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The electrical properties of a switchable flux - flow resistor (SFFR) have been investigated. The

maximum superconducting current in the channel can reversibly be varied by gate voltages in the

range of  2.5 to 7 V. Gate voltages above a threshold voltage yield a depression of the pinning

force in the channel. The SFFR allows for three different operation modes. The operation modes

have been characterised by static and transient measurements. A special layout for transient

measurements with high resolution was developed. Possible applications of superconducting

three terminal devices are discussed.
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Many different concepts for three terminal devices have been proposed in the past 1. The essen-

tial electrical properties of the SFFR based on niobium technology have already been described

in 2. Some additional properties and the switching behaviour of the SFFR are presented in this

paper.

The cross section of the SFFR in Fig. 1 reminds of a field effect transistor with a superconduct-

ing channel. To estimate the strength of a possible field effect, the characteristic parameter α =

LD / ξ(0) 3 has been evaluated, where LD is the Debeye length and ξ(0) the coherence length at 0

K. The value αNb = 2.6 ⋅ 10-3 indicates a negligible small field effect. The function of the SFFR is

based on other physical effects, which will be discussed in the next section. Although there is no

field effect, the usual notations for field effect devices will be used. The channel layer of the

SFFR is a 30 nm thick Nb film with a critical current density in the range of jC = 107 A/cm2 and a

critical temperature TC = 9.3 K. The channel region of the SFFR is covered with a 10 nm thin

NbxOy layer. The gate electrode is realised with an Al - Nb double layer, alternative gate mate-

rials are discussed in 3 . The leads to the gate electrode are on top of an 300 nm thick SiO layer.

A detailed description of the fabrication process is given in 4.

Operation modes of the SFFR

As reported earlier 2, the critical current of the channel can  be varied reversibly by applying a

suitable gate voltage. In Fig. 2 the critical current in the channel and the gate current are plotted

as a function of the gate voltage.

The gate current  shows a non-linear voltage dependence above a positive and below a negative

threshold voltage. There are different possibilities for such a carrier transport through an insulat-

ing film 5. A linear dependence between the logarithm of the normalised gate current and the

inverse temperature was found 4 indicating a carrier transport according to the Poole - Frenkel

effect 5,6. This model explains the strong increase of the gate current at the threshold voltages by

localised electrons in the gate oxide, which become mobile due to the strong electric field. The

gate current versus voltage has been calculated according to 6  and plotted as a solid line in Fig.



2 with the oxide thickness as the only fitting parameter.

The critical current of the channel is strongly reduced above the threshold voltagesVTH. This

effect is caused by the increase of the gate oxide conductivity by more than two orders of

magnitude, which changes the boundary conditions at the top of the channel  layer. In the

switched - off state, for gate voltagesVG<VTH, the SFFR can be considered as a supercon-

ductor - insulator system. In the switched - on state, for gate voltagesVG>VTH, the SFFR

changes to a system superconductor - normal conductor. The thickness of the superconducting

channel layer is smaller than the coherence length, so that a strong interaction between the two

layers takes place, enhanced by the absence of a Schottky barrier between the Nb channel  and

the ‘quasi - metallic’ NbxOy gate oxide 2. The energy gap of the superconductor is reduced in

such systems 7, so that the  critical current and the critical temperature are decreased.

To understand the function of the SFFR, it is necessary to measure the channel current versus

the voltage drop along the channel in the switched - on state as shown in Fig. 3. There is a finite

resistance RF = 5 Ω between the points 0 and A, which is independent from the gate voltage in

the switched - on state. The section A - B marks the transition into the normal conducting state.

The differential channel resistance between the points B and C is RN = 50 Ω, which corresponds

to the calculated resistance in the normal conducting state of the channel. The different positions

of the points A (transition to the normal conducting state) and D (return from the normal con-

ducting state) is caused by thermal heating of the device. For gate voltagesVG<VTHthe

points A and D are on the vertical axis indicating a superconducting channel.

Beside the normal conducting state the SFFR exhibits a second kind of conductivity for gate

voltagesVG>VTHand channel currents smaller than the corresponding critical current of the

channel. In this range flux - flow motion 8 owing to the applied gate voltage is assumed to take

place. To test the assumption, the mean pinning force fp = IC * B per unit length of a vortex was

measured at 6.15 K for different gate currents in external magnetic fields oriented perpendicular

to the device 2. It could be demonstrated, that gate voltages above VTH  yield a strong depression



of the pinning force, so that the channel region switches from a type II superconductor with

pinned vortices to an ideal type II superconductor with flux flow 8.

The correlation between the reduction of the energy gap and the depression of the pinning

forces is yet not understood, so that additional experiments are needed to explain the physical

behaviour of the SFFR in more detail.

There are three possible operation modes of the SFFR: the zero voltage state, the normal con-

ducting state and the flux - flow state. The range of these operation modes are shown in Fig. 4

as a function of the channel current IK and the gate voltage VG. Typical values for the threshold

voltages are within the range 2.5 V <VTH< 5 V. The maximum gate voltage VGmax, where the

superconducting current in the flux flow state approaches zero, is between 4 to 7 V.

