indices of the fermionic modes

are half integers �1
2
;�3

2
; : : : Hence, we need a procedure (halfind) to declare the type

of indices and another one (halfp) to decide, whether a given expression yields an

15

integer or half integer result (or neither). For a term of the form i+j
2
, it must then be

known whether the denominator is even or odd. This kind of information is stored in

the property list of the variables. Further procedures generate automatically identi�ers

of a given type with a unique name. They are used by evalsum, as one can see from

�gures 2 and 3.

A well-known problem in computer algebra consists in the legibility of the output.

Especially casual users often can hardly recognize their results. On a standard terminal

with an ASCII character set, not many possibilities exist to improve this situation.

SUPERCALC tries nevertheless to stick as close as feasible to human conventions. The

most important topic here is index notation for which an old algorithm of Hulshof and

van Hulzen [13] for REDUCE 3.2 was adapted.

As usual, normal ordering is denoted by colons and remaining commutators are

enclosed in square brackets. This can be easily achieve by putting a corresponding

output function in the property list of the operators. The sums, especially multiple

sums, remains as main problem. As they are written in an one-dimensional format in

the output, they are di�cult to survey. The only satisfactory solution consists probably

in a connection to a REDUCE-TEX-interface (e.g. TRI [14]) or something similar.

Mostly for \historical" reasons (earlier versions of SUPERCALC relied heavily on

LET rules), a simple mechanism for switching groups of LET rules on and o� is imple-

mented. LET rules o�er fairly
exible possibilities, but they decrease the speed consider-

ably. Especially bracket shows a great sensitivity to this problem as mentioned in the

discussion of the �rst example. In SUPERCALC, the user has to write two procedures:

One contains the de�nitions of the rules, the other one the CLEAR commands. After a

call of letswitch with the name of the group as argument, the rules are invoked and

cleared with ON <groupname> and OFF <groupname>, resp. A more \professional" so-

lution to this problem with more possibilities was recently included into the REDUCE

e-mail library.

As main data structure, REDUCE uses the so-called standard quotients. It im-

plements a recursive, sparse representation of polynomials. Although this structure

possesses many advantageous features, it does not suit very well our purposes. If, for

instance in a commutator calculation, an expression of the form A*B*C is appearing, all

factors should be treated on the same footing. This is much easier realized with a LISP

16

pre�x form (TIMES A B C) than with a complicated recursive dotted pair structure.

Therefore, all procedures in SUPERCALC work with pre�x forms. This slows down the

simpli�cation slightly, because transformations between the di�erent formats must be

executed.

8 Conclusions

The examples show that a completly automatic computation of the anomalies is

not possible. To get a sensible and simple form of the output, hints in form of LET rules

must be given. Therefore, interactive use of the system is necessary, which requires

reasonable execution times. In REDUCE, we can achieve this only by working in the

symbolic (RLISP) mode and by a close integration into the REDUCE system. Neither

can be done without a detailed knowledge of the internal structure of REDUCE (about

which no documentation beside the source code exists). At least the most important

ags and properties used by simpli�er, parser, and output routines have to be known.

In the supersymmetric string models all commutators can be decomposed in a

sequence of computations like the ones presented in section 3. It is a characteristic

feature of this approach, that only terms bilinear in the modes are occurring. This

represents the decisive advantage of using the extended constraints. A direct calculation

of Q2 makes much more di�culties: At �rst sight, one might think that four ghost terms

of the form X

m;n;l

(m� n)(m+ n� l) : c�mc�nc�l�cm+n+l :

appear in the commutator. But these expressions vanish due to symmetry. The proof

requires nontrivial manipulations of the sums: We must perform cyclic permutations

of the summation indices and add the generated terms. Such tricks are far beyond the

capability of a simple procedure like evalsum.

To commute two bilinear terms as shown in the examples takes not too much

time, even in hand calculations. So the main reason to use a computer algebra lies in

the correctness of the results. A large number of similiar computations represents a

permanent source of errors. Especially the frequent switches from bosonic to fermionic

modes very easily lead to wrong signs.

17

In a recent paper, Gorman et al. [15] derived fairly general formulae for the com-

mutators of bilinear currents like (2.2) and their anomalies. But an application of these

results proved to be fairly tedious and an implementation would require a highly non-

trivial pattern matching. Besides, such a program would be very specialiced, whereas

SUPERCALC can be used for any calculation in which brackets, ordered products or

sums are occuring. Hence, a computer aided, brute force approach seems to be superior

here.

A system like SUPERCALC might allow to handle membrane theory with the same

formalism. Up to now, it has been possible to calculate by hand the anomaly of a

truncated version of the BRST algebra only [16]. But for the membrane, no mode ex-

pansion is possible, the �elds themselves must be used. This leads to some problems

(see appendix A). Another possible application consists in calculating the Lorentz al-

gebra of either string or membrane in the light-cone gauge [7]. Anyway, SUPERCALC

should be able to calculate nearly any commutator or Poisson bracket. In most cases,

the problems will start after the call of bracket, because the results will need further

evaluation. We had to handle in�nite sums for instance.

Appendix A. Field operators

If we want to perform similar calculations for the membrane, we cannot use a mode

expansion but must work with the �elds themselves. bracket has no problems with

this, but afterwards we need integration (especially of Green's functions and of the

� distributions) instead of summation. Of course, also derivatives of the �elds occur.

The DF and INT procedures of REDUCE are designed for concrete calculations. In

formal computations the results are in no normal or canonical representation. E.g., the

expression DF(f(x-y),x)+DF(f(x-y),y) is not simpli�ed to zero.