The channel output voltage in the flux - flow state is given by UK = RF ⋅ IK, where RF is the re-

sistance in the flux - flow state and IK is the channel current. This voltage is limited by the

maximum heat extraction power PMAX, which must be larger than the actual electrical power PEL

= RF ⋅ IK
2. If the channel current gets too large, the electrical loss heats the channel up so that

the transition temperature of the channel will be exceeded and the SFFR switches into the nor-

mal conducting state. In this state the electrical loss increases, because the channel resistance is

much larger than in the flux - flow state and further heating takes place. In this way the SFFR

latches in the normal conducting state, even when the gate voltage is taken away. To return into

the flux - flow state, the channel current must be decreased below a  value IMIN, given by the

condition IMIN
2 ⋅ RN = PMAX, where RN is the resistance in the normal conducting state.

To avoid latching owing to heating in the normal conducting state the channel current must be

kept very small in the range of 2 mA. According to Fig. 4, gate voltages in the range of VTH <

VG < VGmax are necessary to switch into the normal conducting state. Gate voltages near VGmax

often have destroyed devices owing to electrical breakdown i.e. strong electrical fields, so that

only few measurements in this mode could be achieved. To avoid these problems alternative

operating points at higher channel currents with lower gate voltages VG have been tested. In this



way higher output voltages VK without thermal latching could be reached. The return to the

zero - voltage superconducting state caused a relaxation oscillation of the channel voltage with

a frequency of 400 kHz and a typical relaxation time of 5 µs. For technical applications the flux

- flow state is favoured, where thermal latching does not occur.

A SFFR with a typical threshold voltage of VTH = 3.5 V could be used as an electrical switch by

biasing the gate with an offset voltage of VG0 = 3.25 V, so that an additional input voltage of

∆VG = 0.5 V is sufficient to switch the SFFR into the flux - flow state. The resulting channel

voltage at a channel current of 20 mA and a flux - flow resistance RF = 50 Ω would be 1 V, so

that a voltage gain of about 2 seems feasible.

Measurement of characteristic switching times

To measure the expected small switching times of only few picoseconds the coplanar waveguide

layout in Fig. 5 has been developed. A SFFR with a channel resistance in the normal conducting

state of RN = 50 Ω is integrated at the shorted end of a coplanar waveguide with a characteristic

impedance of  50 Ω matching that of the measurement equipment. The length of the waveguide

has been 25 mm, allowing for a separate detection of the signal from the SFFR and possible

spurious signals by reflections at the input of the transmission line. The lead to the gate elec-

trode is also realised as a coplanar waveguide with a characteristic impedance of  50 Ω. In this

case, however, the central line and the ground electrodes are in different layers, rather than in

the same plane.

The basic idea behind this structure has been to measure the reflection coefficient in the zero

voltage state (ρ = -1) and the normal conducting state (ρ = 0) under control of a suitable gate

voltage pulse. Since the normal conducting state was unpractical due to voltage breakdown, the

SFFR has been switched in the flux - flow state. However, for the given devices the reflection

coefficient in the flux - flow state happens to be very close to -1 difficult to use for measure-

ments in the time domain. Therefore a different kind of measurement procedure was applied to



investigate the switching behaviour. For a given bias current in the channel IK the voltage drop

along the channel VK as the response of a gate voltage pulse has been measured as a function of

time.

The rise and the fall time of the voltage drop in the channel VK has been measured with a sam-

pling oscilloscope of 50 GHz bandwidth between 10% and 90% of the voltage magnitudes VKM.

The delay between the rising slopes of input and output has been defined in two different ways:

tD1 has been the time between 50% of the difference of the magnitude of the gate pulse VGM and

of the threshold voltage VTH and 50% of the channel voltage magnitude VKM; tD2 has been de-

fined as the difference of the time at the threshold voltage VTH and 50% VKM.

The pulse wise measured values of the threshold voltage differed from the static value up to a

factor of 2 for gate pulses of 4 ns width and rise fall times of 670 ps.

The measured input and output pulse in the flux flow state is given in Fig. 6. The channel has

been biased with IK = 10 mA and the magnitude of the gate pulse has been VGM = 3.5 V. The

time delay between the signals in the two channels has been calibrated with a capacitive coupled

spike at the rising slope of the gate voltage (point A in Fig. 6).

The switching times are strongly dependent on the channel current IK and the magnitude of the

gate pulse VGM. The dependence of the delay times defined above and the rising time of the gate

voltage are given in Fig. 7. The delay times have been cut down with increasing gate pulse am-

plitudes; however, the rise time only slightly. The delay could also be reduced by increasing the

channel current, while the rise time could not be influenced. To measure the fall time another

test structure has been used to avoid problems with reflections from the shorted end of the

waveguide. In this case the end of the waveguide was terminated with a resistance of 50 Ω. The

measured values for the fall time between 100 and 400 ps were independent of the operating

point. These characteristic times seem to allow for switching frequencies up to 1 GHz in the flux

- flow state.