This example shows at once the problem and the solution: We must introduce

a new operator diff which uses the chain rule and distinguishes between two dif-

ferent notations: diff(f(x**2,y),1,1) means that the function f is di�erentiated

once with respect to its �rst argument and then evaluated at the point (x2; y). With

diff(f(x**2,y),x,1) the function f is di�erentiated once with respect to x yielding

2*x*diff(f(x**2,y),1,1).

18

This notation leads easily to errors, because it is not well readable. One can no

longer omit the number of di�erentiations, because this would lead to ambiguities. But

we get a canonical representation and diff(f(x-y),x,1)+diff(f(x-y),y,1) simpli�es

to zero. A package implementing this syntax is in preparation. It will also include the

necessary procedures for integration with Green's functions and the � distribution. Then

all necessary tools for calculations with �elds are gathered and handling the membrane

might become possible.

19

Appendix B. User accessible procedures

This appendix summarizes all procedures of SUPERCALC which can be called in

the algebraic mode. They are listed with their syntax and a short description. All other

procedures are only accessible in the symbolic mode, but they are mainly auxiliary

functions and therefore of minor interest.

SUPERCALC introduces further three new
ags or indicators: first, grade, and

special. The global variables of the system all carry the escape character !: in their

names. Hence, a user should avoid such name.

bosonic a,b,: : : The arguments a,b,: : : are declared as bosonic, noncommut-
ing operators.

bracket(x,y) Computes the graded commutator of x and y.

doindex a,b,: : : The arguments of the operators a,b, : : : will be printed as
subscripts.

evalsum x Simpli�es the sums in x.

expord x The ordered product x is expanded in unordered products.

fermionic a,b,: : : The arguments are declared as fermionic, noncommuting
operators.

first a,b,: : : The arguments are the names of operators being declared
first and NONCOM.

grade x Calculates the grade of x.

greater(x,y) Checks, whether x is strictly greater than y.

halfind a,b,: : : The arguments are declared as half integer indices.

halfp x Checks, whether the expression x yields an integer or half
integer result.

intind a,b,: : : The arguments are declared as integer indices.

jacoby(x,y,z) The Jacoby identity of x,y,z is computed.

less(x,y) Checks, whether x is strictly less than y.

letswitch a,b,: : : Declares a,b,: : : as switches for de�ning and clearing LET
rules.

maxi x The maximum of the list x is determined using greater.

mini x The minimum of the list x is determined using less.

20

normalize x Summation indices get normalized names, to allow for the
recognition of identical expressions.

oddp x Predicate. True, if x yields an odd result.

offindex a,b,: : : The arguments of the operators a,b, : : : are no longer con-
sidered as indices.

ordprod(x,y) Wick expansion of the product of two ordered products.

seteven a,b,c,: : : The arguments are declared as even numbers.

setgreater(x,y) Declares x to be strictly greater than y. One argument must
be a number.

setless(x,y) Declares x to be strictly less than y. One argument must be
a number.

setodd a,b,c,: : : The arguments are declared as odd numbers.

simpord x Scalar factors are taken out of ordered terms and the oper-
ators are written in a standard order (de�ned by ORDP).

wick x Wick expansion of a product.

9 Acknowledgments

It's a pleasure to thank G�okt�urk �U�coluk for many valuable hints about REDUCE,

and Marcus Scholl for many discussions about BRST and string theory.

10 References

[1] A.C. Hearn: REDUCE 3.3 { User Manual, RAND Publication CP78, The RAND

Corporation, Santa Monica 1987

[2] L. Castellani, Int. J. Mod. Phys. A3(1988)1435

[3] R. Grimm, H. K�uhnelt, Comp. Phys. Comm. 20(1980)77

[4] R.P. dos Santos, J. Symb. Comp. 7(1989)523

[5] I. Cohen, I. Frick, J.E. �Aman, In: Proc. 10th Int. Conf. General Relativity and

Gravitation, B. Bertotti et al. (eds.), Dordrecht 1984, p. 139

21

[6] E. Schr�ufer, F.W. Hehl, J.D. McCrea, Gen. Rel. Grav. 19(1987)197

[7] R. Cecchini, M. Tarlani, Comp. Phys. Comm. 52(1989)283

[8] M.B. Green, J.H. Schwarz, E. Witten: Superstring Theory, vol. I&II, Cam-

bridge University Press, Cambridge (UK) 1987

[9] M. Henneaux, Phys. Rep. 126(1985)1

[10] N.N. Bogoljubov, D.V. Shirkov: Introduction to the Theory of Quantized

Fields, Interscience Publisher, New York 1959

[11] S.D. Mathur, S. Mukhi, Phys. Rev. D36(1987)465

[12] W.M. Seiler: Die Bestimmung der kritischen Dimensionen von String und Super-

string mit REDUCE, master thesis (in german), Karlsruhe 1989

[13] B.J.A. Hulshof, J.A. van Hulzen: Some REDUCE Facilities for Pretty Printing

Subscripts and Formal Derivatives, Technische Hogeschool Twente Memorandum

Nr. INF-82-11, Enschede 1982

[14] W. Antweiler, A. Strotmann, V. Winkelmann: Typesetting REDUCE Out-

put with TEX { A REDUCE-TEX-Interface {, internal paper, Rechenzentrum der

Universit�at zu K�oln, 1989

[15] N. Gorman, W. McGlinn, L. O'Raifeartaigh, D. Williams, Int. J. Mod.

Phys. A4(1989)1235

[16] M. Scholl: �Uber die kritischen Dimensionen h�oherdimensionaler relativistischer

Objekte, thesis (in german), Karlsruhe 1988

22