A measured switching transient into the normal conducting state is shown in Fig. 8. The channel



current has been 25 mA and the gate pulse magnitude 3.5 V. The delay time between the gate

and channel pulse could not be detected, because of the insufficient precision of the capacitive

calibration. The rise and fall time have been in the same order as that of the gate pulse.

The strong difference between a switching in the flux - flow and the normal conducting state

indicates that they are caused by different physical effects. Although the normal conducting state

seems to allow a faster switching operation, voltage breakthrough hampers technical applica-

tion. The physical reasons of the strong delay of a transition into the flux - flow state are still not

completely understood.

Applications of the SFFR

As discussed in the first section, the flux - flow state is the most promising operation mode. The

normal conducting state can be used, if the problems of thermal heating and voltage breakdown

are solved.

The SFFR is not easily used as a transistor - like voltage amplifier, because the transition region

of the channel voltage VK between the superconducting state and the flux - flow state versus the

gate voltage VG is very small and in addition temperature dependent. On the other hand, a bi-

stable operation seems feasible where only a transition between the superconducting state and

the voltage state is required.

a) Digital Logic

The SFFR can be used for implementing a basic logic circuit, i.e. an inverter as shown in Fig. 9.

The voltage state of the SFFR is defined as a logical ‘1’,  the zero - voltage state as logical ‘0’.

The gate electrode is biased with a voltage VG0 smaller than the negative threshold voltage -VTH,

so that a channel current IK0 causes a channel voltage VK.  The SFFR can be switched into the

zero - voltage state by applying an additional input voltage ∆VG, so that VG0 + ∆VG > -VTH. In

this way a logical ‘0’ at the input generates a logical ‘1’ at the output and vice versa. Other logi-

cal functions such as NAND or NOR circuits are feasible by choosing the appropriate bias gate

voltages.



The channel resistance of the SFFR can be designed to yield an output voltage of the circuit VK

= IK0 ⋅ RF larger than the input voltage ∆VK.  SPICE simulations with a simplified model dem-

onstrate, that complex logical circuits operate properly, if the voltage gain is larger than 1.5.

The logical circuits are resistor coupled. Logic circuits could reach switching frequencies up to

the range of  Josephson latching logic circuits, but with larger, CMOS compatible output volt-

ages.

b) High frequency circuits

The transmission of high frequency circuits can be changed with switchable resistors.

A simple filter circuit as sketched in Fig. 10a has been investigated to demonstrate the applica-

tion potential. The characteristics of this filter can be changed by applying a gate voltage at the

SFFR larger than the threshold voltage.

The filter comprises lossless 50 Ω waveguides and a λ/4 - stub terminated by a SFFR with the

channel resistance of RF = 1 kΩ in the flux - flow state. If the gate voltage of the SFFR is

smaller than the threshold voltage, the channel resistance is zero and hence the stub line is

shorted. This short is transformed by the λ/4 - line into a open load at the other end of the stub.

In this way the input power can pass the filter without losses. If the gate voltage is larger than

the threshold voltage, the channel resistance of the SFFR is 1 kΩ and the stub can be considered

as an open load. The open load at one end of the stub line is transformed into a short at the

other end, so that no power can pass the filter at the frequency where the length of the stub

corresponds to λ/4. The calculated transmission coefficient S21 is plotted in Fig. 10b.

The rejected frequency band can be enlarged by adding more stub lines with slightly different

lengths. Filters with similar characteristics  have already been realised with optically activated

switches for communication applications 9.

The SFFR could also be used for the calibration of network analyser measurements in a liquid

Helium bath, where the exchange of calibrated loads is time consuming owing to the usual warm

up and cool down process. Moreover, most resistors have different values at room temperature



and 4.2 K. Usual three loads are needed: a short, an open and 50 Ω. A superconducting short

can hardly be appoximated with semiconductor devices. At least two of the loads, e.g. a short

and an 50 Ω resistor, can be implemented with a SFFR at the end of a coplanar waveguide at

4.2 K under control of room temperature electronics.

Conclusion

Three different operation modes of the SFFR have been determined and discussed. Static and

transient measurements have been performed. The flux - flow state offered switching frequen-

cies up to 1 GHz. A further improvement seems feasible by optimising the preparation technol-

ogy and the layout of the test structures. Potential device applications for the SFFR are dis-

cussed.
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Fig. 1: Cross sectional sketch of the SFFR

Fig. 2: Critical current of the channel IKC and gate current IG versus gate voltage VG



Fig. 3: Current in the channel IK versus the voltage drop along the channel VK for an applied 

gate voltage above the threshold voltage VG > VTH. Between 0 and A the flux flow 

resistance RF and between B and C the normal conducting resistance RN are defined.
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Fig. 4: Range of operation modes as a function of the channel current IK and the gate voltage 

VG



Fig. 5: Layout of the test structure for the transient measurements. Near the border there are 

eight devices for dc measurements

Fig. 6: Measurement of the pulse response in the flux - flow state at a current bias IK = 10 mA
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Fig. 8: Measurement of the pulse response in the normal conducting state at a current bias

IK = 25 mA
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Fig. 9: Equivalent circuit of an inverter realised with the SFFR in the flux - flow state
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